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This paper deals with the problems of integrability and linearizable conditions at degenerate
singular point in a class of quasianalytic septic polynomial differential system. We solve the
problems by an indirect method, that is, we transform the quasianalytic system into an analytic
system firstly, and the degenerate singular point into an elementary singular point. Then we
calculate the singular values at the origin of the analytic system by the known classical methods.
We obtain the center conditions and isochronous center conditions. Accordingly, integrability
and pseudolinearizable conditions at degenerate singular point in the quasianalytic system are
obtained. Especially, when λ = 1, the system has been studied inWu and Zhang (2010).

1. Introduction

In the qualitative theory of planar polynomial differential equations, one of open problems
for planar polynomial differential systems

dx

dt
= P

(
x, y

)
,

dy

dt
= Q

(
x, y

)
,

(1.1)

is how to characterize their centers and isochronous centers. The characterization of centers
for concrete families of differential equations is solved theoretically by computing the so-
called Lyapunov constants. In most cases the procedure to study all centers is as follows:
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compute several Lyapunov constants and when you get one significant, that is, zero, try to
prove that the system obtained indeed has a center. Nevertheless, to completely solve this
problem, there are twomain obstacles. How can you be sure that you have computed enough
Lyapunov constants? How do you prove that some system candidate to have a center actually
has a center? As far as the case of the center is concerned, a lot of work has been done. Here
we will not give an exhaustive bibliography.

In the case of a center, it makes sense to locally define a period function associated with
a center, whose value at any point is the minimum period of the periodic orbit through the
point. A center is said to be isochronous if the associated period function is constant. It is well
known that isochronous centers are nondegenerate and systems with an isochronous center
can be locally linearized by an analytic change of coordinates in a neighborhood of the center.
The problem of characterizing isochronous centers of the origin has attracted the attention
of several authors, and many good results have been published. The characterization of
isochronous centers has been treated by several authors. However, there is a low number
of families of polynomial systems for which there is a complete classification of their
isochronous centers. For example, quadratic isochronous center [1]; isochronous centers of a
linear center perturbed by third, fourth, and fifth degree homogeneous polynomials [2–4]; the
cubic system of Kukles [5, 6]; the class of systems which in complex variable z = x+ iy writes
as dz/dt = iP(z) = iz + o(z) (all of which have an isochronous center at the origin) and the
cubic time-reversible systems with dϕ/dt = 1, see [7]; some isochronous cubic systems with
four invariant lines, see [8]; isochronous centers of cubic systems with degenerate infinity
[9, 10]; isochronous center conditions of infinity for rational systems [11–13]; and so forth.
For more details about centers and isochronous centers, we refer the reader to the [14, 15].

Theory of center focus for a class of higher-degree critical points was established in
[16], the authors there considered the following polynomial differential system:

dx

dt
=
(
δx − y

)(
x2 + y2

)n
+

∞∑

k=2n+2

Xk

(
x, y

)
,

dy

dt
=
(
x + δy

)(
x2 + y2

)n
+

∞∑

k=2n+2

Yk

(
x, y

)
,

(1.2)

where

Xk

(
x, y

)
=

∑

α+β=k

Aαβx
αyβ, Yk

(
x, y

)
=

∑

α+β=k

Bαβx
αyβ. (1.3)

By using their transformation

x = ξ
(
ξ2 + η2

)n+1
, y = η

(
ξ2 + η2

)n+1
, dt =

(
ξ2 + η2

)−n(2n+3)
dτ, (1.4)

system (1.2) becomes

dξ

dτ
=

δ

2n + 3
ξ − η +

∞∑

k=2n+2

[(
1

2n + 3
ξ2 + η2

)
Xk

(
ξ, η

) − 2n + 2
2n + 3

ξηYk

(
ξ, η

)
]

×
(
ξ2 + η2

)(k−2n−2)(n+1)
,
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dη

dτ
= ξ +

δ

2n + 3
η +

∞∑

k=2n+2

[(
ξ2 +

1
2n + 3

η2
)
Yk

(
ξ, η

) − 2n + 2
2n + 3

ξηXk

(
ξ, η

)
]

×
(
ξ2 + η2

)(k−2n−2)(n+1 )
.

(1.5)

Furthermore, Liu in [16] gave the definition of singular value and pseudo-isochronous
center at a degenerate singular point.

Definition 1.1. The degenerate singular point of system (1.2)δ=0 is called a pseudo-isochronous
center if the origin of system (1.5)δ=0 is an isochronous center.

The problems of center conditions and pseudo-isochronous center conditions for de-
generate singular point are poorly understood in the qualitative theory of ordinary differen-
tial equations. There are only a few papers concerning centers of degenerate singular points
[17–24].

Recently, the following systems:

ż = (λ + i)z + (zz)(d−5)/2
(
Az4+jz1−j + Bz3z2 + Cz2−jz3+j +Dz5

)
, d = 2m + 1 ≥ 5,

ż = iz + (zz)(d−4)/2
(
Az3z + Bz2z2 + Cz4

)
, d = 2m ≥ 4,

ż = (λ + i)z + (zz)(d−3)/2
(
Az3 + Bz2z + Czz2 +Dz3

)
, d = 2m + 1 ≥ 3,

ż = (λ + i)z + (zz)(d−2)/2
(
Az2 + Bzz + Cz2

)
, d = 2m ≥ 2

(1.6)

were investigated by Llibre and Valls, see [25–28]. The conditions of centers and isochronous
centers were obtained. But the d is restricted in order to assure the system is polynomial
system. In [29], centers and isochronous centers for two classes of generalized seventh and
ninth systems were investigated. In [30], linearizable conditions of a time-reversible quartic-
like system were obtaied.

For the case of nonanalytic, being difficult, there are very few results. As far as inte-
grability at origin are concerned, several special systems have been studied, see [31–34].

In this paper, we investigate integrability and linearizable conditions at degenerate sin-
gular point for a class of quasanalytic polynomial differential system

dx

dt
=
(
δx − y

)(
x2 + y2

)λ
+X5

(
x, y

)(
x2 + y2

)2(λ−1) − βy
(
x2 + y2

)3λ
,

dy

dt
=
(
x + δy

)(
x2 + y2

)λ
+ Y5

(
x, y

)(
x2 + y2

)2(λ−1)
+ βx

(
x2 + y2

)3λ
,

(1.7)
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where

X5
(
x, y

)
=

∑

k+j=5

Akjx
kyj , Y5

(
x, y

)
=

∑

k+j=5

Bkjx
kyj , (1.8)

A50 = β03 + β12 + β21 + β30, A41 = −5α03 − 3α12 − α21 + α30,

A32 = −2(5β03 + β12 − β21 − β30
)
, A23 = 2(5α03 − α12 − α21 + α30),

A14 = 5β03 − 3β12 + β21 + β30, A05 = −α03 + α12 − α21 + α30,

B50 = α03 + α12 + α21 + α30, B41 = 5β03 + 3β12 + β21 − β30,

B32 = −2(5α03 + α12 − α21 − α30), B23 = −2(5β03 − β12 − β21 + β30
)
,

B14 = 5α03 − 3α12 + α21 + α30, B05 = β03 − β12 + β21 − β30, λ ∈ R.

(1.9)

When λ = 1, the system has been invested in [35].
The organization of this paper is as follows. In Section 2, we introduce some

preliminary results which are useful throughout this paper. In Section 3, we make two
appropriate transformations which let research on the degenerate singular point of system
(1.7) be reduced to research on the elementary singular point of a twenty-one degree system.
Furthermore, we compute the singular point quantities and derive the center conditions
of the origin for the transformed system. Accordingly, the conditions of integrability at
the degenerate singular point are obtained. In Section 4, we compute the period constants
and discuss isochronous center conditions at the origin of the twenty-one degree system,
meanwhile, the pseudolinearizable conditions at degenerate singular point are classified.

All calculations in this paper have been done with the computer algebra system:
MATHEMATICA.

2. Some Preliminary Results

In [36–38], the authors defined complex center and complex isochronous center for the fol-
lowing complex system:

dz

dT
= z +

∞∑

k=2

Zk(z,w) = Z(z,w),

dw

dT
= −w −

∞∑

k=2

Wk(z,w) = −W(z,w),

(2.1)

where

Zk(z,w) =
∑

α+β=k

aαβz
αwβ, Wk(z,w) =

∑

α+β=k

bαβw
αzβ, (2.2)

and gave two recursive algorithms to determine necessary conditions for a center and an
isochronous center. We now restate the definitions and algorithms.
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By means of transformation

z = ρeiθ, w = ρe−iθ, T = it, i =
√
−1, (2.3)

where r, θ are complex numbers, system (2.1) can be transformed into

dρ

dt
=

iρ

2

∞∑

k=1

∑

α+β=k+2

(
aα,β−1 − bβ,α−1

)
ei(α−β)θρk,

dθ

dt
= 1 +

1
2

∞∑

k=1

∑

α+β=k+2

(
aα,β−1 + bβ,α−1

)
ei(α−β)θρk.

(2.4)

For the complex constant h, |h| � 1, we write the solution of system (2.4) satisfying
the initial condition ρ|θ=0 = h as

r = ρ̃(θ, h) = h +
∞∑

k=2

νk(θ)hk, (2.5)

which could be thought of as the first Poincaré displacement map and denote the period
function by

τ
(
ϕ, h

)
=
∫ϕ

0

dt

dθ
dθ

=
∫ϕ

0

⎡

⎣1 +
1
2

∞∑

k=1

∑

α+β=k+2

(
aα,β−1 + bβ,α−1

)
ei(α−β)θr̃k(θ, h)

⎤

⎦

−1

dθ.

(2.6)

Definition 2.1. For a sufficiently small complex constant h, the origin of system (2.1) is called
a complex center if ρ̃(2π, h) ≡ h, and it is called a complex isochronous center if

ρ̃(2π, h) ≡ h, τ(2π, h) ≡ 2π. (2.7)

Lemma 2.2. For system (2.1), one can derive uniquely the following formal series:

ξ = z +
∞∑

k+j=2

ckjz
kwj, η = w +

∞∑

k+j=2

dkjw
kzj , (2.8)

where ck+1,k = dk+1,k = 0, k = 1, 2, . . ., such that

dξ

dT
= ξ +

∞∑

j=1

pjξ
j+1ηj ,

dη

dT
= −η −

∞∑

j=1

qjη
j+1ξj .

(2.9)
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Definition 2.3 (see [37, 38]). Let μ0 = 0, μk = pk − qk, τk = pk + qk, k = 1, 2, . . . . μk be called
the kth singular point quantity of the origin of system (2.1) and τk be called the kth period
constant of the origin of system (2.1).

Reeb’s criterion (see for instance [39]) says that system (2.1) has a center if and only
if there is a nonzero analytic integrating factor (or integral factor) in a neighborhood of the
origin. In [16], it is developed an algorithm to compute the focal values through the analytic
integrating factor that must exist when we have a center, namely, the following theorem.

Theorem 2.4 (see [16]). For system (2.1), one can derive successively the terms of the following
formal series:

M(z,w) =
∞∑

α+β=0

cαβz
αwβ, (2.10)

such that

∂(MZ)
∂z

− ∂(MW)
∂w

=
∞∑

m=1

(m + 1)μm(zw)m, (2.11)

where c00 = 1, for all ckk ∈ R, k = 1, 2, . . ., and for any integer m, μm is determined by the following
recursive formulae:

c00 = 1,

when
(
α = β > 0

)
or α < 0, or β < 0, cαβ = 0,

else

cαβ =
1

β − α

α+β+2∑

k+j=3

[
(α + 1)ak,j−1 −

(
β + 1

)
bj,k−1

]
cα−k+1,β−j+1,

μm =
2m+2∑

k+j=3

(
ak,j−1 − bj,k−1

)
cm−k+1,m−j+1.

(2.12)

Theorem 2.5 (see [37]). For system (2.1), one can derive uniquely the following formal series:

f(z,w) = z +
∞∑

k+j=2

c′kjz
kwj, g(z,w) = w +

∞∑

k+j=2

d′
kjw

kzj , (2.13)

where c′k+1,k = d′
k+1,k = 0, k = 1, 2, . . ., such that

df

dT
= f(z,w) +

∞∑

j=1

p′jz
j+1wj,

dg

dT
= −g(z,w) −

∞∑

j=1

q′jw
j+1zj , (2.14)
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and when k − j − 1/= 0, c′kj and d′
kj are determined by the following recursive formulae:

c′kj =
1

j + 1 − k

k+j+1∑

α+β=3

[
(k − α + 1)aα,β−1 −

(
j − β + 1

)
bβ,α−1

]
c′k−α+1,j−β+1,

d′
kj =

1
j + 1 − k

k+j+1∑

α+β=3

[
(k − α + 1)bα,β−1 −

(
j − β + 1

)
aβ,α−1

]
d′
k−α+1,j−β+1,

(2.15)

and for any positive integer j, p′j , and q′j are determined by the following recursive formulae:

p′j =
2j+2∑

α+β=3

[(
j − α + 2

)
aα,β−1 −

(
j − β + 1

)
bβ,α−1

]
c′j−α+2,j−β+1,

q′j =
2j+2∑

α+β=3

[(
j − α + 2

)
bα,β−1 −

(
j − β + 1

)
aβ,α−1

]
d′
j−α+2,j−β+1.

(2.16)

In the above expression, one has let c′10 = d′
10 = 1, c′01 = d′

01 = 0, and if α < 0 or β < 0, let aαβ = bαβ =
c′αβ = d′

αβ = 0.
We introduce double parameter transformation groups

z = ρeiθz̃, w = ρe−iθw̃, (2.17)

where z̃, w̃ are new variables, ρ, θ are complex parameters, and ρ /= 0. Denote z = x + iy, w = x −
iy, z̃ = x̃ + iỹ, w̃ = x̃ − iỹ. Transformation (2.17) can be turned into

x = ρ
(
x̃ cos θ − ỹ sin θ

)
, y = ρ

(
x̃ sin θ + ỹ cos θ

)
. (2.18)

In the case of real variables and real parameters, (2.18) is a transformation of similar rotation. With
(2.17) being used, system (2.1) can be transformed into

dz̃

dT
= z̃ +

∞∑

α+β=2

ãαβz̃
αw̃β,

dw̃

dT
= −w̃ −

∞∑

α+β=2

b̃αβw̃
αz̃β,

(2.19)

where ρ, θ are parameters, z̃, w̃, T are variables, and for all α ≥ 0, β ≥ 0 one has

ãαβ = aαβρ
α+β−1ei(α−β−1)θ,

b̃αβ = bαβρ
α+β−1e−i(α−β−1)θ.

(2.20)
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Under the transformation (2.17), suppose that f = f(aαβ, bαβ) is a polynomial of aαβ, bαβ with
complex coefficients, and denote

f̃ = f
(
ãαβ, b̃αβ

)
, f∗ = f

(
a∗
αβ, b

∗
αβ

)
, (2.21)

where a∗
αβ = bαβ, b∗αβ = aαβ, α ≥ 0, β ≥ 0, α + β ≥ 2.

Definition 2.6 (see [38]). Suppose that there exist constants λ, σ, such that f̃ = ρλeiσθf ,
we say that λ is a similar exponent and σ a rotation exponent of system (2.1) under the
transformation (2.17), which are denoted by Is(f) = λ, Iρ(f) = σ.

Definition 2.7 (see [38]). (i) A polynomial f = f(aαβ, bαβ) is called a Lie invariant of order k,
if f̃ = ρ2kf .

(ii)An invariant f is called a monomial Lie invariant, if f is both of a Lie invariant and
a monomial of aαβ, bαβ.

(iii) A monomial Lie invariant f is called an elementary Lie invariant, if it can not be
expressed as a product of two monomial Lie invariants.

Definition 2.8 (see [38]). A polynomial f = f(aαβ, bαβ) is called self-symmetry if f∗ = f . It is
called self-antisymmetry if f∗ = −f .

Theorem 2.9 (see the extended symmetric principle in [38]). Let g denote an elementary Lie
invariant of system (2.1). If for all g the symmetric condition g = g∗ is satisfied, then the origin of
system (2.1) is a complex center. Namely, all singular point quantities of the origin are zero.

3. Integrability at the Origin of (1.7)

In this section, the integrability at the origin of (1.7) is discussed by an indirect method. By
means of transformation

u = x + iy, v = x − iy, T = it, i =
√
−1, (3.1)

system (1.7)δ=0 becomes its concomitant complex system

du

dT
= u(uv)λ + (uv)2(λ−1)

(
a03u

5 + a12vu
4 + a21u

3v2 + a30u
2v3

)
− βu(uv)3λ,

dv

dT
= −v(uv)λ − (uv)2(λ−1)

(
b03v

5 + b12v
4u + b21u

2v3 + b30u
3v2

)
+ βv(uv)3λ,

(3.2)

where

a30 = α30 + iβ30, a21 = α21 + iβ21, a12 = α12 + iβ12, a03 = α03 + iβ03,

b30 = α30 − iβ30, b21 = α21 − iβ21, b12 = α12 − iβ12, b03 = α03 − iβ03.
(3.3)
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Then, by using transformation

ξ = u(λ+1)/2v(λ−1)/2, η = v(λ+1)/2u(λ−1)/2, (3.4)

system (3.2) can be transformed into the following system:

dξ

dT
= ξ2η +

1
2
a03(1 + λ)ξ5 +

1
2
(a12 + b30 + a12λ − b30λ)ξ4η +

1
2
(a21 + b21 + a21λ − b21λ)ξ3η2

+
1
2
(a30 + b12 + a30λ − b12λ)η3ξ2 +

1
2
b03(−1 + λ)ξη4 + βξ4η3,

dη

dT
= −η2ξ − 1

2
b03(1 + λ)η5 − 1

2
(b12 + a30 + b12λ − a30λ)η4ξ − 1

2
(b21 + a21 + b21λ − a21λ)η3ξ2

− 1
2
(b30 + a12 + b30λ − a12λ)η2ξ3 − 1

2
a03(−1 + λ)ηξ4 + βξ3η4.

(3.5)

At last, by means of transformation (1.4)n=1, system (3.5) is reduced to

dz

dτ
= z +

1
10

w3z4
(
−b03(−5 + λ)w4 + (−b12(−5 + λ) + a30(5 + λ))w3z

+ (−b21(−5 + λ) + a21(5 + λ))w2z2 + (−b30(−5 + λ) + a12(5 + λ))wz3

+a03(5 + λ)z4
)
+ βw10z11,

dw

dτ
= −w − 1

10
w4z3

(
b03(−5 + λ)w4 + (b12(5 + λ) − a30(−5 + λ))w3z

+ (b21(−5 + λ) − a21(−5 + λ))w2z2 + (b30(5 + λ) − a12(−5 + λ))wz3

−a03(−5 + λ)z4
)
+ βz10w11.

(3.6)

By those transformations, we transform the quasanalytic system into an analytic sys-
tem firstly, and the degenerate singular point into an elementary singular point. Under the
conjugate condition (3.6): it is obvious that the origin of system (3.5) to be integrability
(linearizable) is equivalent to the degenerate singular point of system (1.7) to be integrability
(pseudolinearizable).

Using the recursive formulae of Theorem 2.4 to compute the singular point quantities
at the origin of system (3.6) (for detailed recursive formulae, see Appendix A) and simplify
them with the constructive theorem of singular point quantities, we get the following.
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Theorem 3.1. The first 55 singular point quantities at the origin of system (3.6) are as follows:

μ5 =
1
5
(a21 − b21)λ,

μ10 = −1
5
(a30a12 − b30b12)λ.

(3.7)

Case 1. a12b12 /= 0, then there exist k to make a30 = kb12, b30 = ka12,

μ15 =
λ

40

(
a03b

2
12 − b03a

2
12

)
(−1 + 3k)(2 + 2k − λ + kλ),

μ20 =
λ2

10(λ + 2)
b21

(
a03b

2
12 − b03a

2
12

)
(3k − 1),

μ25 =
λ2

240(λ + 2)3
(3k − 1)

(
a03b

2
12 − b03a

2
12

)

×
(
−32a03b03 − 28a03b03λ + 32a12b12λ

2 + 5a03b03λ
3 + a03b03λ

4 + 192β + 192λβ + 48λ2β
)
,

μ30 = 0,

μ35 = − λ2

19200(λ + 2)5
(3k − 1)

(
a03b

2
12 − b03a

2
12

)

×
(
1024a2

03b
2
03 + 1920a2

03b
2
03λ − 13824a12a03b12b03λ

2 + 224a2
03b

2
03λ

2 − 11392a12a03b12b03λ
3

− 1584a2
03b

2
03λ

3 + 12800a2
12b

2
12λ

4 + 2432a12a03b12b03λ
4 − 1056a2

03b
2
03λ

4

+4064a12a03b12b03λ
5 + 864a12a03b12b03λ

6 + 206a2
03b

2
03λ

6 + 69a2
03b

2
03λ

7 + 7a2
03b

2
03λ

8
)
,

μ40 = − 7λ2

2880(λ + 2)5
(3k − 1)

(
a03b

2
12 − b03a

2
12

)(
a03b

2
12 + b03a

2
12

)
(λ + 1)

×
(
−32a03b03 − 24a03b03λ + 32a12b12λ

2 + 4a03b03λ
2 + 6a03b03λ

3 + a03b03λ
4
)
.

(3.8)

If a12b12 = −a03b03(−2 + λ)(2 + λ)2(4 + λ)/32λ2,

μ45 =
24131

67184640
(3k − 1)a3

03b
3
03

(
a03b

2
12 − b03a

2
12

)
. (3.9)
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If a03b
2
12 + b03a

2
12 = 0, then there exist m to make a03 = ma2

12, b03 = −mb212,

μ45 =
7λ2

4838400000(λ + 2)3
(3k − 1)(λ + 1)a12b12a

2
03b

2
03

(
a03b

2
12 − b03a

2
12

)

×
(
−23257088a12b12m

2 + 6577280a12b12m
2λ − 23257088λ2 + 26650064a12b12m

2λ2

+ 75164416λ3 − 2764244a12b12m
2λ3 + 8304896λ4 − 10922212a12b12m

2λ4 − 18884608λ5

−916685a12b12m
2λ5 + 1341691a12b12m

2λ6 + 255854a12b12m
2λ7

)
,

μ50 = 0,

μ55 = − 1099511627776λ19

8859375m8(λ + 2)17
(3k − 1)

(
a03b

2
12 − b03a

2
12

)
(λ + 1).

(3.10)

Case 2. a12 = b12 = 0,

μ15 =
3λ
40

(
a03a

2
30 − b03b

2
30

)
(λ + 2),

μ20 =
3
10

(
a03a

2
30 − b03b

2
30

)
b21,

μ25 = − 1
40

(
a03a

2
30 − b03b

2
30

)(
4a30b30 − 3a03b03 + 24β

)
,

μ30 = 0,

μ35 = − 1
400

(
a03a

2
30 − b03b

2
30

)(
11a2

03b
2
03 − 19a03b03a30b30 − 50a2

30b
2
30

)
,

μ40 =
7
480

(
a03a

2
30 − b03b

2
30

)(
a03a

2
30 + b03b

2
30

)
(a03b03 − a30b30),

μ45 = − 1
1344000

a3
30b

3
30

(
a03a

2
30 − b03b

2
30

)

×
(
102334400 + 28122192a30b30m

2 − 26626536a2
30b

2
30m

4 + 2330697a3
30b

3
30m

6
)
,

(3.11)

where μk = 0, k /= 5i, i ≤ 11, i ∈ N. In the above expression of μk, we have already let μ1 = · · · =
μk−1 = 0, k = 2, 3, . . . , 45.

From Theorem 3.1, we get the following.
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Theorem 3.2. For system (3.6), the first 55 singular point quantities are zero if and only if one of the
following conditions holds:

a21 = b21, a12 = b12 = 0, a2
30a03 = b03b

2
30, (3.12)

a21 = b21, a30 =
1
3
b12, b30 =

1
3
a12, a12b12 /= 0, (3.13)

a21 = b21, a30a12 = b30b12, a2
12b03 = b212a03, a12b12 /= 0, (3.14)

λ = −1, β = 0, a21 = b21 = 0, a30 = −3b12, b30 = −3a12, a03b03 = 4a12b12,

a12b12 /= 0.
(3.15)

In order to obtain the integrability conditions of the origin, we have to find out all the
elementary Lie invariants of system (3.6). According to Definitions 2.6, 2.7 and 2.8, we have
the following.

Lemma 3.3. All the elementary Lie invariants of system (3.6) are as follows:

β, a21, b21, a30b30, a12b12, a03b03, a30a12, b30b12,

a2
30a03, a30b12a03, b

2
12a03, b

2
30b03, b30a12b03, a

2
12b03.

(3.16)

The following result holds.

Theorem 3.4. For system (3.6), all the singular point quantities at the origin are zero if and only
if the first 55 singular point quantities are zero, that is, one of the conditions in Theorem 3.2 holds.
Correspondingly, the conditions in Theorem 3.2 are the integrability conditions of the origin.

Proof. If condition (3.12) or (3.14) holds, system (3.5)δ=0 satisfies the conditions of
Theorem 2.9. If condition (3.13) holds, system (3.6) has the first integral

zwe3a03z
7w3+4a12z6w4+6b21z5w5+4b12z4w6+3b03z3w7+3z10w10β−3, λ = −2,

(zw)5(λ+2)/λf1, λ /= − 2,
(3.17)

where

f1 =
(
−12a03 + 3a03λ

2
)
z7w3 +

(
4a41λ

2 − 16a12

)
z6w4 +

(
6b21λ2 − 24b21

)
z5w5

+
(
4b12λ2 + 16b12

)
z4w6 +

(
3b03λ2 − 12b03

)
z3w7 +

(
24β − 12rβ

)
z10w10 − 24 + 12λ.

(3.18)
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If condition (3.15) holds, system (3.6) becomes

dz

dT
=

1
10

(
10 + 4a03z

7w3 − 14a12z
6w4 − 6b12z4w6 + 6b03z3w7

)
,

dw

dT
= − 1

10

(
10 + 4b03z3w7 − 14b12w6z4 − 6a12w

4z6 + 6a03w
3z7

)
,

(3.19)

there exists a transformation

z =
u

(uv)2/5
, w =

v

(uv)2/5
, (3.20)

system (3.19) is changed into

du

dT
= u + b03v

3 + b12v
2u − 3a12u

3 = U,

dv

dT
= −

(
v + a03u

3 + a12u
2v − 3b12v3

)
= V,

(3.21)

system (3.21) has the integral factor f−5/6
2 , where

f2 = 1 − 6
(
b12u

2 + a12v
2
)

+ 3
(
3b212u

4 − 2a12b03u
3v + 2a12b12u

2v2 − 2b12a03v
3u + 3a4

12v
4
)

+
1
2
(2a12u − a03v)(2b12v − b03u)

(
b03u

4 − 2b12u3v − 2a12v
3u + a03v

4
)
,

df2
dt

= −12
(
b12u

2 − a12v
2
)
f2 =

6
5

(
∂U

∂u
− ∂V

∂v

)
f2.

(3.22)

Synthesizing all the above cases, we have the following.

Theorem 3.5. The system (1.7) is integrability at the origin if and only if one of conditions in
Theorem 3.2 holds.

4. Linearizable Conditions at the Origin of (1.7)

In this section we classify the pseudolinearizable conditions at the origin of (1.7). We
discuss the linearizable conditions for system (3.6) firstly. According to Theorem 2.5, we
get the recursive formulae to compute period constants (detailed recursive formulae, see
Appendix B). Denote a21 = b21 = r21, from the integrability conditions given in Section 4,
we investigate the following three cases.
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Case 1. Integrability condition (3.12) holds.
If a30 = b30 = 0, we easily obtain the first 30 period constants

τ5 = 2r21,

τ10 =
1
2
(
(λ − 2)a03b03 + 4β

)
,

τ15 = 0,

τ20 = − 1
32

a2
03b

2
03(−2 + λ)2(−2 + 3λ),

τ25 = 0,

τ30 =
1

25600
a2
03b

2
03(−2 + λ)2

(
50 + 365λ − 1962λ2 + 2153λ3

)
.

(4.1)

If a30b30 /= 0, from condition (3.12), there exists an arbitrary complex constant s, such
that

a03 = sb230, b03 = sa2
30, (4.2)

then we get the first 30 period constants

τ5 = 2r21,

τ10 =
1
2

(
−2a30b30 − 2a2

30b
2
30s

2 − 2a30b30λ + a2
30b

2
30s

2λ + 4β
)
,

τ15 =
3
4
a2
30b

2
30s(λ + 2),

τ20 =
1
4
a2
30b

2
30(1 + λ)2(3λ + 1),

τ25 = 0,

τ30 = − 1
800

a3
30b

3
30(1 + λ)2

(
−25 + 35λ + 981λ2 + 2153λ3

)
.

(4.3)

In expressions (4.1) and (4.3), τk = 0, k /= 5i, i ≤ 4, i ∈ N, and we have already let τ1 = · · · =
τk−1 = 0, k = 2, 3, . . . , 30.

From expressions (4.1) and (4.3), we have the following.

Theorem 4.1. The first 30 period constants at the origin of system (3.6) are zero if and only if one of
the following conditions holds:

β = a21 = b21 = a12 = b12 = a30 = b30 = 0, λ = 2. (4.4)

β = a21 = b21 = a12 = b12 = a03 = b03 = 0, λ = −1, a30b30 /= 0. (4.5)
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Theorem 4.2. Under integrability condition (3.12), the origin of system (3.6) is a complex isochro-
nous center if and only if one of the conditions in Theorem 4.1 holds.

Proof. When condition (4.4) is satisfied, system (3.6) becomes

dz

dT
=

1
10

z
(
10 + 7a03z

7w3 + 3b03z3w7
)
,

dw

dT
= − 1

10
w
(
10 + 3a03z

7w3 + 7b03z3w7
)
.

(4.6)

There exists a transformation

u =
z(1 + b03z

3w7)3/40

(1 + a03z7w3)7/40
, v =

w
(
1 + a03z

7w3)3/40

(1 + b03z3w7)7/40
, (4.7)

such that system (4.6) is reduced to a linear system.
When condition (4.5) is satisfied, system (3.6) becomes

dz

dT
=

1
10

z
(
10 + 6b30z6w4 + 4a30z

4w6
)
,

dw

dT
= − 1

10
w
(
10 + 4b30z4w6 + 6a30z

6w4
)
.

(4.8)

There exists a transformation

u =
z
(
1 + a30z

4w6)1/5

(
1 + b30z6w4

)3/10 , v =
w
(
1 + b30z

6w4)1/5

(
1 + a30z4w6

)3/10 , (4.9)

such that system (4.8) is reduced to a linear system.

Case 2. Integrability condition (3.13) holds.

Substituting condition (3.13) into the recursive formulae in Appendix B, we obtain the
first 40 period constants

τ5 = 2r21,

τ10 =
1
18

(−18a03b03 − 32a12b12 + 9a03b03λ + 16a12b12λ + 36β
)
,

τ15 =
1
3

(
a2
12b03 + a03b

2
12

)
(−4 + λ)(−1 + λ),

τ20 = − 1
2592

a2
12b

2
12(λ − 2)(3λ + 2)

(
−512 − 1152a12b12s

2 − 162a2
12b

2
12s

4 + 256λ + 81a2
12b

2
12s

4λ
)
,

τ25 = 0,
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τ30 =
1

9
(
256 + 81a2

12b
2
12s

4
)5 2048a

5
12b

5
12s

4
(
256 + 720a12b12s

2 + 81a2
12b

2
12s

4
)

×
(
256 + 1152a12b12s

2 + 81a2
12b

2
12s

4
)(

−262144 − 2801664a12b12s
2

+ 4147200a2
12b

2
12s

4 − 2192832a3
12b

3
12s

6

+183708a4
12b

4
12s

8 + 59049a5
12b

5
12s

10
)
,

τ35 = 0,

τ40 =
1

2025
(
256 + 81a2

12b
2
12s

4
)7 64a

6
12b

6
12s

4

×
(
109239312561498750976 + 2393515709059622240256a12b12s

2

+ 16627534144531656081408a2
12b

2
12s

4 + 45808666111836080308224a3
12b

3
12s

6

+ 34487314499860709769216a4
12b

4
12s

8 − 43671898596853816492032a5
12b

5
12s

10

− 31656165840700764585984a6
12b

6
12s

12 + 49193367282534498435072a7
12b

7
12s

14

− 2655678216972439388160a8
12b

8
12s

16 − 8653122543235415408640a9
12b

9
12s

18

− 539890165260393578496a10
12b

10
12s

20 + 408937711778677748736a11
12b

11
12s

22

+ 82987106695640213760a12
12b

12
12s

24 + 5972974608886179588a13
12b

13
12s

26

+151421489259386859a14
12b

14
12s

28
)
,

(4.10)

where τk = 0, k /= 5i, i ≤ 8, i ∈ N. In the above expression of τk, we have already let τ1 = · · · =
τk−1 = 0, k = 2, 3, . . . , 40.

From expressions (4.10), we have the following.

Theorem 4.3. The first 40 period constants at the origin of system (3.6) are zero if and only if one of
the following conditions holds:

λ = 2, β = a21 = b21 = a03 = b03 = 0, a30 =
1
3
b12, b30 =

1
3
a12. (4.11)

Theorem 4.4. Under integrability condition (3.13), the origin of system (3.6) is a complex isochro-
nous center if and only if the condition in Theorem 4.3 holds.

Proof. When condition (4.11) is satisfied, system (3.6) becomes

dz

dT
=

1
10

z

(
10 + 8a12z

6w4 +
16
3
b12z

4w6
)
,

dw

dT
= − 1

10
w

(
10 + 8b12z4w6 +

16
3
a12z

6w4
)
.

(4.12)
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There exists a transformation

u =
z
(
3 + 4b12z4w6)1/5

(
3 + 4a12z6w4

)3/10 , v =
w
(
3 + 4a12z

6w4)1/5

(
3 + 4b12z4w6

)3/10 , (4.13)

such that system (4.12) is reduced to a linear system.

Case 3. Integrability condition (3.14) holds.
Because a12b12 /= 0, we can let

a30 = kb12, b30 = ka12, a03 = ma2
12, b03 = mb212, (4.14)

where k,m are arbitrary complex constants. Substituting (4.14) into the recursive formulae in
Appendix B, we obtain the first 30 period constants

τ5 = 2r21,

τ10 =
1
2

(
−2a12b12 − 4a12b12k − 2a12b12k

2 − 2a2
12b

2
12m

2

+2a12b12λ − 2a12b12k
2λ + a2

12b
2
12m

2λ + 4β
)
,

τ15 =
1
4
a2
12b

2
12m(3 + 3k − 4λ)(2 + 2k − λ + kλ).

(4.15)

Ifm = 0,

τ20 =
1
4
a2
12b

2
12(1 + k)(1 + k − λ + kλ)2(1 + k − 3λ + 3kλ),

τ25 = 0,

τ30 =
1

(1 + 3λ)3
2a3

12b
3
12(1 + k)λ3(1 + k − λ + kλ)2.

(4.16)

If k = (1/3)(−3 + 4λ),

τ20 = − 1
2592

a2
12b

2
12

(
−648a2

12b
2
12m

4 + 1620a2
12b

2
12m

4μ − 1152a12b12m
2λ2

− 1134a2
12b

2
12m

4λ2 + 4608a12b12m
2λ3 + 243a2

12b
2
12m

4λ3

+1792r4 − 4608a12b12m
2λ4 − 8704λ5 + 13312λ6 − 6144λ7

)
,

τ25 = − 1
1944

a3
12b

3
12mλ2

(
−864a12b12m

2 − 459a12b12m
2λ + 576λ2 + 6075a12b12m

2λ2

− 256λ3 − 5670a12b12m
2λ3 − 5888λ4

+1296a12b12m
2λ4 + 11264λ5 − 6144λ6

)
,
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τ30 = − 1

492075
(−32 − 17λ + 225λ2 − 210λ3 + 48λ4

)3 4a
3
12b

3
12λ

6(1 + λ)(−1 + 2λ)2

×
(
16223998464 − 25771071744λ − 266392474620λ2 + 779771224771λ3 + 502091493918λ4

− 4814334558957λ5 + 7235802457920λ6 − 2358342484708λ7 − 5235799647872λ8

+ 7279836287888λ9 − 3998287419904λ10 + 800816397376λ11 + 199732916736λ12

−135353438208λ13 + 20141015040λ14
)
.

(4.17)

If k = (λ − 2)/(λ + 2),

τ20 = − 1

96(λ + 2)4
a2
12b

2
12

(
−384a2

12b
2
12m

4 + 192a2
12b

2
12m

4λ

− 1536a12b12m
2λ2 + 672a2

12b
2
12m

4λ2 − 1280a12b12m
2λ3

+ 48a2
12b

2
12m

4λ3 + 1920λ4 + 384a12b12m
2λ4 − 264a2

12b
2
12m

4λ4

+ 576a12b12m
2λ5 − 60a2

12b
2
12m

4λ5 + 128a12b12m
2λ6

+30a2
12b

2
12m

4λ6 + 9a2
12b

2
12m

4λ7
)
,

τ25 = − 1

12(2 + λ)4
a3
12b

3
12mλ2

(
96a12b12m

2 + 76a12b12m
2λ − 96λ2 − 40a12b12m

2λ2 − 32λ3

−33a12b12m
2λ3 + 5a12b12m

2λ4 + 4a12b12m
2λ5

)
,

τ30 =
2a3

12b
3
12λ

7

75(2 + λ)6(24 − 5λ − 11λ2 + 4λ3)3
(
−8200224 − 114773490λ + 250179993λ2

− 32032585λ3 − 178032915λ4 + 94932055λ5

+18512302λ6 − 24125520λ7 + 4769504λ8
)
,

(4.18)

where τk = 0, k /= 5i, i ≤ 6, i ∈ N. In the above expression of τk, we have already let τ1 = · · · =
τk−1 = 0, k = 2, 3, . . . , 30.

From expressions (4.15), (4.16), (4.17) and (4.18), we have the following.
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Theorem 4.5. The first 30 period constants at the origin of system (3.6) are zero if and only if one of
the following conditions holds:

β = a21 = b21 = a03 = b03 = 0, a30 = −b12, b30 = −a12, (4.19)

β = a21 = b21 = a03 = b03 = 0, a30 =
−1 + λ

1 + λ
b12, b30 =

−1 + λ

1 + λ
a12. (4.20)

Theorem 4.6. Under integrability condition (3.14), the origin of system (3.6) is a complex isochro-
nous center if and only if one of the conditions in Theorem 4.5 holds.

Proof. When condition (4.19) is satisfied, system (3.6) becomes

dz

dT
=

1
10

z
(
10 + 2a12λz

6w4 − 2b12λz4w6
)
,

dw

dT
= −1

5
w
(
10 + 2b12λz4w6 − 2a12λz

6w4
)
,

(4.21)

we have for system (4.21) that

dθ

dt
=

1
2

(
1
z

dz

dT
− 1
w

dw

dT

)
= 1. (4.22)

When condition (4.20) is satisfied, system (3.6) becomes

dz

dT
=

1
5(1 + λ)

z
(
5(1 + λ) + 4a12λz

6w4 + 6b12λz4w6
)
,

dw

dT
= − 1

5(1 + λ)
w
(
5(1 + λ) + 4b12λz4w6 + 6a12λz

6w4
)
.

(4.23)

There exists a transformation

u =
z
(
1 + λ + 2b12λz4w6)1/5

(
1 + λ + 2a12λz6w4

)3/10 , v =
w
(
1 + λ + 2a12λz

6w4)1/5

(
1 + λ + 2b12λz4w6

)3/10 , (4.24)

such that system (4.23) is reduced to a linear system.

Case 4. Integrability condition (3.15) holds.
Substituting condition (3.15) into the recursive formulae in Appendix B, we obtain the

first 10 period constants

τ5 = 2r21,

τ10 = −2a12b12.
(4.25)

Because τ10 = a12b12 /= 0, under integrability condition (3.15), the origin of system (3.5)δ=0 is
not a complex isochronous center.
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Synthesizing all the above cases, we get the main result of this paper.

Theorem 4.7. The degenerate singular point (origin) of system system (1.7)δ=0 ((3.5)δ=0) is pseudo-
linearizable (linearizable) if and only if one of conditions (4.4), (4.5), (4.11), (4.19), (4.20) holds.

Appendices

A.

The recursive formulae to compute the singular point quantities at the origin of system (3.6):

c[0, 0] = 1 ,

when (k = j > 0) or k < 0, or j < 0,

c[k, j] = 0 .

Else

c
[
k, j

]
=

−1
10
(
j − k

)
(
10jβc

[−10 + k,−10 + j
] − 10kβc

[−10 + k,−10 + j
]
+ 5a03jc

[−7 + k,−3 + j
]

− 5a03kc
[−7 + k,−3 + j

] − 2a03λc
[−7 + k,−3 + j

] − a03jλc
[−7 + k,−3 + j

]

− a03kλc
[−7 + k,−3 + j

]
+ 5a12jc

[−6 + k,−4 + j
]
+ 5b30jc

[−6 + k,−4 + j
]

− 5a12kc
[−6 + k,−4 + j

] − 5b30kc
[−6 + k,−4 + j

] − 2a12λc
[−6 + k,−4 + j

]

+ 2b30λc
[−6 + k,−4 + j

] − a12jλc
[−6 + k,−4 + j

]
+ b30jλc

[−6 + k,−4 + j
]

− a12kλc
[−6 + k,−4 + j

]
+ b30kλc

[−6 + k,−4 + j
]
+ 5a21jc

[−5 + k,−5 + j
]

+ 5b21jc
[−5 + k,−5 + j

] − 5a21kc
[−5 + k,−5 + j

] − 5b21kc
[−5 + k,−5 + j

]

− 2a21λc
[−5 + k,−5 + j

]
+ 2b21λc

[−5 + k,−5 + j
] − a21jλc

[−5 + k,−5 + j
]

+ b21jλc
[−5 + k,−5 + j

] − a21kλc
[−5 + k,−5 + j

]
+ b21kλc

[−5 + k,−5 + j
]

+ 5a30jc
[−4 + k,−6 + j

]
+ 5b12jc

[−4 + k,−6 + j
] − 5a30kc

[−4 + k,−6 + j
]

− 5b12kc
[−4 + k,−6 + j

] − 2a30λc
[−4 + k,−6 + j

]
+ 2b12λc

[−4 + k,−6 + j
]

− a30jλc
[−4 + k,−6 + j

]
+ b12jλc

[−4 + k,−6 + j
] − a30kλc

[−4 + k,−6 + j
]

+ b12kλc
[−4 + k,−6 + j

]
+ 5b03jc

[−3 + k,−7 + j
] − 5b03kc

[−3 + k,−7 + j
]

+2b03λc
[−3 + k,−7 + j

]
+ b03jλc

[−3 + k,−7 + j
]
+ b03kλc

[−3 + k,−7 + j
])
,

μk =
1
5
λ(a03c[−7 + k,−3 + k] + a12c[−6 + k,−4 + k] − b30c[−6 + k,−4 + k]

+ a21c[−5 + k,−5 + k] − b21c[−5 + k,−5 + k] + a30c[−4 + k,−6 + k]

−b12c[−4 + k,−6 + k] − b03c[−3 + k,−7 + k]).
(A.1)
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B.

The recursive formulae to compute the period constants of the origin of system (3.6):

c′[1, 0] = d′[1, 0] = 1; c′[0, 1] = d′[0, 1] = 0,

if k < 0 or j < 0 or (j > 0 and k = j + 1) then c′[k, j] = 0, d′[k, j] = 0.

Else

c′
[
k, j

]
=

1
j + 1 − k

(
(−(−10 + j

)
β + (−10 + k)β

)
c
[−10 + k,−10 + j

]

+
(

1
10

a03
(−3 + j

)
(−5 + λ) +

1
10

a03(−7 + k)(5 + λ)
)
c
[−7 + k,−3 + j

]

+
(

1
10

(−6 + k)(5a12 + 5b30 + a12λ − b30λ) − 1
10

(−4 + j
)

×(5a12 + 5b30 − a12λ + b30λ)
)
c
[−6 + k,−4 + j

]

+
(

1
10

(−5 + k)(5a21 + 5b21 + a21λ − b21λ) − 1
10

(−5 + j
)

×(5a21 + 5b21 − a21λ + b21λ)
)
c
[−5 + k,−5 + j

]

+
(

1
10

(−4 + k)(5a30 + 5b12 + a30λ − b12λ) − 1
10

(−6 + j
)

×(5a30 + 5b12 − a30λ + b12λ)
)
c
[−4 + k,−6 + j

]

+
(
−
(

1
10

)
b03(−3 + k)(−5 + λ) − 1

10
b03

(−7 + j
)
(5 + λ)

)

×c[−3 + k,−7 + j
]
)
,

d′[k, j
]
=

1
j + 1 − k

(
(−(−10 + j

)
β + (−10 + k)β

)
d
[−10 + k,−10 + j

]

+
(

1
10

b03
(−3 + j

)
(−5 + λ) +

1
10

b03(−7 + k)(5 + λ)
)
d
[−7 + k,−3 + j

]

+
(
−
(

1
10

)
(−4 + j

)
(5a30 + 5b12 + a30λ − b12λ) +

1
10

(−6 + k)

×(5a30 + 5b12 − a30λ + b12λ)
)
d
[−6 + k,−4 + j

]

+
(
−
(

1
10

)
(−5 + j

)
(5a21 + 5b21 + a21λ − b21λ) +

1
10

(−5 + k)

×(5a21 + 5b21 − a21λ + b21λ)
)
d
[−5 + k,−5 + j

]
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+
(
−
(

1
10

)
(−6 + j

)
(5a12 + 5b30 + a12λ − b30λ) +

1
10

(−4 + k)

×(5a12 + 5b30 − a12λ + b30λ)
)
d
[−4 + k,−6 + j

]

+
(
− 1
10

a03(−3 + k)(−5 + λ) − 1
10

a03
(−7 + j

)
(5 + λ)

)

×d[−3 + k,−7 + j
]
)
,

τ[m] =
(−(−10 + j

)
β +

(−9 + j
)
β
)
c
[−9 + j,−10 + j

]

+
(

1
10

a03
(−3 + j

)
(−5 + λ) +

1
10

a03
(−6 + j

)
(5 + λ)

)
c
[−6 + j,−3 + j

]

+
(

1
10

(−5 + j
)
(5a12 + 5b30 + a12λ − b30λ) − 1

10
(−4 + j

)

×(5a12 + 5b30 − a12λ + b30λ)
)
c
[−5 + j,−4 + j

]

+
(

1
10

(−4 + j
)
(5a21 + 5b21 + a21λ − b21λ) − 1

10
(−5 + j

)

×(5a21 + 5b21 − a21λ + b21λ)
)
c
[−4 + j,−5 + j

]

+
(

1
10

(−3 + j
)
(5a30 + 5b12 + a30λ − b12λ) − 1

10
(−6 + j

)

×(5a30 + 5b12 − a30λ + b12λ)
)
c
[−3 + j,−6 + j

]

+
(
− 1
10

b03
(−2 + j

)
(−5 + λ) − 1

10
b03

(−7 + j
)
(5 + λ)

)

× c
[−2 + j,−7 + j

]
+
(−(−10 + j

)
β +

(−9 + j
)
β
)
d
[−9 + j,−10 + j

]

+
(

1
10

b03
(−3 + j

)
(−5 + λ) +

1
10

b03
(−6 + j

)
(5 + λ)

)
d
[−6 + j,−3 + j

]

+
(
− 1
10

(−4 + j
)
(5a30 + 5b12 + a30λ − b12λ) +

1
10

(−5 + j
)

×(5a30 + 5b12 − a30λ + b12λ)
)
d
[−5 + j,−4 + j

]

+
(
− 1
10

(−5 + j
)
(5a21 + 5b21 + a21λ − b21λ) +

1
10

(−4 + j
)

×(5a21 + 5b21 − a21λ + b21λ)
)
d
[−4 + j,−5 + j

]

+
(
− 1
10

(−6 + j
)
(5a12 + 5b30 + a12λ − b30λ) +

1
10

(−3 + j
)
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×(5a12 + 5b30 − a12λ + b30λ)
)
d
[−3 + j,−6 + j

]

−
(

1
10

a03
(−2 + j

)
(−5 + λ) +

1
10

a03
(−7 + j

)
(5 + λ)

)

× d
[−2 + j,−7 + j

]
.

(B.1)
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