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We generalize the concept of well-posedness by perturbations for optimization problem to a
class of variational-hemivariational inequalities. We establish some metric characterizations of
the well-posedness by perturbations for the variational-hemivariational inequality and prove
their equivalence between the well-posedness by perturbations for the variational-hemivariational
inequality and the well-posedness by perturbations for the corresponding inclusion problem.

1. Introduction and Preliminaries

The concept well-posedness is important in both theory and methodology for optimization
problems. An initial, already classical concept of well-posedness for unconstrained optimiza-
tion problem is due to Tykhonov in [1]. Let f : V → R∪ {+∞} be a real-valued functional on
Banach space V . The problem of minimizing f on V is said to be well-posed if there exists a
unique minimizer, and every minimizing sequence converges to the unique minimizer. Soon
after, Levitin and Polyak [2] generalized the Tykhonov well-posedness to the constrained
optimization problem, which has been known as the Levitin-Polyak well-posedness. It is
clear that the concept of well-posedness is motivated by the numerical methods producing
optimizing sequences for optimization problems. Unfortunately, these concepts generally
cannot establish appropriate continuous dependence of the solution on the data. In turn, they
are not suitable for the numerical methods when the objective functional f is approximated
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by a family or a sequence of functionals. For this reason, another important concept of well-
posedness for optimization problem, which is called the well-posedness by perturbations
or extended well-posedness, has been introduced and studied by [3–6]. Also, many other
notions of well-posedness have been introduced and studied for optimization problem. For
details, we refer to [7] and the reference therein.

The concept well-posedness also has been generalized to other related problems,
especially to the variational inequality problem. Lucchetti and Patrone [8] first introduced
the well-posedness for a variational inequality, which can be regarded as an extension
of the Tykhonov well-posedness of optimization problem. Since then, many authors were
devoted to generalizing the concept of well-posedness for the optimization problem to
various variational inequalities. In [9], Huang et al. introduced several types of (generalized)
Levitin-Polyak well-posednesses for a variational inequality problem with abstract and
functional constraint and gave some criteria, characterizations, and their relations for
these types of well-posednesses. Recently, Fang et al. [10] generalized the concept of
well-posedness by perturbations, introduced by Zelezzi for a minimization problem, to a
generalized mixed variational inequality problem in Banach space. They established some
metric characterizations of well-posedness by perturbations and discussed its links with
well-posedness by perturbations of corresponding inclusion problem and the well-posedness
by perturbations of corresponding fixed point problem. Also they derived some conditions
under which the well-posedness by perturbations of the mixed variational inequality is
equivalent to the existence and uniqueness of its solution. For further more results on the
well-posedness of variational inequalities, we refer to [8–15] and the references therein.

When the corresponding energy functions are not convex, the mathematical model
describing many important phenomena arising in mechanics and engineering is no longer
variational inequality but a new type of inequality problem that is called hemivariational
inequality, which was first introduced by Panagiotopoulos [16] as a generalization of vari-
ational inequality. A more generalized variational formulation which is called variational-
hemivariational inequality is presented to model the problems subject to constraints because
the setting of hemivariational inequalities cannot incorporate the indicator function of a
convex closed subset. Due to the fact that the potential is neither convex nor smooth
generally, the hemivariational inequalities have been proved very efficient to describe a
variety of mechanical problems using the generalized gradient of Clarke for nonconvex and
nondifferentiable functions [17], such as unilateral contact problems in nonlinear elasticity,
obstacles problems, and adhesive grasping in robotics (see, e.g., [18–20]). So, in recent
years all kinds of hemivariational inequalities have been studied [21–30] and the study
of hemivariational inequalities has emerged as a new and interesting branch of applied
mathematics. However, there are very few researchers extending the well-posedness to
hemivariational inequality. In 1995, Goeleven and Mentagui [23] first defined the well-
posedness for hemivariational inequalities. Recently, Xiao et al. [31] generalized the
concept of well-posedness to hemivariational inequalities. They established some metric
characterizations of the well-posed hemivariational inequality, derived some conditions
under which the hemivariational inequality is strongly well-posed in the generalized sense,
and proved the equivalence between the well-posedness of hemivariational inequality and
the well-posedness of a corresponding inclusion problem. Moreover, Xiao and Huang [32]
studied the well-posedness of variational-hemivariational inequalities and generalized some
related results.

In the present paper, we generalize the well-posedness by perturbations for optimiza-
tion problem to a class of variational-hemivariational inequality. We establish some metric
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characterizations of the well-posedness by perturbations for variational-hemivariational
inequality and prove the equivalence between the well-posedness by perturbations for
the variational-hemivariational inequality and the well-posedness by perturbations for the
corresponding inclusion problem.

We suppose in what follows that V is a real reflexive Banach space with its dual V ∗,
and 〈·, ·〉 is the duality between V and V ∗. We denote the norms of Banach space V and V ∗

by ‖ · ‖V and ‖ · ‖V ∗ , respectively. Let A : V → V ∗ be a mapping, let J : V → R be a locally
Lipschitz functional, let G : V → R ∪ {+∞} be a proper, convex, and lower semicontinuous
functional, and let f ∈ V ∗ be some given element. Denote by dom G the domain of functional
G, that is,

dom G = {u ∈ V : G(u) < +∞}. (1.1)

The functional G is called proper if its domain is nonempty. The variational-hemivariational
inequality associated with (A, f, J, G) is specified as follows:

VHVI
(
A, f, J, G

)
:

find u ∈ dom G such that 〈A(u), v − u〉 + J◦(u, v − u) +G(v) −G(u) ≥ 〈
f, v − u

〉
, ∀v ∈ V,

(1.2)

where J◦(u, v) denotes the generalized directional derivative in the sense of Clarke of a locally
Lipschitz functional J at u in the direction v (see [17]) given by

J◦(u, v) = lim sup
w→u λ↓0

J(w + λv) − J(w)
λ

. (1.3)

The variational-hemivariational inequality which includes many problems as special cases
has been studied intensively. Some special cases of VHVI(A, f, J, G) are as follows:

(i) if G = 0, then VHVI(A, f, J, G) reduces to hemivariational inequality:

HVI
(
A, f, J

)
:

find u ∈ V such that 〈A(u), v − u〉 + J◦(u, v − u) ≥ 〈
f, v − u

〉
, ∀v ∈ V,

(1.4)

(ii) if J = 0, then VHVI(A, f, J, G) is equivalent to the following mixed variational
inequality:

MVI
(
A, f,G

)
:

find u ∈ dom G such that 〈A(u), v − u〉 +G(v) −G(u) ≥ 〈
f, v − u

〉
, ∀v ∈ V,

(1.5)

(iii) if A = 0, J = 0 and f = 0, then VHVI(A, f, J, G) reduces to the global minimization
problem:

MP(G) : min
u∈V

G(u). (1.6)
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Let ∂G(u) : V → 2V
∗ \{∅} and ∂J(u) : V → 2V

∗ \{∅} denote the subgradient of convex
functional G in the sense of convex analysis (see [33]) and the Clarke’s generalized gradient
of locally Lipschitz functional J (see [17]), respectively, that is,

∂G(u) = {u∗ ∈ V ∗ : G(v) −G(u) ≥ 〈u∗, v − u〉, ∀v ∈ V },

∂J(u) = {ω ∈ V ∗ : J◦(u, v) ≥ 〈ω, v〉, ∀v ∈ V }.
(1.7)

About the subgradient in the sense of convex analysis, the Clarke’s generalized directional
derivative and the Clarke’s generalized gradient, we have the following basic properties (see,
e.g., [17, 19, 33, 34]).

Proposition 1.1. Let V be a Banach space and G : V → R ∪ {+∞} a convex and proper functional.
Then one has the following properties of ∂G:

(i) ∂G(u) is convex and weak∗-closed;

(ii) if G is continuous at u ∈ dom G, then ∂G(u) is nonempty, convex, bounded, and weak∗-
compact;

(iii) if G is Gâteaux differentiable at u ∈ dom G, then ∂G(u) = {DG(u)}, whereDG(u) is the
Gâteaux derivative of G at u.

Proposition 1.2. Let V be a Banach space, and let G1, G2 : V → R ∪ {+∞} be two convex
functionals. If there is a point u0 ∈ dom G1 ∩ dom G2 at which G1 is continuous, then the following
equation holds:

∂(G1 +G2)(u) = ∂G1(u) + ∂G2(u), ∀u ∈ V. (1.8)

Proposition 1.3. Let V be a Banach space, u, v ∈ V , and let J be a locally Lipschitz functional defined
on V . Then

(1) the function v �→ J◦(u, v) is finite, positively homogeneous, subadditive, and then convex
on V ,

(2) J◦(u, v) is upper semicontinuous as a function of (u, v), as a function of v alone, is
Lipschitz continuous on V ,

(3) J◦(u,−v) = (−J)◦(u, v),
(4) ∂J(u) is a nonempty, convex, bounded, and weak∗-compact subset of V ∗,

(5) for every v ∈ V , one has

J◦(u, v) = max
{
〈ξ, v〉 : ξ ∈ ∂J(u)

}
. (1.9)

Suppose that L is a parametric normed space with norm ‖ · ‖L, P ⊂ L is a closed ball
with positive radius, and p∗ ∈ P is a given point. We denote the perturbed mappings of A,
J , G as Â : P × V → V ∗ and Ĵ , Ĝ : P × V → R, respectively, which have the property that
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for any p ∈ P , Ĵ(p, ·) is a locally Lipschitz functional in V , Ĝ(p, ·) is proper, convex, and lower
semicontinuous in V , and

Â
(
p∗, ·) = A(·), Ĵ

(
p∗, ·) = J(·), Ĝ

(
p∗, ·) = G(·). (1.10)

Then the perturbed Clarke’s generalized directional derivative Ĵ◦2 (p, ·) : V × V → R and the
perturbed Clarke’s generalized gradient ∂2Ĵ(p, ·) : V → 2V

∗
corresponding to the perturbed

locally Lipschitz functional Ĵ are, respectively, specified as

Ĵ◦2
(
p, ·)(u, v) = lim sup

w→u λ↓0

Ĵ
(
p,w + λv

) − Ĵ
(
p,w

)

λ
,

∂2Ĵ
(
p, u

)
=
{
ω ∈ V ∗ : Ĵ◦2

(
p, ·)(u, v) ≥ 〈ω, v〉, ∀v ∈ V

}
.

(1.11)

The perturbed subgradient ∂2Ĝ(p, ·) : dom G → 2V
∗
corresponding to the perturbed convex

functional Ĝ is

∂2Ĝ
(
p, u

)
=
{
u∗ ∈ V ∗ : Ĝ

(
p, v

) − Ĝ
(
p, u

) ≥ 〈u∗, v − u〉, ∀v ∈ V
}
. (1.12)

Based on the above-perturbed mappings, the perturbed problem of VHVI(A, f, J, G) is given
by

VHVIp
(
A, f, J, G

)
:

find u ∈ dom Ĝ
(
p, ·) such that

〈
Â
(
p, u

) − f, v − u
〉
+ Ĵ◦2

(
p, ·)(u, v − u) + Ĝ

(
p, v

)

− Ĝ
(
p, u

) ≥ 0, ∀v ∈ V.

(1.13)

In the sequel, we recall some important definitions and useful results.

Definition 1.4 (see [35]). Let S be a nonempty subsets of V . The measure of noncompactness
μ of the set S is defined by

μ(S) = inf

{

ε > 0 : S ⊂
n⋃

i=1

Si,diam(Si) < ε, i = 1, 2, . . . , n

}

, (1.14)

where diam(Si) means the diameter of set Si.

Definition 1.5 (see [35]). Let A and B be two given subsets of V . The excess of A over B is
defined by

e(A,B) = sup
a∈A

d(a, B), (1.15)
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where d(·, B) is the distance function generated by B, that is,

d(x, B) = inf
b∈B

‖a − b‖V , x ∈ V. (1.16)

The Hausdorff metric H(·, ·) between A and B is defined by

H(A,B) = max{e(A,B), e(B,A)}. (1.17)

Let {An} be a sequence of nonempty subset of V . One says that An converges to A in the
sense of Hausdorff metric if H(An,A) → 0. It is easy to see that e(An,A) → 0 if and only if
d(an,A) → 0 for all selection an ∈ An. For more details on this topic, the reader should refer
to [35]. The following theorem is crucial to our main results.

Theorem 1.6 (see [36]). Let C ⊂ V be nonempty, closed, and convex, let C∗ ⊂ V ∗ be nonempty,
closed, convex, and bounded, let ϕ : V → R be proper, convex, and lower semicontinuous, and let
y ∈ C be arbitrary. Assume that, for each x ∈ C, there exists x∗(x) ∈ C∗ such that

〈
x∗(x), x − y

〉 ≥ ϕ
(
y
) − ϕ(x). (1.18)

Then, there exists y∗ ∈ C∗ such that

〈
y∗, x − y

〉 ≥ ϕ
(
y
) − ϕ(x), ∀x ∈ C. (1.19)

2. Well-Posedness by Perturbations of VHVI(A, f, J, G) with
Metric Characterizations

In this section, we generalize the concept of well-posedness by perturbations to the vari-
ational-hemivariational inequality VHVI(A, f, J, G) and establish its metric characteriza-
tions.

Definition 2.1. Let {pn} ⊂ P with pn → p∗. A sequence {un} ⊂ V is said to be an approximating
sequence corresponding to {pn} for VHVI(A, f, J, G) if there exists a nonnegative sequence
{εn}with εn → 0 as n → ∞ such that un ∈ dom Ĝ(pn, ·) and

〈
Â
(
pn, un

) − f, v − un

〉
+ Ĵ◦2

(
pn, ·

)
(un, v − un) + Ĝ

(
pn, v

) − Ĝ
(
pn, un

)

≥ −εn‖v − un‖V , ∀v ∈ V.

(2.1)

Definition 2.2. VHVI(A, f, J, G) is said to be strongly (resp., weakly) well-posed by pertur-
bations if VHVI(A, f, J, G) has a unique solution in V , and for any {pn} ⊂ P with pn → p∗,
every approximating sequence corresponding to {pn} converges strongly (resp., weakly) to
the unique solution.

Remark 2.3. Strong well-posedness by perturbations implies weak well-posedness by pertur-
bations, but the converse is not true in general.
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Definition 2.4. VHVI(A, f, J, G) is said to be strongly (resp., weakly) well-posed by
perturbations in the generalized sense if VHVI(A, f, J, G) has a nonempty solution set S in V ,
and for any {pn} ⊂ P with pn → p∗, every approximating sequence corresponding to {pn} has
some subsequence which converges strongly (resp., weakly) to some point of solution set S.

Remark 2.5. Strong well-posedness by perturbations in the generalized sense implies weak
well-posedness by perturbations in the generalized sense, but the converse is not true in
general.

To derive the metric characterizations of well-posedness by perturbations for
VHVI(A, f, J, G), we define the following approximating solution set of VHVI(A, f, J, G):
For any ε > 0,

Ω(ε) =
⋃

p∈B(p∗,ε)

{
u ∈ dom Ĝ

(
p, ·) :

〈
Â
(
p, u

) − f, v − u
〉
+ Ĵ◦2

(
p, ·)(u, v − u)

+ Ĝ
(
p, v

) − Ĝ
(
p, u

) ≥ −ε‖v − u‖V , ∀v ∈ V
}
,

(2.2)

where B(p∗, ε) denotes the closed ball centered at p∗ with radius ε. For any ε > 0, u ∈ Ω(ε)
and any set K ⊂ Ω(ε), we define the following two functions which are specified as follows:

p(ε, u) = sup{‖v − u‖V : v ∈ Ω(ε)},
q(ε,K) = e(Ω(ε), K).

(2.3)

It is easy to see that p(ε, u) is the smallest radius of the closed ball centered at u containing
Ω(ε), and q(ε,K) is the excess of approximating solution set Ω(ε) over K.

Based on the two functions p(ε, u) and q(ε,K), we now give some metric characteri-
zations of well-posedness by perturbations for the VHVI(A, f, J, G).

Theorem 2.6. VHVI(A, f, J, G) is strongly well-posed by perturbations if and only if there exists a
solution u∗ for VHVI(A, f, J, G) and p(ε, u∗) → 0 as ε → 0.

Proof. “Necessity”: suppose that VHVI(A, f, J, G) is strongly well-posed by perturbations.
Then Ω(ε)/= ∅ for all ε > 0 since there is a unique solution u∗ belonging to Ω(ε) by the strong
well-posedness by perturbations for VHVI(A, f, J, G). We now need to prove p(ε, u∗) → 0
as ε → 0. Assume by contradiction that p(ε, u∗) does not converge to 0 as ε → 0, then there
exist a constant l > 0 and a nonnegative sequence {εn}with εn → 0 such that

p(εn, u∗) > l > 0, ∀n ∈ N. (2.4)

By the definition of function p(ε, u), there exists un ∈ Ω(εn) such that

‖un − u∗‖V > l, ∀n ∈ N. (2.5)
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Since un ∈ Ω(εn), there exists some pn ∈ B(p∗, εn) such that

〈Â(
pn, un

) − f, v − un〉 + Ĵ◦2
(
pn, ·

)
(un, v − un) + Ĝ

(
pn, v

) − Ĝ
(
pn, un

)

≥ −εn‖v − un‖V , ∀v ∈ V, n ∈ N.
(2.6)

It is obvious that pn → p∗ as n → ∞ and so {un} is an approximating sequence
corresponding to {pn} for VHVI(A, f, J, G). Therefore, by the strong well-posedness by
perturbations for VHVI(A, f, J, G), we can get un → u∗ which is a contradiction to (2.4).

“Sufficiency”: suppose that VHVI(A, f, J, G) has a solution u∗ and p(ε, u∗) → 0 as ε →
0. First, we claim that u∗ is a unique solution for VHVI(A, f, J, G). In fact, if VHVI(A, f, J, G)
has another solution ûwith u∗ /= û, it follows from the definition of Ω(ε) that u∗ and û belong
to Ω(ε) for all ε > 0, which together with the definition of p(ε, u) implies that

p(ε, u∗) ≥ ‖û − u∗‖V > 0, ∀ε > 0, (2.7)

which is a contradiction to the assumption p(ε, u∗) → 0 as ε → 0. Now, let {pn} ⊂ P with
pn → p∗ and {un} be an approximating sequence corresponding to {pn} for VHVI(A, f, J, G).
Then there exists a nonnegative sequence {εn}with εn → 0 such that

〈Â(
pn, un

) − f, v − un〉 + Ĵ◦2
(
pn, ·

)
(un, v − un) + Ĝ

(
pn, v

) − Ĝ
(
pn, un

)

≥ −εn‖v − un‖V , ∀v ∈ V, n ∈ N.
(2.8)

Taking δn = ‖pn − p∗‖L and ε′n = max{δn, εn}, it easy to see that ε′n → 0 as n → ∞ and
un ∈ Ω(ε′n). Since u∗ is the unique solution for VHVI(A, f, J, G), u∗ also belongs to Ω(ε′n).
And so, it follows from the definition of p(ε, u) that

‖un − u∗‖V ≤ p
(
ε′n, u

∗) −→ 0, as n −→ ∞, (2.9)

which implies that VHVI(A, f, J, G) is strongly well-posed by perturbations. This completes
the proof of Theorem 2.6.

Theorem 2.7. VHVI(A, f, J, G) is strongly well-posed by perturbations in the generalized sense if
and only if the solution set S of VHVI(A, f, J, G) is nonempty and compact, and q(ε, S) → 0 as
ε → 0.

Proof. “Necessity”: suppose that VHVI(A, f, J, G) is strongly well-posed by perturbations in
the generalized sense. Then VHVI(A, f, J, G) has nonempty solution set S by the definition
of strong well-posedness by perturbations in the generalized sense of VHVI(A, f, J, G).
Let {un} be any sequence in S. It is obvious that {un} is an approximating sequence
corresponding to constant sequence {p∗} for VHVI(A, f, J, G). Again by the strong well-
posedness by perturbations in the generalized sense of VHVI(A, f, J, G), {un} has a
subsequence which converges strongly to some point of S, which implies that the solution
set S of VHVI(A, f, J, G) is compact. Now we show that q(ε, S) → 0 as ε → 0. Assume by
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contradiction that q(ε, S) � 0 as ε → 0, then there exist a constant l > 0 and a nonnegative
sequence {εn}with εn → 0 and xn ∈ Ω(εn) such that

xn /∈ S + B(0, l), ∀n ∈ N. (2.10)

Since xn ∈ Ω(εn), there exists pn ∈ B(p∗, εn) such that

〈
Â
(
pn, xn

) − f, v − xn

〉
+ Ĵ◦2

(
pn, ·

)
(xn, v − xn) + Ĝ

(
pn, v

) − Ĝ
(
pn, xn

)

≥ −εn‖v − xn‖V , ∀v ∈ V.

(2.11)

Clearly, pn → p∗ as n → ∞. This together with the above inequality implies that {xn} is an
approximating consequence corresponding to {pn} for VHVI(A, f, J, G). It follows from the
strongly well-posedness by perturbations in the generalized sense for VHVI(A, f, J, G) that
there is a subsequence {unk} of {un}which converges to some point of S. This is contradiction
to (2.10) and so q(ε, S) → 0 as ε → 0.

“Sufficiency”: we suppose that the solution set S of VHVI(A, f, J, G) is nonempty
compact and q(ε, S) → 0 as ε → 0. Let {pn} ⊂ P be any sequence with pn → p∗ and {un} an
approximating sequence corresponding to pn for VHVI(A, f, J, G), which implies that

〈
Â
(
pn, un

) − f, v − un

〉
+ Ĵ◦2

(
pn, ·

)
(un, v − un) + Ĝ

(
pn, v

) − Ĝ
(
pn, un

)

≥ −εn‖v − un‖V , ∀v ∈ V.

(2.12)

Taking ε′n = max{εn, ‖pn − p∗‖L}, it is easy to see that ε′n → 0 and un ∈ Ω(ε′n). It follows that

d(un, S) ≤ e
(
Ω
(
ε′n, S

))
= q

(
ε′n, S

) −→ 0. (2.13)

Since the solution set S of VHVI(A, f, J, G) is compact, there exists un ∈ S such that

‖un − un‖V = d(un, S) −→ 0. (2.14)

Again from the compactness of solution set S, un has a subsequence {unk} converging
strongly to some point u ∈ S. It follows from (2.14) that

‖unk − u‖V ≤ ‖unk − unk‖V + ‖unk − u‖V −→ 0, (2.15)

which implies that {unk} converges strongly to u. Thus, VHVI(A, f, J, G) is strongly well-
posed by perturbations in the generalized sense. This completes the proof of Theorem 2.7.

The strong well-posedness by perturbations in the generalized sense for
VHVI(A, f, J, G) can also be characterized by the behavior of noncompactness measure
of its approximating solution set.
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Theorem 2.8. Let L be a finite-dimensional space. Suppose that

(i) Â(·, ·) : P × V → V ∗, the perturbed mapping of A, is continuous with respect to (p, v),

(ii) Ĝ : P × V → R ∪ {+∞}, the perturbed functional of G, is lower semicontinuous with
respect to (p, v) and continuous with respect to p for any given v ∈ V ,

(iii) Ĵ : P × V → R, the perturbed functional of J , is locally Lipschitz with respect to v for any
p ∈ P , and its Clarke’s generalized directional derivative Ĵ◦2 (p, ·) : P → L(V × V,R) is
continuous with respect to p.

Then, VHVI(A, f, J, G) is strongly well-posed by perturbations in the generalized sense if and
only if

Ω(ε)/= ∅, ∀ε > 0, μ(Ω(ε)) −→ 0 as ε −→ 0. (2.16)

Proof. From the metric characterization of strongly well-posedness by perturbations in the
generalized sense for VHVI(A, f, J, G) in Theorem 2.7, we can easily prove the necessity. In
fact, since VHVI(A, f, J, G) is strongly well-posed by perturbations in the generalized sense,
it follows from Theorem 2.7 that the solution set S of VHVI(A, f, J, G) is nonempty compact
and q(ε, S) → 0 as ε → 0. Then, we can easily get from the compactness of S and the fact
S ⊂ Ω(ε) for all ε > 0 that Ω(ε)/= ∅ for all ε > 0 and

μ(Ω(ε)) ≤ 2H(Ω(ε), S) + μ(S) = 2e(Ω(ε), S) = 2q(ε, S) −→ 0. (2.17)

Now we prove the sufficiency. First, we claim that Ω(ε) is closed for all ε > 0. In fact, let
{un} ⊂ Ω(ε) and un → u. Then there exists pn ∈ B(p∗, ε) such that

〈
Â
(
pn, un

) − f, v − un

〉
+ Ĵ◦2

(
pn, ·

)
(un, v − un) + Ĝ

(
pn, v

) − Ĝ
(
pn, un

)

≥ −ε‖v − un‖V , ∀v ∈ V.

(2.18)

Without loss of generality, we can suppose that pn → p ∈ B(p∗, ε) since L is finite
dimensional. By taking lim sup at both sides of above inequality, it follows from the
assumptions (i)–(iii) and the upper semicontinuity of Ĵ◦2 (p, ·)(u, v)with respect to (u, v) that

〈
Â
(
p, u

) − f, v − u
〉
+ Ĵ◦2

(
p, ·)(u, v − u) + Ĝ

(
p, v

) − Ĝ
(
p, u

)

≥ lim sup
{〈

Â
(
pn, un

) − f, v − un

〉
+ Ĵ◦2

(
pn, ·

)
(un, v − un) + Ĝ

(
pn, v

) − Ĝ
(
pn, un

)}

≥ lim sup{−ε‖v − un‖V }
= −ε‖v − u‖V .

(2.19)

Thus, u ∈ Ω(ε) and so Ω(ε) is closed.
Second, we prove that

S =
⋂

ε>0

Ω(ε). (2.20)



Journal of Applied Mathematics 11

It is obvious that S ⊂ ∩ε>0Ω(ε) since the solution set S ⊂ Ω(ε) for all ε > 0. Conversely, let
u ∈ ∩ε>0Ω(ε), and let {εn} be a nonnegative sequence with εn → 0 as n → +∞. Then for any
n ∈ N, u ∈ Ω(εn), and so there exists pn ∈ B(p∗, εn) such that

〈
Â
(
pn, u

) − f, v − u
〉
+ Ĵ◦2

(
pn, ·

)
(u, v − u) + Ĝ

(
pn, v

) − Ĝ
(
pn, u

)

≥ −εn‖v − u‖V , ∀v ∈ V.

(2.21)

Since pn ∈ B(p∗, εn) and εn → 0, it is clear that pn → p∗. By letting n → +∞ in the above
inequality, we get from the continuity of Â, Ĵ◦2 (p, ·), and Ĝ in assumptions that

〈
A(u) − f, v − u

〉
+ J◦(u, v − u) +G(v) −G(u)

=
〈
Â
(
p∗, u

) − f, v − u
〉
+ Ĵ◦2

(
p∗, ·)(u, v − u) + Ĝ

(
p∗, v

) − Ĝ
(
p∗, u

)

≥ lim{−εn‖v − u‖V } = 0.

(2.22)

Thus, u ∈ S and so ∩ε>0Ω(ε) ⊂ S.
Now, we suppose that

Ω(ε)/= ∅, ∀ε > 0, μ(Ω(ε)) −→ 0 as ε −→ 0. (2.23)

From the definition of approximating solution set Ω(ε), Ω(ε) is increasing with respect to ε.
Then by applying the Kuratowski theorem on page 318 in [35], we have from (2.20) that S is
nonempty compact and

q(ε, S) = e(Ω(ε), S) = H(Ω(ε), S) −→ 0 as ε −→ 0. (2.24)

Therefore, by Theorem 2.7, VHVI(A, f, J, G) is strongly well-posed by perturbations in the
generalized sense.

Example 2.9. Let L be a finite-dimensional space with norm ‖ · ‖L, let P ⊂ L be a closed ball in
L, and let p∗ be a given point in P . We supposed that the perturbedmappings Â : P×V → V ∗,
Ĝ, Ĵ : P × V → R of the mapping A, G, J are, respectively, specified as follows:

Â
(
p, v

)
= expα‖p−p∗‖LA(v), Ĝ

(
p, v

)
= G(v) + β

∥∥p − p∗
∥∥
L,

Ĵ
(
p, v

)
= J(v) + γ

∥∥p − p∗
∥∥
L,

(2.25)

where α, β, γ are three positive numbers. It is obvious that Â is continuous with respect to
(p, v) due to the continuity of the mappingA : V → V ∗, and Ĝ is lower semicontinuous with
respect to (p, v) and continuous with respect to p for any given v ∈ V because the functional
G : V → R is proper convex and lower semicontinuous. Also, the perturbed functional Ĵ is
locally Lipschitz with respect to v since J : V → R is locally Lipschitz. Furthermore, it is easy
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to check that the perturbed Clarke’s generalized directional derivative corresponding to the
perturbed function Ĵ can be specified as

Ĵ◦2
(
p, ·)(u, v) = J◦(u, v) = lim sup

w→u λ↓0

J(w + λv) − J(w)
λ

, (2.26)

which implies that Ĵ◦2 (p, ·) is continuous with respect to p. Thus, the assumptions in
Theorem 2.8 are satisfied, and so the VHVI(A, f, J, G) is stronglywell-posed by perturbations
in the generalized sense if and only if (2.16) holds.

3. Links with Well-Posedness by Perturbations for
Corresponding Inclusion Problem

In this section, we recall some concepts of well-posedness by perturbations for inclusion
problems, which are introduced by Lemaire et al. [4], and investigate the relations between
the well-posedness by perturbations for VHVI(A, f, J, G) and the well-posedness by
perturbations for the corresponding inclusion problem.

In what follows, we always let F be a set-valued mapping from real reflexive Banach
space V to its dual space V ∗. The inclusion problem associated with mapping F is defined by

IP(F) : find x ∈ V such that 0 ∈ F(x), (3.1)

whose corresponding perturbed problem is specified as

IPp(F) : find x ∈ V such that 0 ∈ F̂
(
p, x

)
, (3.2)

where F̂ : P × V → 2V
∗
is the perturbed set-valued mapping such that F̂(p∗, ·) = F.

Definition 3.1 (see [4]). Let {pn} ⊂ P be a sequence in P with pn → p∗. A sequence {un} ⊂ V
is said to be an approximating sequence corresponding to {pn} for inclusion problem IP(F)
if un ∈ dom F̂(pn, ·) for all n ∈ N and d(0, F̂(pn, un)) → 0, or equivalently, there exists a
sequence wn ∈ F̂(pn, un) such that ‖wn‖V ∗ → 0 as n → ∞.

Definition 3.2 (see [4]). One says that inclusion problem IP(F) is strongly (resp., weakly)
well-posed by perturbations if it has a unique solution, and for any {pn} ⊂ P with pn → p∗,
every approximating sequence corresponding to {pn} converges strongly (resp., weakly) to
the unique solution of IP(F).

Definition 3.3 (see [4]). One says that inclusion problem IP(F) is strongly (resp., weakly)
well-posed by perturbations in the generalized sense if the solution set S of IP(F) is
nonempty, and for any {pn} ⊂ P with pn → p∗, every approximating sequence corresponding
to {pn} has a subsequence converging strongly (resp., weakly) to some point of solution set
S for IP(F).

In order to obtain the relations between the strong (resp., weak) well-posedness
by perturbations for variational-hemivariational inequality VHVI(A, f, J, G) and the strong
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(resp., weak) well-posedness by perturbations for the corresponding inclusion problem,
we first give the following important lemma which establishes the equivalence between
the variational-hemivariational inequality VHVI(A, f, J, G) and the corresponding inclusion
problem. Although the lemma is a corollary of Lemma 4.1 in [32] with T = 0, we also give
proof here for its importance and the completeness of our paper.

Lemma 3.4. Let A be a mapping from Banach space V to its dual V ∗, let J : V → R be a locally
Lipschitz functional, letG : V → R∪{+∞} be a proper, convex, and lower semicontinuous functional,
and let f be a given element in dual space V ∗. Then u ∈ dom G is a solution of VHVI(A, f, J, G) if
and only if u is a solution of the following inclusion problem:

IP
(
A − f + ∂J + ∂G

)
: find u ∈ dom G such that Au − f + ∂J(u) + ∂G(u) � 0. (3.3)

Proof. “Sufficiency”: assume that u ∈ dom G is a solution of inclusion problem IP(A − f +
∂J + ∂G). Then there exist ω1 ∈ ∂J(u) and ω2 ∈ ∂G(u) such that

Au − f +ω1 +ω2 = 0. (3.4)

By multiplying v − u at both sides of above equation (3.4), we obtain from the definitions
of the Clarke’s generalized gradient for locally Lipschitz functional and the subgradient for
convex functional that

0 =
〈
Au − f +ω1 +ω2, v − u

〉 ≤ 〈
Au − f, v − u

〉
+ J◦(u, v − u)

+G(v) −G(u), ∀v ∈ V,
(3.5)

which implies that u ∈ dom G is a solution of VHVI(A, f, J, G).
“Necessity”: conversely, suppose that u ∈ dom G is a solution of VHVI(A, f, J, G).

Then,

〈
Au − f, v − u

〉
+ J◦(u, v − u) +G(v) −G(u) ≥ 0, ∀v ∈ V. (3.6)

From the fact that

J◦(u, v − u) = max
{
〈ω, v − u〉 : ω ∈ ∂J(u)

}
, (3.7)

we get that there exists a ω(u, v) ∈ ∂J(u) such that

〈
Au − f, v − u

〉
+ 〈ω(u, v), v − u〉 +G(v) −G(u) ≥ 0, ∀v ∈ V. (3.8)

By virtue of Proposition 1.3, ∂J(u) is a nonempty, convex, and bounded subset in V ∗ which
implies that {Au − f + ω : ω ∈ ∂J(u)} is nonempty, convex, and bounded in V ∗. Since G :
V → R ∪ {+∞} is a proper, convex, and lower semicontinuous functional, it follows from
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(3.8) and Theorem 1.6 with ϕ(u) = G(u) that there exists ω(u) ∈ ∂J(u), which is independent
on v, such that

〈
Au − f, v − u

〉
+ 〈ω(u), v − u〉 +G(v) −G(u) ≥ 0, ∀v ∈ V. (3.9)

For the sake of simplicity in writing, we denote ω = ω(u). Then by (3.9), we have

G(v) −G(u) ≥ 〈−Au + f −ω, v − u
〉
, ∀v ∈ V, (3.10)

that is, −Au + f −ω ∈ ∂G(u). Thus, it follows from ω ∈ ∂J(u) that

Au − f + ∂J(u) + ∂G(u) � 0, (3.11)

which implies that u ∈ dom G is a solution of the inclusion problem IP(A−f +∂J +∂G). This
completes the proof of Lemma 3.4.

Remark 3.5. The corresponding perturbed problem of inclusion problem IP(A − f + ∂J + ∂G)
is specified as

IPp

(
Au − f + ∂J(u) + ∂G(u)

)
:

find u ∈ dom Ĝ
(
p, u

)
such that Â

(
p, u

) − f + ∂2Ĵ
(
p, u

)
+ ∂2Ĝ

(
p, u

) � 0.
(3.12)

Now we prove the following two theorems which establish the relations between
the strong (resp., weak) well-posedness by perturbations for variational-hemivariational
inequality VHVI(A, f, J, G) and the strong (resp., weak) well-posedness by perturbations
for the corresponding inclusion problem IP(A − f + ∂J + ∂G).

Theorem 3.6. Let A be a mapping from Banach space V to its dual V ∗, let J : V → R be a locally
Lipschitz functional, let G : V → R ∪ {+∞} be a proper, convex, and lower semicontinuous
functional, and let f be a given element in dual space V ∗. The variational-hemivariational
inequality VHVI(A, f, J, G) is strongly (resp., weakly) well-posed by perturbations if and only if
the corresponding inclusion problem IP(A − f + ∂J + ∂G) is strongly (resp., weakly) well-posed by
perturbations.

Proof. “Necessity”: assume that VHVI(A, f, J, G) is strongly (resp., weakly) well-posed by
perturbations, which implies that there is a unique solution u∗ of VHVI(A, f, J, G). Clearly,
the existence and uniqueness of solution for inclusion problem IP(A−f+∂J+∂G) is obtained
easily by Lemma 3.4. Let {pn} ⊂ P be a sequence with pn → p∗ and {un} an approximating
sequence corresponding to {pn} for IP(A − f + ∂J + ∂G). Then there exists a sequence ωn ∈
Â(pn, un) − f + ∂2Ĵ(pn, un) + ∂2Ĝ(pn, un) such that ‖ωn‖V ∗ → 0 as n → ∞. And so, there exist
ξn ∈ ∂2Ĵ(pn, un) and ηn ∈ ∂2Ĝ(pn, un) such that

ωn = Â
(
pn, un

) − f + ξn + ηn. (3.13)
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From the definition of the perturbed Clarke’s generalized gradient ∂2Ĵ(p, ·) corresponding to
the perturbed locally Lipschitz functional Ĵ and the definition of the perturbed subgradient
∂2Ĝ(p, ·) corresponding to the perturbed convex functional Ĝ, we obtain bymultiplying v−un

at both sides of above equation (3.13) that

〈
Â
(
pn, un

) − f, v − un

〉
+ Ĵ◦2

(
pn, ·

)
(un, v − un) + Ĝ

(
pn, v

) − Ĝ
(
pn, un

)

≥
〈
Â
(
pn, un

) − f, v − un

〉
+ 〈ξn, v − un〉 +

〈
ηn, v − un

〉

= 〈ωn, v − un〉
≥ −‖ωn‖V ∗‖v − un‖V , ∀v ∈ V.

(3.14)

Letting εn = ‖ωn‖V ∗ , we obtain from (3.14) and the fact ‖ωn‖V ∗ → 0 as n → ∞ that {un} is
an approximating sequence corresponding to {pn} for VHVI(A, f, J, G). Therefore, it follows
from the strong (resp., weak) well-posedness by perturbations for VHVI(A, f, J, G) that un

converges strongly (resp., weakly) to the unique solution u∗. Thus, the inclusion problem
IP(A − f + ∂J + ∂G) is strongly (resp., weakly) well-posed.

“Sufficiency”: conversely, suppose that inclusion problem IP(A−f+∂J+∂G) is strongly
(resp., weakly)well-posed by perturbations. Then IP(A−f+∂J+∂G) has a unique solution u∗,
which implies that u∗ is the unique solution of VHVI(A, f, J, G) by Lemma 3.4. Let {pn} ⊂ P
be a sequence with pn → p∗ and {un} an approximating sequence corresponding to {pn} for
VHVI(A, f, J, G). Then there exists a nonnegative sequence {εn} with εn → 0 as n → 0 such
that

〈
Â
(
pn, un

) − f, v − un

〉
+ Ĵ◦2

(
pn, ·

)
(un, v − un) + Ĝ

(
pn, v

) − Ĝ
(
pn, un

)

≥ −εn‖v − un‖V , ∀v ∈ V.

(3.15)

By the same arguments in proof of Lemma 3.4, there exists a ω(pn, un, v) ∈ ∂2Ĵ(pn, un) such
that

〈
Â
(
pn, un

) − f, v − un

〉
+
〈
ω
(
pn, un, v

)
, v − un

〉
+ Ĝ

(
pn, v

) − Ĝ
(
pn, u

)

≥ −εn‖v − un‖V , ∀v ∈ V,

(3.16)

and the set {Â(pn, un) − f + ω : ω ∈ ∂2Ĵ(pn, un)} is nonempty, convex, and bounded in V ∗.
Then, it follows from (3.16) and Theorem 1.6 with ϕ(u) = Ĝ(pn, u) + εn‖u − un‖, which is
proper convex and lower semicontinuous, that there exists ω(pn, un) ∈ ∂2Ĵ(pn, un) such that

〈
Â
(
pn, un

) − f, v − un

〉
+
〈
ω
(
pn, un

)
, v − un

〉
+ Ĝ

(
pn, v

) − Ĝ
(
pn, un

)

≥ −εn‖v − un‖V , ∀v ∈ V.

(3.17)
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For the sake of simplicity in writing, we denote ωn = ω(pn, un). Then it follows from (3.17)
that

Ĝ
(
pn, un

) ≤ Ĝ
(
pn, v

)
+
〈
Â
(
pn, un

) − f +ωn, v − un

〉
+ εn‖v − un‖V , ∀v ∈ V. (3.18)

Define functional Tn : V → R ∪ {+∞} as follows:

Tn(v) = Ĝ
(
pn, v

)
+ Rn(v) + εnQn(v), (3.19)

where Rn(v), Qn(v) are two functional on V defined by

Rn(v) =
〈
Â
(
pn, un

) − f +ωn, v − un

〉
, Qn(v) = ‖v − un‖V . (3.20)

Clearly, the functionals Rn and Qn are convex and continuous on V , and so Tn is
proper, convex, and lower semicontinuous because Ĝ(pn, v) is proper, convex, and lower
semicontinuous with respect to v. Furthermore, it follows from (3.18) that un is a global
minimizer of Tn on V . Thus, the zero element in V ∗, we also denote to be 0, belongs to the
subgradient ∂Tn(un) which is specified as follows due to Proposition 1.2:

∂Tn(v) = ∂2Ĝ
(
pn, v

)
+ Â

(
pn, un

) − f +ωn + εn∂Qn(v). (3.21)

It is easy to calculate that

∂Qn(v) = {v∗ ∈ V ∗ : ‖v∗‖V ∗ = 1, 〈v∗, v − un〉 = ‖v − un‖V }, (3.22)

and so there exists a ξn ∈ ∂Qn(un)with ‖ξn‖V ∗ = 1 such that

0 ∈ ∂2Ĝ
(
pn, v

)
+ Â

(
pn, un

) − f +ωn + εnξn. (3.23)

Let u∗
n = −εnξn, then ‖u∗

n‖V ∗ → 0 due to εn → 0 as n → ∞. This together with (3.23) and
ωn ∈ ∂2Ĵ(pn, un) implies that

u∗
n ∈ Â

(
pn, un

) − f + ∂2Ĵ
(
pn, un

)
+ ∂2Ĝ

(
pn, v

)
. (3.24)

Therefore, {un} is an approximating sequence corresponding to {pn} for IP(A − f + ∂J + ∂G).
Since inclusion problem IP(A − f + ∂J + ∂G) is strongly (resp., weakly) well-posed by
perturbations, un converges strongly (resp., weakly) to the unique solution u∗. Therefore,
variational-hemivariational inequality VHVI(A, f, J, G) is strongly (resp., weakly) well-
posed. This completes the proof of Theorem 3.6.

Theorem 3.7. Let A be a mapping from Banach space V to its dual V ∗, let J : V → R be a
locally Lipschitz functional, let G : V → R ∪ {+∞} be a proper, convex, and lower semicontinuous
functional, and let f be a given element in dual space V ∗. The variational-hemivariational inequality
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VHVI(A, f, J, G) is strongly (resp., weakly) well-posed by perturbations in the generalized sense if and
only if the corresponding inclusion problem IP(A−f +∂J +∂G) is strongly (resp., weakly) well-posed
by perturbations in the generalized sense.

Proof. The proof of Theorem 3.7 is similar to Theorem 3.6, and so we omit it here.
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