Hindawi Publishing Corporation
Abstract and Applied Analysis

Volume 2012, Article ID 783546, 24 pages
doi:10.1155/2012 /783546

Research Article

Integrability and Pseudo-Linearizable Conditions
in a Quasi-Analytic System

Feng Li' and Yusen Wu?

I School of Mathematical Science and Computing Technology, Central South University,
Hunan, Changsha 410075, China

2 School of Mathematics and Statistics, Henan University of Science and Technology,
Henan, Luoyang 471003, China

Correspondence should be addressed to Yusen Wu, wuyusen82714@yahoo.com.cn
Received 30 October 2011; Revised 27 November 2011; Accepted 13 January 2012
Academic Editor: P. J. Y. Wong

Copyright © 2012 F. Li and Y. Wu. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

This paper deals with the problems of integrability and linearizable conditions at degenerate
singular point in a class of quasianalytic septic polynomial differential system. We solve the
problems by an indirect method, that is, we transform the quasianalytic system into an analytic
system firstly, and the degenerate singular point into an elementary singular point. Then we
calculate the singular values at the origin of the analytic system by the known classical methods.
We obtain the center conditions and isochronous center conditions. Accordingly, integrability
and pseudolinearizable conditions at degenerate singular point in the quasianalytic system are
obtained. Especially, when A = 1, the system has been studied inWu and Zhang (2010).

1. Introduction

In the qualitative theory of planar polynomial differential equations, one of open problems
for planar polynomial differential systems

dx

— =P(xy),
;” (1.1)
=),

is how to characterize their centers and isochronous centers. The characterization of centers
for concrete families of differential equations is solved theoretically by computing the so-
called Lyapunov constants. In most cases the procedure to study all centers is as follows:
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compute several Lyapunov constants and when you get one significant, that is, zero, try to
prove that the system obtained indeed has a center. Nevertheless, to completely solve this
problem, there are two main obstacles. How can you be sure that you have computed enough
Lyapunov constants? How do you prove that some system candidate to have a center actually
has a center? As far as the case of the center is concerned, a lot of work has been done. Here
we will not give an exhaustive bibliography.

In the case of a center, it makes sense to locally define a period function associated with
a center, whose value at any point is the minimum period of the periodic orbit through the
point. A center is said to be isochronous if the associated period function is constant. It is well
known that isochronous centers are nondegenerate and systems with an isochronous center
can be locally linearized by an analytic change of coordinates in a neighborhood of the center.
The problem of characterizing isochronous centers of the origin has attracted the attention
of several authors, and many good results have been published. The characterization of
isochronous centers has been treated by several authors. However, there is a low number
of families of polynomial systems for which there is a complete classification of their
isochronous centers. For example, quadratic isochronous center [1]; isochronous centers of a
linear center perturbed by third, fourth, and fifth degree homogeneous polynomials [2—4]; the
cubic system of Kukles [5, 6]; the class of systems which in complex variable z = x +iy writes
as dz/dt = iP(z) = iz + o(z) (all of which have an isochronous center at the origin) and the
cubic time-reversible systems with dg/dt = 1, see [7]; some isochronous cubic systems with
four invariant lines, see [8]; isochronous centers of cubic systems with degenerate infinity
[9, 10]; isochronous center conditions of infinity for rational systems [11-13]; and so forth.
For more details about centers and isochronous centers, we refer the reader to the [14, 15].

Theory of center focus for a class of higher-degree critical points was established in
[16], the authors there considered the following polynomial differential system:

d n &
d—’:= (6x—y)<x2+y2> + Z Xk (x,v),

k=2n+2

(1.2)
d n &
d_z = (x +6y) <x2 + y2> + Z Yi(x,y),
k=2n+2
where
Xk(x/]/) = Z Auﬂx’xyp/ Yk(x/]/) = Z Baﬂxayﬂ' (1.3)
a+p=k a+p=k
By using their transformation
n+l n+l -n(2n+3)
x = §<§2 + 112> ., y= 71<§2 - 112) ,  dt= <§2 + 112> dr, (1.4)

system (1.2) becomes

d 6 - 1 2n+2
d_f'=2n+3§_n+ 2 [(2n+3§2+”2>x’“(§”1)_2Z:3§”Yk(§’n)]

k=2n+2

(k-2n-2)(n+1)

x (éz + 112) ,
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dn o) & ’ 1, 2n+2
Htrstne 3 [(84 gt ) lon) - oainXe(en)

k=2n+2

y (52 N 712>(k—2n—2)(n+1 )‘

(1.5)

Furthermore, Liu in [16] gave the definition of singular value and pseudo-isochronous
center at a degenerate singular point.

Definition 1.1. The degenerate singular point of system (1.2)s-9 is called a pseudo-isochronous
center if the origin of system (1.5)s-¢ is an isochronous center.

The problems of center conditions and pseudo-isochronous center conditions for de-
generate singular point are poorly understood in the qualitative theory of ordinary differen-
tial equations. There are only a few papers concerning centers of degenerate singular points
[17-24].

Recently, the following systems:

= (A +i)z+ (z2)@D/? (Az4+le‘f + Bz3Z% + Cz212°4 + D25>, d=2m+1>5,

5 =iz + (2z)@Y/ 2(Az3z + B22Z + c#), d=2m>4,
(1.6)
F=(A+i)z+ (zz)<d‘3>/2(Az3 + B2z + C22° + DE3>, d=2m+1>3,

t=(A+i)z+ (zz)<”"2>/2(Az2 +Bzz + sz), d=2m>2

were investigated by Llibre and Valls, see [25-28]. The conditions of centers and isochronous
centers were obtained. But the d is restricted in order to assure the system is polynomial
system. In [29], centers and isochronous centers for two classes of generalized seventh and
ninth systems were investigated. In [30], linearizable conditions of a time-reversible quartic-
like system were obtaied.

For the case of nonanalytic, being difficult, there are very few results. As far as inte-
grability at origin are concerned, several special systems have been studied, see [31-34].

In this paper, we investigate integrability and linearizable conditions at degenerate sin-
gular point for a class of quasanalytic polynomial differential system

% _ (6x _ y) <x2 n y2>)t + X (x, y) <x2 n y2>2()t—1) _ ﬂy<x2 + y2>3)L,
(1.7)

Z—]: = (x+6y) <x2 + y2>l +Ys5(x,y) <x2 + y2>2(A_1) + ﬁx<x2 + y2>3)t,
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where
Xs(x,y) = D, Agx'yl,  Ys(x,y) = D) Byx'y/, (1.8)
k+j=5 k+j=5
Aso = Pos + P2 + Pa1 + Bro, Agq = —Sagz — 3a12 — ax + az,
Az = -2(5p03 + P12 — o1 — Bro), Agz = 2(5ap3 — agp — ap1 + a3p),
A1s = 5003 — 3P12 + P + Pao, Aps = —ap3 + ap — az + azp, (19)
Bso = aos + a2 + a1 + azg, By1 = 5p03 + 3p12 + Po1 — Pao,
Bay = —2(5a03 + 12 — @21 —az0), Bz = ~2(5p03 — P12 — a1 + Pao),
By = 5a03 — 31 + ap + azg, Bos = Pos — P12 + Po1 — Ps0o, A ER.

When A = 1, the system has been invested in [35].

The organization of this paper is as follows. In Section2, we introduce some
preliminary results which are useful throughout this paper. In Section 3, we make two
appropriate transformations which let research on the degenerate singular point of system
(1.7) be reduced to research on the elementary singular point of a twenty-one degree system.
Furthermore, we compute the singular point quantities and derive the center conditions
of the origin for the transformed system. Accordingly, the conditions of integrability at
the degenerate singular point are obtained. In Section 4, we compute the period constants
and discuss isochronous center conditions at the origin of the twenty-one degree system,
meanwhile, the pseudolinearizable conditions at degenerate singular point are classified.

All calculations in this paper have been done with the computer algebra system:
MATHEMATICA.

2. Some Preliminary Results

In [36-38], the authors defined complex center and complex isochronous center for the fol-
lowing complex system:

Z_; =z+ kzzzzk(z,un = Z(z,w),
2.1)
dw b
—F = W= kZ:sz(z,w) =-W(z,w),
where
Zi(zw) = Y agzwl,  Wizw) = Y byw'2F, (2.2)
a+p=k a+p=k ‘

and gave two recursive algorithms to determine necessary conditions for a center and an
isochronous center. We now restate the definitions and algorithms.
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By means of transformation
z= peie, w = pe"ie, T=it, i=+v-1, (2.3)

where r, 8 are complex numbers, system (2.1) can be transformed into

d in & '
d_[t) - KPZ 3! (Aup1 —bpar)e@ POk,

(2.4)
do

1& )
i 1+ EZ Z (aap-1+ bﬁra,l)el(“_ﬂ)epk.
k=1 a+p=k+2

For the complex constant h, |h| < 1, we write the solution of system (2.4) satisfying
the initial condition p|g_y = h as

r=pO,n) =h+ o @, 25)

k=2

which could be thought of as the first Poincaré displacement map and denote the period
function by

¢ dt
(g, h) = .[0 %dﬂ

(2.6)

[ee]

-1
¢ .

- f [1+%Z > (Aap+bpa)e“POFO,n)| db.
0

k=la+p=k+2

Definition 2.1. For a sufficiently small complex constant A, the origin of system (2.1) is called
a complex center if p(2sr, h) = h, and it is called a complex isochronous center if

p@mrh)y=h, T2 h) =2 2.7)

Lemma 2.2. For system (2.1), one can derive uniquely the following formal series:

[ee] [ee]
E=z+ D oyZwl,  p=w+ ) dyw'd, (2.8)
k+j=2 k+j=2

where ¢, = dir1x =0, k=1,2,..., such that

a5 N

. B (2.9)
R N
o7 =1 ;qm g
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Definition 2.3 (see [37, 38]). Let po = 0, px = Pk — g, Tk = Px + gk, kK = 1,2,.... i be called
the ky, singular point quantity of the origin of system (2.1) and 7 be called the kg, period
constant of the origin of system (2.1).

Reeb’s criterion (see for instance [39]) says that system (2.1) has a center if and only
if there is a nonzero analytic integrating factor (or integral factor) in a neighborhood of the
origin. In [16], it is developed an algorithm to compute the focal values through the analytic
integrating factor that must exist when we have a center, namely, the following theorem.

Theorem 2.4 (see [16]). For system (2.1), one can derive successively the terms of the following
formal series:

M(z,w) = D capz*wh, (2.10)
a+p=0

such that

d(MZ) A(MW)

e e Z(m + D pm(zw)™, (2.11)

m=1

where cop = 1, forall cxx € R, k =1,2,..., and for any integer m, u,, is determined by the following
recursive formulae:

coo =1,

when (a=p>0) or a<0, or <0, cap =0,

else
| @b (212)
Cap = 7—— Z [(a@+1)aj1— (B+1)bjx-1]Cakerp-js1,
P-ais
2m+2
pm = D (@kj1 = bjk-1)Cmkestmojoi-
k+j=3

Theorem 2.5 (see [37]). For system (2.1), one can derive uniquely the following formal series:

fw) =z+ Y 2w, gzw)=w+ Y, dw, (2.13)
k+j=2 k+j=2

where C;<+1,k =d =0,k=1,2,..., such that

k+1,k

d 0 ) . d 0 , . .
G =rEw s S, G =g w - S .14
j= =
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and when k — j —1#0, c;q. and d;(]. are determined by the following recursive formulae:

1 ki
C;<j = m—_ka§3[(k —a+Dagp1-(j-p+ 1)bﬂr“—1]C;<—a+1,j—ﬂ+1’
(2.15)
1 ks
dy; = i”——kagis[(k —a+Dbopr — (= P+ 1)apar]di_grj pors
and for any positive integer j, p}, and q;. are determined by the following recursive formulae:
2j+2
pj = Zs[<] —a+2)agp1 = (j = p+1)bpa] Casn,j-pels
a;i (2.16)
‘7} = a§3[(j —a+2)bap1—(j-p+ 1)aﬁr“—1]d;’—a+2,]’—ﬁ+1'

In the above expression, one has let ¢\, = d}; =1, ¢y =dy, =0,and ifa <0or f <0, let ayp = byp =
Cy= d;ﬁ =0.
We introduce double parameter transformation groups

z=pe%,  w=pew, (2.17)

where z,w are new variables, p, 0 are complex parameters, and p #0. Denote z = x + iy, w = x —
iy, Z = X + 1y, w = X — iy. Transformation (2.17) can be turned into

x =p(Xcosf - ysind), y =p(Xsin6 + i cos0). (2.18)

In the case of real variables and real parameters, (2.18) is a transformation of similar rotation. With
(2.17) being used, system (2.1) can be transformed into

az . & . -, -

— =Z+ Z AapZ @,

dr a+p=2

(2.19)
dw &~
——=—W— Y by,
ar a+p=2
where p, 0 are parameters, z, w, T are variables, and for all & > 0, p > 0 one has
adﬂ _ a“ﬂ‘[_lu+ﬂ_1€i(a_ﬁ_1)6, (2 20)

B = bagp™ P e7@ 0,
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Under the transformation (2.17), suppose that f = f(aap, bup) is a polynomial of asp, bap with
complex coefficients, and denote

F=f(apba), £ = f(apby), @a1)

where a;p = bap, b;ﬂ =aup, 20,20, a+p>2.

Definition 2.6 (see [38]). Suppose that there exist constants \, o, such that f = pleioff,
we say that A is a similar exponent and o a rotation exponent of system (2.1) under the
transformation (2.17), which are denoted by Is(f) = A, I,(f) = o.

Definition 2.7 (see [38]). (i) A polynomial f = f(aup, bap) is called a Lie invariant of order k,
if f=pf.

(ii) Aninvariant f is called a monomial Lie invariant, if f is both of a Lie invariant and
a monomial of ag, bag.

(iii) A monomial Lie invariant f is called an elementary Lie invariant, if it can not be
expressed as a product of two monomial Lie invariants.

Definition 2.8 (see [38]). A polynomial f = f(aap, bap) is called self-symmetry if f* = f.Itis
called self-antisymmetry if f* = —f.

Theorem 2.9 (see the extended symmetric principle in [38]). Let g denote an elementary Lie
invariant of system (2.1). If for all g the symmetric condition g = g* is satisfied, then the origin of
system (2.1) is a complex center. Namely, all singular point quantities of the origin are zero.

3. Integrability at the Origin of (1.7)

In this section, the integrability at the origin of (1.7) is discussed by an indirect method. By
means of transformation

u=x+iy, v=x-iy, T=it, i=+v-1, (3.1)

system (1.7)s-0 becomes its concomitant complex system

du _
¥ u(uv))‘ + (uv)z()‘ D <a03u5 + apou* + apnulo® + a30uzv3> - ﬂu(uv)m,
p (3.2)
v _
Fida —v(uv))‘ - (uv)z()‘ D <b03v5 + bpotu + by u?o® + b30u3vz> + ﬁv(uv)”‘,
where
az = azo +ifzo, ax =1 +ifr1, ai =ap +ifn, A = &z +ifos, (33)

bag = azo —ifzo, bo =01 —ifr1, b =02 —if1a, bz = ag —ifos.
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Then, by using transformation

‘g — u(A+1)/ZU()L—1)/2’ n= v()ﬁ—l)/Zu(/\—l)/Z, (34)

system (3.2) can be transformed into the following system:

d 1

d;i &n+ o ao3(1 + )&+ = (alz +bsg + apd — bypl)éty + = (1121 + by + anh — by \)En?
1 1

+ E(a30 +bip + azoh — b))’ + §b°3(_1 +)ént + petn’,

dn

1 1 1
ar = 1 2 - §b03(1 + ) - §(b12 +az + bipd — az)nte - 5(b21 +ax + by A — an \)nPé?

1 1
- E(b30 +aipp + bgo./\ - alz)L)Tl2§3 - §u03 (—1 + .)L)Tl§4 + ﬂ§3114.
(3.5)

At last, by means of transformation (1.4),-1, system (3.5) is reduced to

dz 1
it 1—0w324<—b03(—5 + D)w* + (b2 (=5 + 4) + az (5 + 1) w’z
+ (—bzl(—5 + /\) + aj (5 + )L))ZUZZZ + (—b30(—5 + )L) + a12(5 + J\))ZUZ3
+ag3(5 + )L)z4> + ﬁwwzn,
dw 1
= w- ' <b03(—5 + 1) w? + (b2 (5 + ) — az (=5 + 1))w’z

+ (b21 (—5 + .)L) - a21(—5 + )L))wzzz + (b30(5 + )L) —an (—5 + .)L))’LUZ3

—ag3(=5 + J\)z4> + pz 00",
(3.6)

By those transformations, we transform the quasanalytic system into an analytic sys-
tem firstly, and the degenerate singular point into an elementary singular point. Under the
conjugate condition (3.6): it is obvious that the origin of system (3.5) to be integrability
(linearizable) is equivalent to the degenerate singular point of system (1.7) to be integrability
(pseudolinearizable).

Using the recursive formulae of Theorem 2.4 to compute the singular point quantities
at the origin of system (3.6) (for detailed recursive formulae, see Appendix A) and simplify
them with the constructive theorem of singular point quantities, we get the following.
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Theorem 3.1. The first 55 singular point quantities at the origin of system (3.6) are as follows:

1
Us = 5(6121 -by)A,
(3.7)

1
Hio = —g(a301112 - b3ob12) A
Case 1. appbix #0, then there exist k to make azg = kbip, by = kai,

A
s = 35 (a0sb?, — busal, ) (<1 +3k) (2 + 2k — A + k),

H20 = mbﬂ <aosb%2 - 17035112) Bk -1),
2

- _ 2 2
24004 +2)° @ 1) sty - bsa

Hos

X (—32(1031?03 - 28003b03)t + 32(1121?12)»2 + 5{1031703)L3 + ao3b03)t4 + 192'[5 + 192)»[5 + 48)L2ﬂ>,

Hzo =0,
2

2 2
_W(3k — 1) <a03b12 - b03a12>

M35 =

x (1024a§3bg3 +1920a3,b3, A — 13824a12ag3biobos\* + 224a3,b5,\* — 11392a1ag3biobos )’
—1584a2,b3,1° + 12800a2,b2,A* + 2432a1pa03b12bpsA* — 1056a2,b3,1*
+4064a12(103b12b03)L5 + 864a12a03b12b03)L6 + 206(1(2)3b%3)t6 + 69(1(2)31953)L7 + 7(1%31’)%3./\8),

7)\?
Hao = _W(Bk -1) <a03bf2 - bo3a%2> <a03b%2 + bOS“%Z) (A+1)

X (—32a03b03 - 24ao3b03)t + 32&121712)»2 + 4(1()31903)L2 + 6(103b03/\3 + a03b03)t4>.

(3.8)
If a12b12 = —a03b03(—2 + .)L) (2 + ./\)2(4 + .}L) /32./\2,
24131
s = o (3K - 1)adsbis (ot ~ bosal, )- (39)
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2

If aogb%Z + bz a%z = 0, then there exist m to make agz = ma%z, boz = —-mby,,

7)2
= 3k — 1) (A + 1) apabpa?.b2 ( agsb?, — bgsa®
Has 183840000001 5 2)° ( ) (A + 1)arzbrzag, 03< 03b1, — bos 12)

x <—23257088a12b12m2 + 6577280a1,b1om? A — 2325708812 + 26650064a1,b1pm> >
+751644161% — 2764244 a1,b1,m>\3 + 8304896A% — 10922212a1,b1,m>\* — 188846081°
—916685a15b1om?A° + 1341691 aobiam*A° + 255854a12b12m2)t7>,

pso =0,
1099511627776
hss = — 3k = 1) (a0}, — biaaly ) (A + 1),
8859375m8(\ + 2)
(3.10)
Case 2. app = b12 = 0,
31
W5 = 15 (aosa§0 - b03b§0> (X +2),
_ 3 2 b b2 b
H20 = E<ao3a30 — bp3 30> 21,
1 2 2
W5 =15 <1103L130 - b03b30> (4azobsy — 3agsbos + 24P),
uz =0,
(3.11)

1
M35 = =100 <a03a§0 - b03b§0> (11‘1531753 ~ 19a03bos azobzo - 50a§0b§0>’
7
Hao = m <a03a§0 - b03b§0> <a03a§0 + b03b§0> (’103b03 - a30b30)/

1
Hs5 = ~T3z000 “30b%0 <a03 a5 - b03b§0>

x <102334400 +28122192a30bsgm? — 26626536a%,b3,m* + 2330697a§0b§0m6),

where px =0, k#5i, i <11, i € N. In the above expression of yi, we have already let pig = - -+ =
Ur-1=0,k=2,3,...,45.

From Theorem 3.1, we get the following.
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Theorem 3.2. For system (3.6), the first 55 singular point quantities are zero if and only if one of the
following conditions holds:

an =by, an=bp=0, ajan =Dbub, (3.12)
1 1
ay =by, azp= §b12/ bso = 3712 apbp #0, (3.13)
ax =bx, axan =byb, ahbep =bham, anbn#0, (3.14)

A=-1, =0, axn=bxy=0, az=-3bp, byp=-3an, apbw=4a2bi,
(3.15)
anbio # 0.

In order to obtain the integrability conditions of the origin, we have to find out all the
elementary Lie invariants of system (3.6). According to Definitions 2.6, 2.7 and 2.8, we have
the following.

Lemma 3.3. All the elementary Lie invariants of system (3.6) are as follows:
B, ax1, b1, azobzo, a12biz, agsbos, aspain, baobio,

(3.16)
2 2 2 2
az,aos, azobi2ao3, by, aos, b3obos, b3paiabos, aj,bos.

The following result holds.

Theorem 3.4. For system (3.6), all the singular point quantities at the origin are zero if and only
if the first 55 singular point quantities are zero, that is, one of the conditions in Theorem 3.2 holds.
Correspondingly, the conditions in Theorem 3.2 are the integrability conditions of the origin.

Proof. If condition (3.12) or (3.14) holds, system (3.5)s-¢ satisfies the conditions of
Theorem 2.9. If condition (3.13) holds, system (3.6) has the first integral

Zw63a0327w3+4alzz(’w4+6bz1zsw5+4b1zz4w6+3b0323w7+32mw]0[5—3, A=-2,

(3.17)
(zw)S(/\+2)/J\f1, A# _ 2,

where

fi= (—12a03 + 3a03)u2>z7w3 + <4a41)tz - 161112>26w4 + <6b21/\2 - 24b21>25w5

+ (401202 + 16b12 ) 210° + (3032 = 12603 ) 2007 + (24 — 12r) 200" — 24+ 121
(3.18)
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If condition (3.15) holds, system (3.6) becomes

dz 1

IT-10 <10 +4apz’w? — 14apz%w* - 6bppz w® + 6b0323w7>,
d_w = —l <1O +4bgs 22w’ — 14bpwz* — 6apw*z8 + 6a03w3z7>
dT 10 !

there exists a transformation

I v
(uv)*® (uv)*®’
system (3.19) is changed into
d
ﬁ =u+ b037)3 + blzvzu - 3a12u3 =U,
do 3 2 3
I = —(v+ agzu’ + appu v — 3bpv ) =YV,
system (3.21) has the integral factor f, >/6, where

fz =1- 6<b12u2 + a1202>

+ 3<3b%2u4 - 2a12b03u3v + 2a12b12u202 - 2b12a03v3u + 3&4112'04>

1
+ E (2(11211 - a03ZJ) (2b127) - bogu) <b03u4 - 2b12u3v - 2(1120311 + a0304>,

dfs » o\, 6/0U 8V
E = —12<b12u — a0 )fZ = g<a—u - a_’1)>f .

Synthesizing all the above cases, we have the following.

13

(3.19)

(3.20)

(3.21)

(3.22)

Theorem 3.5. The system (1.7) is integrability at the origin if and only if one of conditions in

Theorem 3.2 holds.

4. Linearizable Conditions at the Origin of (1.7)

In this section we classify the pseudolinearizable conditions at the origin of (1.7). We
discuss the linearizable conditions for system (3.6) firstly. According to Theorem 2.5, we
get the recursive formulae to compute period constants (detailed recursive formulae, see
Appendix B). Denote ax; = by = 121, from the integrability conditions given in Section 4,

we investigate the following three cases.
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Case 1. Integrability condition (3.12) holds.
If a3y = bsy = 0, we easily obtain the first 30 period constants

T5 = 2171,

1
TI0= 5 ((A =2)agbgs +4p),

Ti5 =0,
L, i (4.1)
T = =35 BBl (-2 + 17 (-2 + 34),
Ts =0,
— 1 212 2 2 3
T = seeos b (<2 + ) (50 + 3651 - 19620 + 21531°).

If azobsp #0, from condition (3.12), there exists an arbitrary complex constant s, such
that

ags = b3y, bos = saz, (42)
then we get the first 30 period constants
Ts5 = 2121,
710 = & (~2asgbs — 2a2b3,5% — 2asgbs) + aZyb2sA + 4
10 = 5 (72430030 — 20300305 — 2a300304 + A300505" A + )

Ti5 = Zaéobéos(/\ + 2),
(4.3)
1
T = Za§0b§0(1 +0)2BL+1),

Tys = Or

Ty = 30631+ 1) (<25 + 351 + 9814 +21531%).

L a
800
In expressions (4.1) and (4.3), 7« = 0, k#5i,i < 4,i € N, and we have already let 7y = --- =

1=0k=2,3,...,30.

From expressions (4.1) and (4.3), we have the following.

Theorem 4.1. The first 30 period constants at the origin of system (3.6) are zero if and only if one of
the following conditions holds:

P=ax=by=ap=bpn=ax=byp=0, A=2 (4.4)

P=ax=by=ap=bp=ap=b=0, A=-1, azby#0. (4.5)
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Theorem 4.2. Under integrability condition (3.12), the origin of system (3.6) is a complex isochro-
nous center if and only if one of the conditions in Theorem 4.1 holds.

Proof. When condition (4.4) is satisfied, system (3.6) becomes

d 1
ﬁ = Ez(lo +7ap32w® + 3b0323w7>,
p . (4.6)
w
i —Ew<10 +3apz’w? + 7bo3z3w7>.
There exists a transformation
e 2(1 + by z2w’)> ™ Y w(l+ a03z7w3)3/40 47)
(1 n a03z7w3)7/40 (1 + b0323w7)7/40
such that system (4.6) is reduced to a linear system.
When condition (4.5) is satisfied, system (3.6) becomes
d 1
ﬁ = Ez(lo + 6bsp 20w + 4a3oz4w6>,
p ) (4.8)
% = —Ew<10 + 4bypztw® + 6a3026w4>.
There exists a transformation
~ z(1+ a3024w6)1/5 ~ w(l+ b3026w4)1/5 (49)
(1+ b3026w4)3/10 ’ (1+ a3024w6)3/10 ' ‘
such that system (4.8) is reduced to a linear system. O

Case 2. Integrability condition (3.13) holds.

Substituting condition (3.13) into the recursive formulae in Appendix B, we obtain the
first 40 period constants

T5 = 2191,

1
Ti0 = E (—18ao3b03 - 32[112b12 + 9a03b03)u + 16(1121‘)12)» + 36ﬂ),

1
mis = 3 (ad,bos + ansby ) (<4 + 1) (=1 + ),

1
T = 5255 AabR (L~ 2) (3h +2) (-512 - 1152a15b1s? — 16243, b3, s" + 2561 + 81at,bhys'1),

T5 =0,
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1
T3 = 2048a,b],5* (256 + 720a10bios? + 81a%,b2,s* )

9(256 + 81a2,b%,54)°

x (256 +1152a13b1>5 + 81a3,b2,5* ) (~262144 - 2801664a10b125>
+4147200a3,b%,s* — 219283243,b°,s°
+183708a},b1,s" + 59049a3,b,5'7),

T35 =0,
1

T4 = 4aC,b% s*
2025(256 + 81a§2b§254) e

X <109239312561498750976 +2393515709059622240256 a1, b1 5>

+16627534144531656081408a2,b%,s* + 45808666111836080308224a>,b3,s°
+3448731449986070976921647,b7,s° — 43671898596853816492032a3,b3,5™
- 31656165840700764585984a5,b%,5'? + 49193367282534498435072a,b’,s'*
- 265567821697243938816045,b%,5'¢ — 86531225432354154086404],b7,5'®
— 539890165260393578496a19b19s*" + 408937711778677748736a13b15s%
+82987106695640213760a;5b;55* + 5972974608886179588a;3b155%°
+15142148925938685951};*1;}3528)

(4.10)

where 7 = 0, k #5i,i < 8,1 € N. In the above expression of 7x, we have already let 7 = - -+ =
T-1=0,k=2,3,...,40
From expressions (4.10), we have the following.

Theorem 4.3. The first 40 period constants at the origin of system (3.6) are zero if and only if one of
the following conditions holds:

1 1
A=2, P=an=by=ap=b=0, azy-= gblz, by = 32 (4.11)

Theorem 4.4. Under integrability condition (3.13), the origin of system (3.6) is a complex isochro-
nous center if and only if the condition in Theorem 4.3 holds.

Proof. When condition (4.11) is satisfied, system (3.6) becomes

% 110 <10 + 8ap 20wt + 1—blzz w6>

ar 3 (4.12)
AW _ 1 o(10+ 8biz*e + L ap,ztwt
aT = 10w 122 W 3 apz w ).
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There exists a transformation

z(3+ 4b1zz4w6)1/5 w3+ 4a1226w4)1/5
- 3/107 - 3/10 (4.13)
(3 +4apzow?) (3 +4bpz*w®)
such that system (4.12) is reduced to a linear system. O
Case 3. Integrability condition (3.14) holds.
Because aqyb12 #0, we can let
az) = kbio, bs =kai, ap=maj, bey=mbi, (4.14)

where k, m are arbitrary complex constants. Substituting (4.14) into the recursive formulae in
Appendix B, we obtain the first 30 period constants

T5 = 2171,

1
T10 = E <—2a12b12 - 4a12b12k - 2a12b12k2 - 2a%2bfzm2

(4.15)
#2apbid - 2apbpk?) + al,blm?) + 45),
Ti5 = }laizbfzm(ez +3k —41)(2+ 2k — A + kA).
Ifm=0,
Ty = iafzbiza +k)(1+k - A+kA)2(1+k - 34 +3kA),
Tos = 0, (416)
1
T30 = ————=2a5,b5, (1 + K)A3(1 + k — A + k))2.
30 (1 + 3/\)3 12 12( ) ( )

If k = (1/3)(=3 +41),

1
oo = _mafzb@(—msa%zbfzm‘* +1620a2, b2 m* i — 1152a5,b1ym> )\
—1134a3,b3,m*\* + 4608a1,b1,m* \* + 24343, b7, m*\>

+17927* — 4608a1,b1om?A* — 87041° + 13312A° — 6144)8),

b%zm.)tz <—864a12b12m2 - 459&12b12m2.)t + 576)12 + 6075[112b12m2.12

Tog = — 1 (13
27 71944712

— 25613 — 5670a1,b1,m?\3 — 588814

+1296a1,b1ym?\* +112641° — 6144/\6>,
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1
492075(~32 — 171 + 22512 — 21043 + 484)°

T3 = 4a3,b% A8(1+ 1) (=1 +24)°

X (16223998464 — 25771071744\ — 266392474620\ + 7797712247713 + 5020914939181 *
— 4814334558957.° + 7235802457920° — 235834248470817 — 5235799647872.A°

+7279836287888.1° — 3998287419904 10 + 8008163973761 + 1997329167362

—1353534382081"2 + 20141015040)&4).
(4.17)

Ifk=(A-2)/(A+2),

1

212 212 4 212 4
-———aj,b -384a;,by,m* + 192a7,b;,m* A
96( \ 2)4 12712 < 12712 12712

Ty =

- 1536[11217121112.12 + 672:1%217%21114)3 - 1280a12b12m2/\3
+48a%,b3,m*\% + 1920\ + 384a1,b1ym*\* - 26443, b2, m*\*
+ 576[112b12m2.)L5 - 60[1%217%2111415 + 128a12b12m2)t6

+30a3,b,m*\° + 9a%2b%2m4)u7>,

To5 = a?zbfzmﬁ (966!1217121112 + 76a12b12mZA - 96./\2 - 40a12b12m2)u2 - 32.)L3

1202 + )
—33[112b12m2.)t3 + 5a12b12m2)t4 + 4[1121?12111215),

2a3,b3,\’

N 75024 1)P(24 - 50— 1102 + 413)°

<—8200224 — 1147734901 + 25017999312

—32032585.1% — 1780329151 + 94932055.1°

+185123021° — 2412552017 + 4769504)L8),

(4.18)

where 7 =0, k#5i, i < 6, i € N. In the above expression of 7x, we have already let 7 = --- =
1 =0,k=23,...,30.

From expressions (4.15), (4.16), (4.17) and (4.18), we have the following.
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Theorem 4.5. The first 30 period constants at the origin of system (3.6) are zero if and only if one of
the following conditions holds:

Pp=an=by=ap=b=0, azx=-bn, byp=-an, (4.19)
-1+A -1+A
Pp=an=bn=ap=b=0, azy= mblz, by = T3 G (4.20)

Theorem 4.6. Under integrability condition (3.14), the origin of system (3.6) is a complex isochro-
nous center if and only if one of the conditions in Theorem 4.5 holds.

Proof. When condition (4.19) is satisfied, system (3.6) becomes

dz 1 6, 4 4.6
-7 = Ez<10 +2apAz°w* - 2bp Azt w >r
dw 1

aw 1 4.6 6,4
T 5w<10+2b12Az w® = 2apAz°w ),

(4.21)

we have for system (4.21) that

ﬁ_l(ldz 1dw>:1. (4.22)

dt 2\zdT wdl
When condition (4.20) is satisfied, system (3.6) becomes

RS
dT  5(1+1)
dw _ 1
dT ~ 5(1+)\)

51+ A) + 4apAzbwt + 6b12)uz4w6>,
(4.23)

w<5(l +1) + Abp\zrw® + 6a12)czéw4>.

There exists a transformation

~ z(1+A+ 2b12)tz4w6)1/5 ~ w(l+d+ 2a12)tz(’w4)1/5

_ , _ , (4.24)
(1+1+ 2a12/\z6w4)3/10 (1+1+ 2b12)uz4w6)3/10

such that system (4.23) is reduced to a linear system. O

Case 4. Integrability condition (3.15) holds.
Substituting condition (3.15) into the recursive formulae in Appendix B, we obtain the
first 10 period constants

T5 = 2171, (825)
Tio = —2a12b1s.

Because Tig = apbix #0, under integrability condition (3.15), the origin of system (3.5)s-0 is
not a complex isochronous center.
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Synthesizing all the above cases, we get the main result of this paper.

Theorem 4.7. The degenerate singular point (origin) of system system (1.7)s=o ((3.5)s=0) is pseudo-
linearizable (linearizable) if and only if one of conditions (4.4), (4.5), (4.11), (4.19), (4.20) holds.

Appendices
.A..
The recursive formulae to compute the singular point quantities at the origin of system (3.6):
c[0,0] =1,
when (k=j>0)ork<0,0rj<0,
clk,j] =0.
Else

c[k,j] = ﬁ (10jpc[-10 + k,—10 + j] - 10kpc[-10 + k,~10 + j] + 5apsjc[~7 + k, -3 + j]

—5agskc[-7 + k, =3 + j| = 2apsAc[-7 + k, -3 + j] — agsjrc[-7 + k, -3 + j]
— agskAc[-7 + k, =3 + j| + 5apjc[-6 + k,—4 + j]| + 5bsgjc[-6 + k, —4 + f]
—5apke[-6 + k,—4 + j| —5bykc[-6 + k,—4 + j] — 2aipAc[-6 + k, -4 + f]
+2bsghc[6 + k,—4 + j| — annjhc[-6 + k,—4 + ] + bagjrc[-6 + k, —4 + f]
— apkAc[-6 + k,—4 + j]| + byokAc[-6 + k,—4 + j] + 5axjc[-5 + k, -5 + f]
+5byjc[-5+ k, =5 + j| —5axke[-5+k, =5+ j| = Sbynkc[-5 +k, -5 + f]
- 2ay\c[-5+k, =5+ ] + 2bydc[-5+ k, -5+ j| — anjre[-5 + k, =5+ f]

+byjlc[-5+k, =5+ j| — ankAc[-5+k, =5+ j| + bnkAc[-5 + k, -5 +f]
[

- ]
+5azpjc[-4+k,—6+ j| +5biajc[~4 + k,—6 + j| — Sasokc[-4 + k,—6 + j]
—5biskc[-4 +k,—6 + j| —2azdc[-4 + k, =6 + j| + 2bipdc[-4 + Kk, —6 + j]
— agojAc[4 +k,—6 + j| + biajAc[-4 + k, -6 + j] — azokAc[-4 + k, -6 + f]
+biokAc[~4 + k, =6 + j] + 5bosjc[-3 + k, =7 + j]| — Sboskc[-3 + k, =7 + j]

+2bgsAc[-3 + k, =7 + j] + bosjrc[-3 + k, =7 + j]| + beskAc[-3 + k, -7 +j]),
Hi = \%.)L(Ll03C[—7 + k, -3+ k] + [1120[—6 + k, —4 + k] - b30C[—6 + k, —4 + k]

+anc[-5+k,-5+k] —byc[-5+k,-5+k] + azc[-4+k,—6+k]

—blzc[—4 + k, -6+ k] - b03C[—3 + k, -7+ k])
(A1)
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B.

The recursive formulae to compute the period constants of the origin of system (3.6):
c'[1,0] =d'[1,0] =1; ¢'[0,1] =d'[0,1] =0,
ifk<Oorj<Oor(j>0andk =j+1)thenc[k,j]=0,d][k,j]=0.
Else

c'[k,j] = s 11_ z <(—(—10+j)ﬂ+ (<10 + k)B)c[-10 + k, —10 + f]

1 . 1 .
+ <Ea03(—3 +7)(-5+ L) + Ea03(—7+ k)(5 +A)>c[—7+ k, -3+ j]
+<l(—6+k)(5 +5b3y + apA —b A)—l(—4+')

10 ann 30 12 30 10 ]

X(5(112 + 5b30 - alz)t + b30.)L)>C[—6 + k, -4 + ]]
+ l(—5+k)(5a +5by +anA—b )L)—l(—5+')

10 21 21 21 21 10 ]

><(5a21 + 5b21 - azl)t + bzl)t)>c[—5 + k, -5+ ]]
+<l(—4+k)(5 +5byp + azxpA —b A)—l(—6+')

10 aso 12 + azp 12 10 ]

><(5a30 + 5b12 - 1130.)L + b121)>c[—4 + k, -6+ ]]

+ (-(%)b%(—:s +k)(=5+1) - 11—0b03(—7+f)(5 + l))

xc[—3+k,—7+j]>,

d'[k,j] = j+11—k<<_(_10+j)'6+ (-10 + k)p)d[-10 + k,-10 + j]
1 ) 1 .
+ <Eb03(_3 +7)(-5+1) + Eb03(_7+ k)(5+A)>d[—7+ k,-3+j]
+( - L -4+ j)(5azp + 5b1p + azod — bix)) + 1(—6+k)
< <E>( ])( aso 12 + asp 12 10
><(5a30 +5b1y — azp) + b12.)L)>d [—6 +k,—4+ ]]
(2 -5+j)(5ax +5by + anA-b .)L)+l(—5+k)
+ 10 ( j)(5ax 21 + a2 21 0

><(5a21 + 5b21 - aZl)L + b21)t)>d [—5 + k, -5+ ]]
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+( - L (=6 + j) (5a1z + 5bzg + aiph — bygd) + L (-4 +k)

E ] 25V 30 + d12 30 E

X(5(112 + 5b30 - (112.)L + b30.)L)>d [—4: + k, -6+ ]]
1 1 .
+ —ang(—?) +k)(=5+\) - ang,(—7 +7)(5+4)
xd[-3+k, -7 + j]>,
r[m] = (=(-10+ 7))+ (-9+j)B)c[-9 +j,-10 +j]

+ (%aog(—S +7)(-5+1) + %a03(—6 +7)(5+ )L))c[—6 +7,-3+]]
+ l(—5+')(5 +5b3p + appd — b )L)—l(—4+‘)
10 ] ain 30 + d12 30 10 ]
><(5a12 + 5b30 - I.112)L + b30)u)>c[—5 + j, -4 + ]]
+ i(—4+')(5a +5by +anA—b A)—l(—5+')
10 ] 21 21 21 21 10 ]
><(5a21 + 5b21 - (121/\ + b21)t)>c[—4 + j, -5+ ]]
+ l(—3+')(5 +5byp + azpl — b A)—i(—6+')
10 7)(aso 12 + aso 12 10 ]
><(5a30 + 5b12 - a30/\ + b12)x)>C[—3 + j, -6+ ]]

1 1
+ (—Eb%(—z +7)(-5+1) - Eb03(—7+j)(5 + .)L)>

xc[-2+7,-7+j]+(-=(-10+)p+ (-9+/)B)d[-9+j,-10 + j]
+ (11—01903(—3 +7)(-5+A) + %bgg(—6 +7)(5+ )L))d[—6 +7,-3+7]
+ L —4 +j)(5asy + 5b1n + azpl - b A)+l—5+')
10( j) (5azg + 5b1z + azd — by 10( j
><(5a30 + 5b12 - a30/\ + b121\)>d[—5 + j, -4+ ]]
+ —1(—5+‘(5 +5by1 + an A - b )L+1(—4+‘
0 j)(5ax 21 + a2 214) 10 7)

X(5I.121 + 5b21 - 1121./\ + bzl)t)>d[—4 + j, -5+ ]]

1 . 1 ;
+ <—E(—6 + ])(5[112 + 5b30 + alz)t - b30)t) + E(—:} + ])
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><(5a12 + 5b30 - au/\ + b30)\)> d [—3 + j, -6+ ]]

- (%aog(—2+]’)(—5 +1) + 11—0a03(—7+j)(5 +)L))
xd[-2+7j,-7+]].
(B.1)
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