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In the real applications, the model predictive control (MPC) technology is separated into two
layers, that is, a layer of conventional dynamic controller, based on which is an added layer of
steady-state target calculation. In the literature, conditions for offset-free linear model predictive
control are given for combined estimator (for both the artificial disturbance and system state),
steady-state target calculation, and dynamic controller. Usually, the offset-free property of the
double-layered MPC is obtained under the assumption that the system is asymptotically stable.
This paper considers the dynamic stability property of the double-layered MPC.

1. Introduction

The technique model predictive control (MPC) differs from other control methods mainly
in its implementation of the control actions. Usually, MPC solves a finite-horizon optimal
control problem at each control interval, so that the control moves for the current time and
a period of future time (say, totally N control intervals) are obtained. However, only the
current control move is applied to the plant. At the next control interval, the same kind of
optimization is repeated with the newmeasurements [1]. TheMPC procedures applied in the
industrial processes lack theoretical guarantee of stability. Usually, industrial MPC adopts a
finite-horizon optimization, without a special weighting on the output prediction at the end
of the prediction horizon.

Theoretically, the regulation problem for the nominal MPC can have guarantee of
stability by imposing special weight and constraint on the terminal state prediction [2]. The
authors in [2] give a comprehensive framework. However, [2] does not solve everything
for the stability of MPC. In the past 10 years, the studies on the robust MPC for regulation
problem go far beyond [2]. We could say that, for the case of regulation problem when
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the system state is measurable, the research on MPC is becoming mature (see e.g., [3–8]).
For the case of regulation problem when the system state is unmeasurable, and there is no
model parametric uncertainty, the research on MPC is becoming mature (see e.g. [9–11]). For
other cases (output feedback MPC for the systems with parametric uncertainties, tracking
MPC, etc.), there are many undergoing researches (see e.g., [12–16]).

A synthesis approach ofMPC is that with guaranteed stability. However, the industrial
MPC adopts a more complex framework than the existing synthesis approaches of MPC. Its
hierarchy is shown in, for example [17]. In other words, the synthesis approaches of MPC
have not been sufficiently developed to include the industrial MPC. Today, the separation
of the MPC algorithm into steady-state target and dynamic control move calculations is a
common part of industrial MPC technology [17]. The use of steady-state target calculation
is necessary, since the disturbances entering the systems or new input information from the
operator may change the location of the optimal steady-state at any control interval (see e.g.,
[18]). The goal of the steady-state target calculation is to recalculate the targets from the local
optimizer every time the MPC controller executes.

In the linear MPC framework, offset-free control is usually achieved by adding step
disturbance to the process model. The most widely used industrial MPC implementations
assume a constant output disturbance that can lead to sluggish rejections of disturbances that
enter the process elsewhere. In [19, 20], some general disturbance models that accommodate
unmeasured disturbances entering through the process input, state, or output, have been
proposed. In a more general sense, the disturbance model can incorporate any nonlinearity,
uncertainty, and physical disturbance (measured or unmeasured). The disturbance can be
estimated by the Kalman filter (or the usual observer). The estimated disturbance is assumed
to be step-like, that is unchanging in the future, at each control interval (MPC refreshes its
solution at each control interval). The estimated disturbance drives the steady-state target
calculation, in order to refresh the new target value for the control move optimization.

This paper visits some preliminary results for the stability of double-layered MPC or
output tracking MPC. These results could be useful for incorporating the industrial MPC
into the synthesis approaches of MPC. The preliminary results for this paper can be found in
[21, 22].

Notations 1. For any vector x and positive-definite matrix M, ‖x‖2M := xTMx. x(k + i | k)
is the value of vector x at time k + i, predicted at time k. I is the identity matrix with
appropriate dimension. All vector inequalities are interpreted in an element-wise sense. The
symbol � induces a symmetric structure in the matrix inequalities. An optimal solution to the
MPC optimization problem is marked with superscript �. The time-dependence of the MPC
decision variables is often omitted for brevity.

2. System Description and Observer Design

Consider the following discrete-time model:

x(k + 1) = Ax(k) + Bu(k) + Ed(k),

d(k + 1) = d(k) + Δd(k),

y(k) = Cx(k) +Dd(k),

(2.1)
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where u ∈ �m denotes the control input variables, x ∈ �n the state variables, y ∈ �p the
output variables, and d ∈ �q the unmeasured signals including all disturbances and plant-
model mismatches.

Assumption 2.1. The augmented pair

([
C D

]
,

[
A E
0 I

])
(2.2)

is detectable, and the following condition holds:

rank
[
I −A −E
C D

]
= n + q. (2.3)

The augmented observer is

[
x̂(k + 1)
d̂(k + 1)

]
=
[
A E
0 I

][
x̂(k)
d̂(k)

]
+
[
B
0

]
u(k) +

[
F1
s

F2
s

](
Cx̂(k) +Dd̂(k) − y(k)

)
, (2.4)

where Fs = [(F1
s )

T
, (F2

s )
T ]

T
is the prespecified observer gain. Define the estimation error

x̃(k) = x(k)− x̂(k) and d̃(k) = d(k)− d̂(k); then one has the following observer error dynamic
equation:

[
x̃(k + 1)
d̃(k + 1)

]
=
([

A E
0 I

]
+
[
F1
s

F2
s

][
C D

])[
x̃(k)
d̃(k)

]
+
[
0
I

]
Δd(k). (2.5)

Assumption 2.2. Δd(k) is an asymptotically vanishing item, and the observer error dynamics
is asymptotically stable, that is, limk→∞{Δd(k), x̃(k), d̃(k)} = {0, 0, 0}.

3. Double-Layered MPC with Off-Set Property

For the system (2.1), its steady-state state and input target vectors, xt(k) and ut(k), can
be determined from the solution of the following quadratic programming (QP) problems
(steady-state target calculation, steady-state controller):

min
xt,ut

‖ut − ur‖2Rt
, (3.1)

s.t.

⎧⎪⎪⎨
⎪⎪⎩

[
I −A −B
C 0

][
xt

ut

]
=

[
Ed̂(k)

yr −Dd̂(k)

]

umin ≤ ut ≤ umax

(3.2)
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min
xt,ut

∥∥yt − yr

∥∥2
Qt
, (3.3)

s.t.

⎧⎪⎪⎨
⎪⎪⎩

[
I −A −B
C 0

][
xt

ut

]
=

[
Ed̂(k)

yt −Dd̂(k)

]

umin ≤ ut ≤ umax,

(3.4)

where yr is the desired steady-state output (e.g., from the local optimizer), ur is the desired
steady-state input, and (umin, umax) are the input bounds. Problems (3.1) and (3.2) is solved;
when (3.1) and (3.2) is feasible, yt = yr and (3.3) and (3.4) is not solved; when (3.1) and (3.2)
is infeasible, (3.3) and (3.4) is solved.

When this target generation problem is feasible, one has

xt(k) = Axt(k) + But(k) + Ed̂(k),

yt(k) = Cxt(k) +Dd̂(k).
(3.5)

Subtracting (3.5) from (2.1) and utilizing (2.5) yield

χ̂(k + 1, k) = Aχ̂(k, k) + Bω(k) − F1
s

(
Cx̃(k) +Dd̃(k)

)
, (3.6)

where the shifted variables χ̂(·, k) := x̂(·) − xt(k), ω := u − ut. The following nominal model
of the transformed system (3.6) is used for prediction

χ̂(k + i + 1 | k) = Aχ̂(k + i | k) + Bω(k + i | k). (3.7)

Its infinite horizon predictive control performance cost is defined as

J∞0 (k) =
∞∑
i=0

W
(
χ̂(k + i | k), ω(k + i | k)), (3.8)

where W(χ̂(k + i | k), ω(k + i | k)) = ‖χ̂(k + i | k)‖2Q + ‖ω(k + i | k)‖2R.
Defining a quadratic function V (χ̂(k + i | k)) = ‖χ̂(k + i | k)‖2P , if one can show that

V
(
χ̂(k + i + 1 | k)) − V

(
χ̂(k + i | k)) ≤ −W(

χ̂(k + i | k), ω(k + i | k)), (3.9)

then it can be concluded that V (χ̂(k + i | k)) → 0 as i → ∞. Furthermore, summing (3.9)
from i = N to∞ yields the upper bound of J∞N as

∞∑
i=N

W
(
χ̂(k + i | k), ω(k + i | k)) ≤ V

(
χ̂(k +N | k)). (3.10)
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By substituting (3.10) into (3.8), one can get

J∞0 (k) ≤
N−1∑
i=0

W
(
χ̂(k + i | k), ω(k + i | k)) + V

(
χ̂(k +N | k)) =: J

(
χ̂(k), π(k)

)
. (3.11)

Here J(χ̂(k), π(k)) gives an upper bound of J∞0 (k); so we can formulate the MPC as an
equivalent minimization problem on J(χ̂, π) with respect to the optimal control sequence

π∗(k) = [ω∗(k | k)T , ω∗(k + 1 | k)T , . . . , ω∗(k +N − 1 | k)T ]T . (3.12)

When x̂(k + N | k) lies in the terminal region, ω(k + i | k) = Kχ̂(k + i | k), i ≥ N. From the
definition of J(χ̂(k), π(k)), at time instant k + 1, one has

J
(
χ̂(k + 1), π(k + 1)

)
=

N∑
i=1

W
(
χ̂(k + i | k + 1), ω(k + i | k + 1)

)
+ V

(
χ̂(k +N + 1 | k + 1)

)

(3.13)

with the shifted control sequence

π(k + 1) =
[
(ω∗(k + 1 | k) + ut(k) − ut(k + 1))T , . . . ,

(ω∗(k +N − 1k) + ut(k) − ut(k + 1))T ,
(
Kχ̂(k +Nk) + ut(k) − ut(k + 1)

)T]T
.

(3.14)

We can explicitly derive the multi-step-ahead state and output prediction:

χ̂(k +N | k) = ANχ̂(k) + ÃBπ(k), (3.15)

Ỹχ(k) = T̃Aχ̂(k) + T̃Bπ(k), (3.16)

where

ÃB =
[
AN−1B, . . . , AB, B

]
, Ỹχ(k) =

⎡
⎢⎢⎢⎣

χ̂(k | k)
χ̂(k + 1 | k)

...
χ̂(k +N − 1 | k)

⎤
⎥⎥⎥⎦, (3.17)

T̃A =

⎡
⎢⎢⎢⎣

I
A
...

AN−1

⎤
⎥⎥⎥⎦, T̃B =

⎡
⎢⎢⎢⎣

0 0 · · · 0
B 0 · · · 0
...

. . . . . .
...

AN−2B · · · B 0

⎤
⎥⎥⎥⎦. (3.18)
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Lemma 3.1. For a quadratic functionW(x, u) = xTQx+uTRu,Q,R > 0, there exist finite Lipschitz
constants Lx,Lu > 0 such that

‖W(x1, u1) −W(x2, u2)‖ ≤ Lx‖x1 − x2‖ +Lu‖u1 − u2‖ (3.19)

for all x1, x2 ∈ X, u1, u2 ∈ U, where X, U are bounded regions. Similarly, for a quadratic function
V (x) = xTPx, P > 0, there exists a finite Lipschitz constant LV > 0 such that

‖V (x1) − V (x2)‖ ≤ LV ‖x1 − x2‖ (3.20)

for all x1, x2 ∈ X.

Clearly, Lx, Lu, LV depend onX, U. However, it is unnecessary to specifyX, U in the
following. Moreover, LV depends on P , which is time varying; this paper assumes taking LV

for all possible P .

Lemma 3.2. Consider the prediction model (3.7). Then, with the shifted control sequence π(k + 1),

∥∥χ̂(k + i | k + 1) − χ̂(k + i | k)∥∥
≤ ‖A‖i−1

(∥∥∥F1
sC

∥∥∥‖x̃(k)‖ +
∥∥∥F1

sD
∥∥∥
∥∥∥d̃(k)

∥∥∥ + ‖xt(k) − xt(k + 1)‖
)

+
i−2∑
j=0

‖A‖j‖B‖(‖ut(k) − ut(k + 1)‖).

(3.21)

Proof . It is easy to show that

χ̂(k + 1, k + 1) = x̂(k + 1) − xt(k + 1)

= χ̂(k + 1 | k) − F1
s

(
Cx̃(k) +Dd̃(k)

)
+ xt(k) − xt(k + 1).

(3.22)

Then,

∥∥χ̂(k + 1 | k + 1) − χ̂(k + 1 | k)∥∥
=
∥∥χ̂(k + 1) − χ̂(k + 1 | k)∥∥

≤
∥∥∥F1

sC
∥∥∥‖x̃(k)‖ + ∥∥∥F1

sD
∥∥∥
∥∥∥d̃(k)

∥∥∥ + ‖xt(k) − xt(k + 1)‖,

‖χ̂(k + 2 | k + 1) − χ̂(k + 2 | k)‖
=
∥∥A(

χ̂(k + 1 | k + 1) − χ̂(k + 1 | k)) + B(ω(k + 1 | k + 1) −ω(k + 1 | k))∥∥
≤ ‖A‖∥∥χ̂(k + 1 | k + 1) − χ̂(k + 1 | k)∥∥ + ‖B‖‖ut(k) − ut(k + 1)‖.

(3.23)

By induction, one can easily show the claimed result, and thus the proof is completed.



Journal of Applied Mathematics 7

Theorem 3.3. For the system (2.1) subject to the input constraints

umin ≤ u ≤ umax, (3.24)

under Assumptions 2.1-2.2, the closed-loop output feedback model predictive control system, with
objective function J(χ̂(k), π(k)), augmented observer (2.4), and target generation procedure (3.1)–
(3.4), achieves the offset-free reference tracking performance if the following three conditions are
satisfied.

(a) There exist feasible solutions (xt(k), ut(k)) to the target generation problem (3.1)–(3.4), at
each time k.

(b) There exist feasible solutions, including a control sequence π∗(k), a positive-definite matrix
X̂, and any matrix Ŷ , at each time k, to the dynamic optimization problem (dynamic control
move calculation problem)

min
γ1,γ2,π,X̂,Ŷ

(
γ1 + γ2

)
, (3.25)

subject to the linear matrix inequalities

⎡
⎢⎣

γ1 � �

T̃Aχ̂(k) + T̃Bπ Q̃−1 �

π 0 R̃−1

⎤
⎥⎦ ≥ 0, (3.26)

[
1 �

ANχ̂(k) + ÃBπ X̂

]
≥ 0, (3.27)

⎡
⎢⎢⎢⎣

X̂ � � �

AX̂ + BŶ X̂ � �

X̂ 0 γ2Q
−1 �

Ŷ 0 0 γ2R
−1

⎤
⎥⎥⎥⎦ ≥ 0, (3.28)

[
u2
j �

ŶTUT
j X̂

]
≥ 0, j = 1, . . . , m, (3.29)

[
Im×N
−Im×N

]
π ≤

[
Πm(umax − ut(k))
−Πm(umin − ut(k))

]
, (3.30)

where Uj is the jth row of the m-ordered identity matrix, Q̃ = IN ⊗ Q, R̃ = IN ⊗ R,
Πm = [Im, . . . , Im]

T , and uj = min{(umax − ut(k))j , (ut(k) − umin)j}.
(c) By applying u(k) = ut(k) + ω∗(k | k), where ω∗(k | k) is obtained by solving (3.25)—

(3.30), the closed-loop system is asymptotically stable.

Proof. The matrix inequality (3.28) implies that

(A + BK)TP(A + BK) − P +Q +KTRK ≤ 0. (3.31)



8 Journal of Applied Mathematics

By referring to [23], it is easy to prove that (3.9) holds for all i ≥ N. Then, V (χ̂(k +N | k)) ≤
‖χ̂(k +N | k)‖2P . Let ‖χ̂(k +N | k)‖2P ≤ γ2(k), which is guaranteed by (3.27), where P = γ2X̂

−1.
Meanwhile, it is easy to show that, by applying (3.26), the optimal γ∗1 (k) is exactly the optimal
value of

JN−1∗
0 (k) =

N−1∑
i=0

W
(
χ̂(k + i | k), ω∗(k + i | k)). (3.32)

Now we check if each element of the predictive control inputs satisfies the constraints
uj,min ≤ uj(k + i | k) ≤ uj,max, i ≥ 0, j = 1, . . . , m. For any i within the finite horizon N, the
input constraints are satisfied since Πm(umin − ut(k)) ≤ π ≤ Πm(umax − ut(k)), as shown in
(3.30). Otherwise, beyond the finite horizon i ≥ N, χ̂(k + i | k) belongs to the constraint set
E =

⋃{z ∈ �n | zTX̂−1z ≤ 1}, which is guaranteed by (3.27). In this case, by referring to [23],
it is easy to show that, (3.27)–(3.29) guarantee that the feedback control law ω(k + i | k) =
Kχ̂(k + i | k), i ≥ N, K = Ŷ X̂−1 satisfies the input constraints.

Since point (c) is assumed, the offset-free property can be referred to as in [19, 20,
22].

4. Improved Procedure for Double-Layered MPC

At each time k + 1 ≥ 0, we consider the following constraints:

[
I −A −B
C 0

][
xt

ut

]
=

[
Ed̂(k + 1)

yr −Dd̂(k + 1)

]
,

umin ≤ ut ≤ umax,

(4.1)

[
I −A −B
C 0

][
xt

ut

]
=

[
Ed̂(k + 1)

yt −Dd̂(k + 1)

]
,

umin ≤ ut ≤ umax,

(4.2)

⎡
⎣ 1

υ
(k) �

AN[x̂(k + 1) − xt] + ÃBπ(k + 1) X̂(k)

⎤
⎦ ≥ 0, (4.3)

(
υ(k)UjŶ (k)X̂(k)−1Ŷ (k)TUT

j

)1/2 ≤ (umax − ut)j ,

(
υ(k)UjŶ (k)X̂(k)−1Ŷ (k)TUT

j

)1/2 ≤ (ut − umin)j ,

j = 1, . . . , m,

(4.4)

where υ(k) = γ∗2 (k)/(γ
∗
2 (k) −W(χ̂(k +N | k), ω∗(k +N | k)) + (1 − �)W(χ̂(k | k), ω∗(k | k))),

with � ∈ (0, 1] being a given design parameter. Equation (4.1) is utilized for (3.1); (4.2) is
utilized for (3.3).
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Theorem 4.1. For the system (2.1) subject to the input constraints under Assumptions 2.1-2.2, the
closed-loop output feedback model predictive control system, with objective function J(χ̂(k), π(k)),
augmented observer (2.4), target generation procedure (at k = 0, (3.1)–(3.4); at any k + 1, (3.1),
(3.3), (4.1)–(4.4)), and dynamic optimization problem (3.25)–(3.30), is input-to-state (ISS) stable if
the following two conditions are satisfied.

(a) There exist feasible solutions (xt(k), ut(k)) to the target generation problem, at each control
interval.

(b) There exist feasible solutions, including a control sequence π∗(k), a positive-definite matrix
X̂, and any matrix Ŷ , at time k = 0, to the dynamic optimization problem (3.25)–(3.30).

Proof. By applying the shifted control sequence π(k + 1), at time k + 1, one has

γ1(k + 1) − γ∗1 (k) = JN−1
0 (k + 1) − JN−1∗

0 (k)

= W
(
χ̂(k +N | k + 1), ω(k +N | k + 1)

)

+
N−1∑
i=1

[
W

(
χ̂(k + i | k + 1), ω(k + i | k + 1)

)

−W(
χ̂(k + i | k), ω∗(k + i | k))] −W

(
χ̂(k | k), ω∗(k | k)).

(4.5)

By applying Lemmas 3.1-3.2, it is shown that

γ1(k + 1) − γ∗1 (k)

≤ W
(
χ̂(k +N | k + 1), ω(k +N | k + 1)

)

+Lx

N−1∑
i=1

⎡
⎣‖A‖i−1

(∥∥∥F1
sC

∥∥∥‖x̃(k)‖ +
∥∥∥F1

sD
∥∥∥
∥∥∥d̃(k)

∥∥∥ + ‖xt(k) − xt(k + 1)‖
)

+
i−2∑
j=0

‖A‖j‖B‖(‖ut(k) − ut(k + 1)‖)
⎤
⎦

+ (N − 1)Lu‖ut(k) − ut(k + 1)‖ −W
(
χ̂(k | k), ω∗(k | k)).

(4.6)

By further applying

χ̂(k +N | k + 1) = χ̂(k +N | k) +AN−1
[
−F1

s

(
Cx̃(k) +Dd̃(k)

)
+ xt(k) − xt(k + 1)

]

+
N−2∑
i=0

AiB[ut(k) − ut(k − 1)],
(4.7)
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it is shown that

γ1(k + 1) − γ∗1 (k) ≤ W
(
χ̂(k +N | k), ω∗(k +N | k))

+ L̃x

(∥∥∥F1
sC

∥∥∥‖x̃(k)‖ + ∥∥∥F1
sD

∥∥∥
∥∥∥d̃(k)

∥∥∥ + ‖xt(k) − xt(k + 1)‖
)

+ L̃u‖ut(k) − ut(k + 1)‖ −W
(
χ̂(k | k), ω∗(k | k)),

(4.8)

where L̃x, L̃u > 0 are appropriate scalars.
On the other hand, at time k + 1, since the target generation problem is feasible, it is

feasible to choose γ2(k+1) = γ∗2 (k)−W(χ̂(k+N | k), ω∗(k+N | k)+(1−�)W(χ̂(k | k), ω∗(k | k)).
Then,

(
γ1(k + 1) + γ2(k + 1)

) − (
γ∗1 (k) + γ∗2 (k)

)
≤ −�W(

χ̂(k | k), ω∗(k | k))

+ L̃x

(∥∥∥F1
sC

∥∥∥‖x̃(k)‖ +
∥∥∥F1

sD
∥∥∥
∥∥∥d̃(k)

∥∥∥ + ‖xt(k) − xt(k + 1)‖
)
+ L̃u‖ut(k) − ut(k + 1)‖

≤ −�λmin(Q)
∥∥χ̂(k | k)∥∥

+ L̃x

(
‖F1

sC‖‖x̃(k)‖ +
∥∥∥F1

sD
∥∥∥
∥∥∥d̃(k)

∥∥∥ + ‖xt(k) − xt(k + 1)‖
)
+ L̃u‖ut(k) − ut(k + 1)‖.

(4.9)

Hence, γ∗1 (k) + γ∗2 (k) can serve as an ISS (for the definition of this term, see [22]) Lyapunov
function, and the closed-loop system is input-to-state stable.

If we use the terminal equality constraint, rather than the terminal inequality con-
straint, then (3.27) should be revised as

ANχ̂(k) + ÃBπ = 0 (4.10)

and (3.28), (3.29) should be removed; moreover, (4.3) should be revised as

AN(x̂(k + 1) − xt) + ÃBπ(k + 1) = 0 (4.11)

with the shifted control sequence

π(k + 1) =
[
(ω∗(k + 1 | k) + ut(k) − ut(k + 1))T , . . . ,

(ω∗(k +N − 1 | k) + ut(k) − ut(k + 1))T , (ut(k) − ut(k + 1))T
]T
,

(4.12)

and (4.4) should be removed.
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Theorem 4.2. For the system (2.1) subject to the input constraints under Assumptions 2.1–2.2, the
closed-loop output feedback model predictive control system, with objective function J(χ̂(k), π(k)),
augmented observer (2.4), target generation procedure (at k = 0, (3.1)–(3.4); at any k + 1, (3.1),
(3.3), (4.1), (4.2), (4.11)), and dynamic optimization problem (3.25), (3.26), (4.10), (3.30), is input-
to-state stable if the following two conditions are satisfied.

(a) There exist feasible solutions (xt(k), ut(k)) to the target generation problem, at each time
k.

(b) There exist feasible solutions π∗(k), at time k = 0, to the dynamic optimization problem
(3.25), (3.26), (4.10), (3.30).

Proof. By applying the shifted control sequence π(k + 1), at time k + 1, one has

γ1(k + 1) − γ∗1 (k)

= W
(
χ̂(k +N | k + 1), ω(k +N | k + 1)

)

+
N−1∑
i=1

[
W

(
χ̂(k + i | k + 1), ω(k + i | k + 1)

)

−W(
χ̂(k + i | k), ω∗(k + i | k))] −W

(
χ̂(k | k), ω∗(k | k))

=
[
W

(
χ(k +N | k + 1), ω(k +N | k + 1)

)
−W(

χ(k +N | k), ω(k +N | k))]

+
N−1∑
i=1

[
W

(
χ̂(k + i | k + 1), ω(k + i | k + 1)

)

−W(
χ̂(k + i | k), ω∗(k + i | k))] −W

(
χ̂(k | k), ω∗(k | k)).

(4.13)

By analogy to Theorem 4.1, it is shown that γ∗1 (k) can serve as an ISS Lyapunov function, and
the closed-loop system is input-to-state stable.

Assume that A is nonsingular. Then, applying (4.11) yields

xt = x̂(k + 1) +A−NÃBπ(k + 1). (4.14)

Further applying (4.3) yields yt = Cx̂(k + 1) + CA−NÃBπ(k + 1) +Dd̂(k + 1) and

But = (I −A)
[
x̂(k + 1) +A−NÃBπ(k + 1)

]
− Ed̂(k + 1). (4.15)

Hence, by applying (4.10)-(4.11), an analytical solution of the steady-state controller may be
obtained.
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Figure 1: The closed-loop output trajectories, the corresponding control input signals, and the disturb-
ances.
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5. Numerical Example

Let us consider the heavy fractionator, which is a Shell standard problem, with the following
model:

GU(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.05e−27s

50s + 1
1.77e−28s

60s + 1
5.88e−27s

50s + 1

5.39e−18s

50s + 1
5.72e−14s

60s + 1
6.90e−15s

40s + 1

4.38e−20s

33s + 1
4.42e−22s

44s + 1
7.20

19s + 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, GF(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.2e−27s

45s + 1
1.44e−27s

60s + 1

1.52e−18s

25s + 1
1.83e−15s

20s + 1
1.14

27s + 1
1.26

32s + 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5.1)

where GU(s) is the transfer function matrix between inputs and outputs, and GF(s) between
disturbances and outputs. The three inputs of the process are the product draw rates from
the top and side of the column (u1, u2), and the reflux heat duty for the bottom of the column
(u3). The three outputs of the process represent the draw composition (y1) from the top of the
column, the draw composition (y2), and the reflux temperature at the bottom of the column
(y3). The two disturbances are the reflux heat duties for the intermediate section and top of
the column (d1, d2).

The inputs are constrained between −0.5 and 0.5, while the outputs between −0.5
and 0.5. The weighting matrices are identity matrices. N = 3. The sampling interval is 3
seconds. With the algorithm as in Theorem 3.3 applied, the simulation results are shown in
Figure 1. The steady-state calculation begins running at instant k = 20, when the optimizer
finds the optimum target yt = [−0.5, 0.5,−0.4269]T . The objective value is −0.3538, indicating
that −0.3538 unit benefits are obtained. During time k = 200–300, the disturbances d1 = −1.3
and d2 = 1 are added. The simulation verifies our theoretical results.

6. Conclusions

We have given some preliminary results for the stability of double-layered MPC. The results
cannot be seen as the strict synthesis approaches; rather, they are endeavors towards this kind
of approaches. Instead of asymptotic stability, we obtain the input-to-state stability, as in [22].
The results are inspired by [22]; but they are much different, as shown in Remarks 1–11 of
[21].

We believe that several works need to be continued. Indeed, assuming feasibility of
the target generation problem at each control interval is very restrictive, and overlooking
the uncertainties in the prediction model brings difficulties for proving both the asymptotic
stability and offset-free property. It may be necessary to develop a whole procedure, where
the target generation problem is guaranteed (rather than assumed) to be feasible at each
control interval and an augmented system is used for the stability analysis.
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