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We study a frequently investigated class of linear difference equations Av(n) = —p(n)v(n — k)
with a positive coefficient p(n) and a single delay k. Recently, it was proved that if the function
p(n) is bounded above by a certain function, then there exists a positive vanishing solution of the
considered equation, and the upper bound was found. Here we improve this result by finding

even the lower bound for the positive solution, supposing the function p(n) is bounded above and
below by certain functions.

1. Introduction

Throughout this paper, we use the following notation: for an integer g, we define
Ly =1{q,q9+1,...}. (1.1)

We investigate the asymptotic behavior as n — oo of the solutions of the discrete delayed
equation of the (k + 1)-th order

Av(n) = —p(n)v(n - k), (1.2)
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where 7 is the independent variable assuming values from the set Z* with a fixed a € N =
{0,1,2,...}. Thenumber k € N, k > 1is the fixed delay, Av(n) = v(n+1)-v(n),and p : Z3 —
R* = (0, o0).

Along with (1.2), we consider k + 1 initial conditions

va+s-k)=v"**eR, s=0,1,..., k. (1.3)

Initial problem (1.2), (1.3) obviously has a unique solution, defined for every n € Z%,.
Moreover, the solution of (1.2) continuously depends on initial conditions (1.3).

Equation (1.2) is investigated very frequently. It was analyzed, for example, in
papers [1-3] (where the comparison method [4, 5] was used) and [6]. Similar problems for
differential and dynamic equations are studied, for example, in [7-10].

In a recent work of the authors [6], it is proved that if the function p(n) is bounded
above by a certain function, then there exists a positive vanishing (i.e., tendingtoO0asn — oo)
solution of the considered equation. Moreover, its upper bound was found. Our aim is to
improve this result and to show that if the coefficient p(n) is between two functions py(n) —
¢(n) and pe(n) + w(n) (see (2.3), (2.6), and (2.7) below) then (1.2) has a positive vanishing
solution which is bounded from below by the function a,(n) (see (2.5)) and from above by
the function v, (n) (see (2.4)). Due to the linearity of equation considered it becomes clear that
a similar result holds for a one-parametric family of positive vanishing solutions of (1.2).

To prove this, we will use Theorem 1.1 which is one of the main results of [6]. This
theorem is valid for any delayed difference equation of the form:

Av(n) = f(n,v(n),v(n-1),...,v(n-k)). (1.4)

Theorem 1.1. Let b(n), c(n), b(n) < c(n) be real functions defined on Z% . Further, let f : Z7 x
R — R be a continuous function and let the inequalities:

b(n) + f(n,b(n),vy,...,0ks1) <b(n+1), (1.5)

c(n)+ f(n,c(n),vy,...,0k1) >c(n+1), (1.6)
hold for every n € ZY and every vy, ..., U+ such that
bn-i+1)<vi<cn-i+1), i=2,...,k+1. (1.7)
Then there exists a solution v = v*(n) of (1.4) satisfying the inequalities
b(n) < v*(n) < c(n), (1.8)

foreveryn € Z .

For related comparison theorems for solutions of difference equations as well as
related methods and their applications, see, for example, [1, 11-21] and the related references
therein. Investigation of positive solutions (and connected problems of oscillating solutions)
attracted recently large attention. Except the references given above, one refers as well to
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[11, 22-33], and to the references therein. Existence of positive solutions of some classes of
difference equations has been also studied in papers [12-16]. The existence of unbounded
solutions by some comparison methods can be found, for example, in [17, 18].

2. Auxiliary Functions and Lemmas

Define the expression In,; 1, g € N'\ {0}, as

Ing 7 := In(Ing_ n), (2.1)

where Ingn := n. We will write only Inn instead of In;n. Further, for a fixed integer ¢ > 0

define auxiliary functions:

(n) '—L_f_ 1 oot 1

A= 2 8(ninn)* 8(nlnn---lngn)2, (22)
o = (5 )k (g +hmetn)) 23)
Peit) =\ k+1 k1 R ) '

(n) = _k_ n-v Innlnyn---In (2.4)

ve(n) = { 7 ninnlnyn on, .

k \" e
ag(n) := <m> -\/nlnnlnzn---lngnlng+1n, (2.5)

where 0 € R, 0 > 0, is a constant. Notice that if a is sufficiently large, all these functions are
well defined for n € Z2.

Finally, let functions ¢, w : Z3 — R* satisfy for n € Z$ the inequalities:

k \* 6
< . ,
p) < <k + 1) (nlnn-- -lngn)zln[;ﬂn (26)
k \* k@k-1)
w(n) < €<k T 1) e @7)

for fixed 6 >0, p>2and € € (0,1).

In [3], it was proved that if p(n) in (1.2) is a positive function bounded above by p,(n)
for some ¢ > 0, then there exists a positive solution of (1.2) bounded above by the function
ve(n) for n sufficiently large. Since lim, _,,v¢(n) = 0, such solution will vanish as n — oo.
This result was further improved in [6], where it was shown that (1.2) has a positive solution
bounded above by v.(n) even if the coefficient p(n) satisfies a less restrictive inequality,
namely, p(n) < pe¢(n) +w(n). Here we will prove that function a, provides the lower estimate
of the solution, supposing p,(n) — ¢(n) < p(n) < pe(n) + w(n). The proof of this statement
will be based on the following four lemmas. The symbols “0” and “O” stand for the Landau
order symbols and are used as n — oo.
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Lemma 2.1. For fixed r € R\ {0} and fixed q € N, the asymptotic representation:

r r2

Ing(n—7) = Ing 7 - -
ng(n—r) =Ingn nlnn---Ingqn  2n’lnn---Ingn
2.8)

72

r2 1
- 5 e — s+ol =),
2(nInn) Inpn - - - Ingn 2(nlnn---Ing_1n) n

holds asn — co.
Proof. Relation (2.8) can be proved by induction with respect to g, for details, see [6]. O

Lemma 2.2. For fixed r,s € R\ {0} and fixed q € N, the asymptotic representations:

lnq(n—r) ° 1 rs B TZS B TZS ~
Ingn B nlnn---ln;n  2n2lnn---Ingn Z(nlnn)zlnzn---lnqn
(2.9)

r’s r?s(s—1) 1
— 3 + 3 +0 =3 )
2(nlnn---Ingn)Ingn 2(nlnn---Ingn) n

oo +o(1> (2.10)
n 2n  8n? 16m3 nd/)’ '

hold asn — oo.

Proof. Both these relations are simple consequences of the asymptotic formula:

s(s=1) » s(s=1)(s-2) 5, O<x3> as x —s 0. (2.11)

1-x)°=1-
1-x) sX + > G

and of Lemma 2.1 (for formula (2.9)).

In the case of relation (2.10), we put x =r/nand s = 1/2.
To prove relation (2.9), first notice that dividing (2.8) by In,n, we get

Ing(n-r) r 2

- T2
Ingn nlnn---Ingnlngn  2n2Inn---Ingnlngn

r r

2 2 1
N (1)
2(nlnn)’Ingn---Ing_ningn 2(nInn---Ing_yn)’Ingn n
2.12)
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Thus, putting
Ing(n—r)
T Inyn
(2.13)
= 4 + r +ot r + o( ! )
ninn---Ingn  2n2lnn---Ingn Z(nlnn---lnq_ln)zlnqn n3
and using (2.11), we get (2.9). O
The following lemma is proved in [6].
Lemma 2.3. For fixed r € R\ {0} and fixed q € N, the asymptotic representation:
(n-r) Inn-r) Ing(n-r)
n Inn Ingn
(2.14)
=1-r 1+ ! +o 4t ! — 12, (n) - r +o<1>
B 2n  2nlnn 2ninn---Ingn Ha 1613 nd)’
holds asn — co.
Lemma 2.4. For fixed r € R\ {0}, 0 € R and q € N, the asymptotic representation:
(n-r) Inn-r) Ing(n-r) ln;ﬂ (n—r)
n Inn Ingn In7in
L 1 1 B o (2.15)
=1 r<2n * 2nln n et 2nlnn---lngn 2nln n'-‘lnqnlnqﬂn)
) o(oc+2) r? r’ ( 1 >
-1 pg(n) + . - +o( =),
1 8 (nlnn---Ingyn)* 1673 n’

holdsasn — oo.

Proof. Using Lemma 2.2 with s = —0/2 and g + 1 instead of q, we get forn — oo

In,7\(n—r) 1 ro . r’c . r’c .
ln;fln 2nlnn---Ingan  4n’lnn---Ingan  4(n lnn)zlnzn---lan n

r’c r’c(c +2) < 1 )
+ +o( = ).
3

+
4(ninn---In, n)zlnqﬂ n 8(nlnn---Ing n)2

(2.16)

Multiplying the asymptotic representations (2.14) and (2.16), we get (2.15). O



6 Abstract and Applied Analysis

3. Main Result

Now we are ready to prove that there exists a positive solution of (1.2) which is bounded
below and above. Remind the functions py, v¢, ay, ¢, and w were defined by (2.3)-(2.6) and
(2.7), respectively.

Theorem 3.1. Suppose that there exist numbers a,€ € N, and ¢ > 0, such that the function p in
(1.2) satisfies the inequalities

0 <pe(n) —g(n) < p(n) < pe(n) +w(n), (3.1)

for every n € Z. Then there exists a solution v = v*(n), n € Z  of (1.2) such that for n sufficiently
large the inequalities:

ag(n) <v*(n) <ve(n), (3.2)

hold.

Proof. Show that all the assumptions of Theorem 1.1 are fulfilled. For (1.2),
f(n,v1,...,0k01) = —p(N)Vks1. (3.3)
This is a continuous function. Put
b(n) := ay(n), c(n) :=ve(n). (3.4)
We have to prove that for every vy, ..., vx.1 such that
bn-i+1l)<vi<cn-i+1), i=2,...,k+1, (3.5)

the inequalities (1.5) and (1.6) hold for n sufficiently large. Start with (1.5). That gives that
for

b(n-k) <ok <c(n-k), (3.6)

it has to be

ag(n) —p(n) - vk <ag(n+1), (3.7)

which is equivalent to the inequality

—p(M)Vks1 < ag(n+1) —ag(n). (3.8)
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Denote the left-hand side of (3.8) as L(z8). As vx41 > b(n—k) = ag(n—-k) and as by (2.3), (2.6),
and (3.1)

k \* 1 k \* 5
p(n) > ( ) - ( +kﬂe(n)> - ( ) - , (3.9)
k+1 k+1 k+1 (nlnn---lngn)zlnan

we have

kK \( 1 5
Lizg) < —< > — +kpe(n) -
k+1 k+1 (nlnnu-lngn)zlngﬂn

n-k
x (kli 1) \/(n —k)In(n - k) ---Ing(n - k)In,7, (n - k)

( k )" e 5
= — ¢ —
k+1 k+1 (nlnn---lngn)zln‘gﬂn

x\/(n = k) In(n = k) -- - Ing(n - K)Iny, (n - k).

(3.10)

Further, we can easily see that

k n
ag(n+1)—ap(n) = (ﬁ) \/nlnn--'lngnln;fln

(3.11)
y < k \J (n+1)In(n+1) Ing(n+1) In,7;(n+1) _1>

k+1 n Inn Ingn In,\n

Thus, to prove (3.8), it suffices to show that for n sufficiently large, the following inequality
holds:

B <ﬁ+kﬂé(")— 6 >J (n-k)In(n-k) In,(n-k) In,;, (n - k)

(nln n---Ing n)* ln[;”n n In n Ingn In,,n

- k (m+1)In(n+1) Ing(n+1)In,3(n+1) I
k+1 n Inn Inyn In,{\ n '

(3.12)

Denote the left-hand side of inequality (3.12) as L(3.12) and the right-hand side as R.12). In
the following computation we will use the fact that > 2 and

pem) = o+ O(#> (3.13)

n2ln*n
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and we will omit all the terms which are of order o(1/n%). Applying Lemma 2.4 with r = k
and g = ¢, we can write

1 o
Laiy =—( —— + kpe(n) -
<k+1 (nln n---lngn)zlngﬂn

X 1—k<1+ ! +e 4t ! - g
2n 2nlnn 2ninn---Ingn 2nlnn---Ingnlngn

2 3
~K2pe(n) + 0(08+ 2). k k < 1 >>

(nlnn---Ingyn)>  16n3 nd

T k+1 k+1\2n 2nlnn 2nlnn---Inyn 2nlnn---Ingnlngn
k2 o(oc+2) k2 K3

" k+1#e(n) C8(k+1) ' (nln n---Ing,q n)? " 16m3(k +1)
k? 6 1
—kpe(n) + + +o<—>
167°  (ninn---In, n)21ng+1n n

1 N k <1 . 1 - 1 0] >
T k+1 k+1\2n 2nlnn 2ninn---Ilngn 2nlnn---Ingnlngn

k o(c+2) k2 2Kk3 + k?
- _//lg(n) - : 2 + 3
k+1 8(k+1) (nlnn---Ingn)* l1on3(k+1)

6 1
+ 2 p + 0 - )
(nInn---Ingn)’In,, n n
(3.14)

Using Lemma 2.4 with r = -1 and g = ¢, we get for R3.12)

1 1 1 o
R =—(1+ — _
(312) k+1< +2n+2nlnn+ +2nlnn~--lngn 2nlnn---Ingnlngqn

B (n)+o(0+2) 1 N 1 +o<l> 1
pe 8 (n nn--- lnngl n)2 1613 nd

-1 N k (1 N 1 - 1 ~ o] >
" k+1 k+1\2n 2nlnn 2nlnn---Inyn 2nlnn---Ingnlngn
k o(o+2)k 1 k <l>

+ +o0
8(k+1) (nlnn---Ingyn)® 16n3(k+1) nd

k+1'#e(n)-F

(3.15)
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It is easy to see that the inequality (3.12) reduces to

_o(o+2)K? 1 . 2k3 + k? . 6 to l)
8(k+1)  (nInn---Ingan)® 16m°(k+1)  (ylng.. ~1ngn)21n§ n n’
+1
(3.16)
- O'(O'+2)k. 1 . k +o<l)
8(k+1) (nlnn---Ingyn)®> 16n3(k+1) n3/
This inequality is equivalent to

_o(c+2)k 1 2+k(2k—31)+ 6 +o<i3><0.

8 (nlnn---Ing, n) 16n (nlnn-'-lngn)2ln§+1 n n

(3.17)

The last inequality holds for n sufficiently large because k > 1,0 >0, >2,and asn — oo,

0 , 3 (3.18)
(nlnn--- 11’1@71)211’1'Z+1 n n
tend to zero faster than
1
5 (3.19)
(nlnn---Ingy n)
does.
Thus, we have proved that inequality (1.5) holds.
Next, according to (1.6), we have to prove that
ve(n) — p(M)Vksa > ve(n+1), (3.20)
which is equivalent to the inequality:
—p(M)Vks1 > ve(n+1) —ve(n). (3.21)

Denote the left-hand side of (3.21) as L(321). As vk < c¢(n — k) = vo(n — k) and as by (2.3),
(3.1), and (2.7)

p < (e57) - (g +em) v ) EEE2D, 622)



10 Abstract and Applied Analysis

we have
S R
() Voot
) _<ki1)n<ﬁ +kpe(n) +e- %) A=K In(n—k) - Ing(n - k).

(3.23)

Further, we can easily see that

Inn Inyn

vg(n+1)_ve(n)=<%>n nlnn"‘ln€n<ki1\/(n:l—]).ln(n+1)..'1n€(1’l+l)_1>'

(3.24)

Thus, to prove (3.21), it suffices to show that for n sufficiently large, the following inequality
holds:

—(ﬁww(n)w' k(2k—l)>\/(n—k)'ln(n—k) ~Ing(n-k)

1613 n Inn Ingn
(3.25)

k (n+1) In(n+1) Ing(n+1)
> . - 1.
k+1 n Inn Ingn

Denote the left-hand side of inequality (3.25) as L35y and the right-hand side as R35). Using
Lemma 2.3 with r = k and g = ¢, we can write

k(2k - 1)
1613 >

1 1 1 5 K3 1
8 <1_k<%+2nlnn +.“+2nln Tl"'lﬂgﬂ) ~Kope(n) - 16n3 +O<1?> >

1 N k 1+ 1 ey 1
T k+1 k+1\2n 2nlnn 2nlnn---Inyn

+k—2 (n)+k—3—k (n) + K —s-k(Zk_1)+o<1>
A L T S S T 16n3

1
L(3v25) = —<m + kﬂg(?’l) +€-

1 N k 1+ 1 ey 1
T k+1 k+1\2n 2nlnn 2nlnn---Inyn

SR e +k(k—s(2k—1))+o<l>
k+ 1 T Ted ke + 1) Ton w)

(3.26)
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Using Lemma 2.3 with r = =1 and q = ¢, we get for R(3.5)

Roms = — (1+ L4 L o L —()+1+1_1
A 2n 2nlnn 2nln n---Ingn #ei+ 163 T O\

-1 k 1 1 1
-k+1+m<ﬂ+m+“'+m> (3:27)
k

ek (L)
k+1 PV T e e ) T\ )

It is easy to see that the inequality (3.25) reduces to

k3 k(k —e(2k -1)) 1 k 1
- S — ). 2
T6md(k+1) 16m +O<n3> ” Tend(k + 1) +O<n3> (3.28)
This inequality is equivalent to
k(2k-1)(1-¢) <1>
Tor tol.5)> 0. (3.29)

The last inequality holds for n sufficiently large because k > 1 and 1 — ¢ € (0,1). We have
proved that all the assumptions of Theorem 1.1 are fulfilled and hence there exists a solution
of (1.2) satisfying conditions (1.8), that is, in our case, conditions (3.2). O
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