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The problem of thermal diffusion and diffusion thermo effects on thermosolutal Marangoni
convection flow of an electrically conducting fluid over a permeable surface is investigated. Using
appropriate similarity transformations, the governing system of partial differential equation is
transformed to a set of nonlinear ordinary differential equations, then solved numerically using
the Runge-Kutta-Fehlberg method. The effects of thermal diffusion and diffusion thermo, magnetic
field parameter, thermosolutal surface tension ratio, and suction/injection parameter on the flow
field, heat transfer characteristic, and concentration are thoroughly examined. Numerical results
are obtained for temperature and concentration profiles as well as the local Nusselt and Sherwood
numbers are presented graphically and analyzed. It is found that these governing parameters
affect the variations of the temperature and concentration and also the local Nusselt and Sherwood
numbers.

1. Introduction

The study of Marangoni convection has received great consideration in recent years in
view of its application in industries. Marangoni convection is predictable to be very
useful in wide area especially in crystal growth melts and semiconductor processing. The
Marangoni boundary layer term was first initiated by Napolitano [1, 2] when studied the
existence of the steady dissipative layers which occur along the liquid-liquid or liquid-gas
interfaces. Marangoni convection induced by the surface tension gradient can be due to
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gradients of temperature (thermal convection) and/or concentration (solutal convection).
A lot of analyses in Marangoni convection have been discovered in various geometries and
conditions. Some of experimental works linked to Marangoni convection were discussed in
several papers by Arafune and Hirata [3], Arafune et al. [4], Galazka and Wilke [5], Neumann
et al. [6], Arendt and Eggers [7], and Xu et al. [8].

The related works to this present study were done by Al-Mudhaf and Chamkha [9]
who obtained the similarity solution for MHD thermosolutal Marangoni convection over a
flat surface in the presence of heat generation or absorption with fluid suction and injection.
Christopher and Wang [10] have analyzed the effects of Prandtl number on Marangoni
convection flow over a flat surface. Later, Pop et al. [11] studied numerically the problem
of thermosolutal Marangoni forced convection over a permeable surface and this study
continued by Hamid et al. [12] who obtained dual solutions of the problem. Chen [13]
investigated the flow and the heat transfer characteristics on the forced convection in a power
law liquid film under an applied Marangoni convection over a stretching sheet. Magyari and
Chamkha [14] found solution for steady MHD thermosolutal Marangoni convection and
present analytical solutions for velocity, temperature, and concentration field. Arifin et al.
[15] added new dimension to the Marangoni convection problem by considering the steady
thermosolutal marangoni mixed convection boundary layer flow under an external pressure
gradient. The problem is solved using the shooting method. Most lately, Hamid et al. [16]
studied the two-dimensional Marangoni convection flow past a flat plate in the presence of
thermal radiation, suction, and injection effects.

Several papers that deal with flows in the presence Dufour or diffusion thermo effect
and Soret or thermal diffusion effect are now presented. A brief literature on existence and
development of Dufuor and Soret effects can be found in the papers by Kafoussias and
Williams [17] and Puvi Arasu et al. [18]. Puvi Arasu et al. [18] investigated the impact
of thermophoresis particles deposition on two-dimensional flow over a vertical stretching
surface in the presence of chemical reaction and also Dufour and Soret effects taking place in
the flow. The temperature gradients and concentration gradients play vital role in producing
Dufour and Soret effects. The concentration gradient has generated the heat flux, namely,
Dufour effect while mass flux is created by temperature gradients and is known as Soret
effects. It is seem that the Charles Soret in 1879 is the first who found that a salt solution
contained in a tube with two ends did not remain uniform in composition at different
temperature. By this pioneering discovering, the term “Soret effect” officially introduced
regarded his contribution on study of this particular effect. Later, the fundamental study on
Soret effects remarkably grow over century (Osalusi et al. [19]).

The effects of thermal diffusion and diffusion thermo have been studied widely
by several researchers due to its importance contribution in theory and practical. Some
numerical studies on thermal diffusion and diffusion thermo effects include Afify [20] who
studied the effects of thermal diffusion and diffusion thermo with suction and injection
parameter on MHD free convection heat and mass transfer past a stretching sheet. Kafoussias
and Williams [17] considered the mixed forced convection boundary layer flow with the
effects of thermal diffusion and diffusion thermo in the presence of variable viscosity effect.
This similar work continued by Eldabe et al. [21] for non-Newtonian power law fluid
with the temperature dependent viscosity in the flow. Later, El-Aziz [22] considered the
MHD three-dimensional free convection boundary layer flows past a stretching sheet with
suction or injection and radiation in presence of Dufour and Soret effects. Next, Osalusi
et al. [19] numerically studied the effects of thermal diffusion and diffusion thermo on
combined heat and mass transfer of MHD convective and slip flow due to a rotating disk
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with the inclusion of viscous dissipation and Ohmic heating while Rashidi et al. [23] found
its analytical solution using the homotopy analysis method (HAM). Most recently, Hayat
et al. [24] obtained the series solutions for MHD two-dimensional axisymmetric flow of a
second grade fluid with the existence of thermal diffusion and diffusion thermo effects, Joule
heating and the chemical reaction effects.

The aim of this paper is to discuss the MHD thermosolutal Marangoni convection
boundary layer over a permeable flat surface considering the effects of the thermal diffusion
and diffusion thermo. The set of governing equations and boundary equation of the problem
that are transformed into a set of nonlinear ordinary differential equation with assisting of
similarity transformations are solved using the Runge-Kutta-Fehlberg method. The effects of
different physical parameters on the temperature and concentration profiles as well as the
local Nusselt and Sherwood numbers are presented. To verify the obtained results, we have
compared the present numerical results with previous work by Al-Mudhaf and Chamkha
[9]. The comparison results show a good agreement and we are confident that our present
numerical results are accurate.

2. Mathematical Formulation

We consider the laminar boundary layer flow of an electrically conducting fluid over a
permeable flat surface in the presence of Dufour and Soret effects. It is assumed that the
mass flux velocity is vw with vw < 0 for suction and vw > 0 for injection, respectively. It is also
assumed that a uniform magnetic field, B0 is imposed in the direction normal to the surface.
Then, the basic governing equation of the proposed problem (see Al-Mudhaf and Chamkha
[9] and Afify [20]):
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(2.1)

The surface tension σ is assumed to vary linearly with the temperature T and
concentration h as well as the wall temperature Tw and concentration hw are presumed to
be in quadratic functions of x. Hence, the boundary conditions of (2.1) is (see Al-Mudhaf
and Chamkha [9])

u = 0, v = vw, T = T∞ +Ax2, h = h∞ +A∗x2, μ
∂u

∂y
= σT

∂T

∂x
+ σh

∂h
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on y = 0,

(2.2)

u −→ 0, T −→ T∞, h −→ h∞ as y −→ ∞, (2.3)
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where u, v are the components of velocity, respectively, in the x and y directions, ν is the
kinematic viscosity, σ∗ is the fluid electrical conductivity, ρ is the fluid density, and α is
the thermal diffusivity. Besides, Dm, kT , cs, cp, and Tm are the diffusion coefficient, thermal-
diffusion ratio, concentration susceptibility, specific heat at constant pressure, and mean fluid
temperature, respectively (see Puvi Arasu et al. [18]). Moreover, μ is the dynamic viscosity, σT
and σh are the rates of change of surface tension with temperature and solutal concentration
while A and A∗ are the temperature and concentration gradient coefficients, respectively.

The surface tension is defined as follow:

σ = σ0
[
1 − γT (T − T∞) − γh(h − h∞)

]
, (2.4)

where

γT = −∂σ
∂T

, γh = −∂σ
∂h

. (2.5)

In order to find the similarity solutions of (2.1) subject to boundary conditions (2.2)-(2.3), we
introduced the similarity variables (see Al-Mudhaf and Chamkha [9])
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and ψ(x, y) is the stream function defined in usual way as u = ∂ψ/∂y and v = −∂ψ/∂x where
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are the two similarity transformation coefficients.
Substituting (2.6)-(2.7) into (2.1), we obtained the following nonlinear ordinary

differential equations:

f ′′′ + ff ′′ − f ′2 −M2f ′ = 0, (2.8)

1
Pr

θ′′ + fθ′ − 2f ′θ +DfH
′′ = 0, (2.9)

1
Sc
H ′′ + fH ′ − 2f ′H + Srθ′′ = 0, (2.10)

where a prime denotes a differentiation with respect to η,Df = DmkT (hw−h∞)/cscpν(Tw−T∞)
and Sr = DmkT (Tw−T∞)/Tmν(hw−h∞) are the Dufour and Soret numbers, respectively. Here,
M is the magnetic field parameter, Pr is the Prandtl number, and Sc is the Schmidt number.
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It is important to mention that f is the stream function similarity variable, θ and H are the
nondimensional temperature and concentration, respectively. The boundary conditions (2.2)-
(2.3) are reduced to

f(0) = f0, f ′′(0) = −2(1 + r), θ(0) = 1, H(0) = 1,

f ′(∞) = 0, θ(∞) = 0, H(∞) = 0,
(2.11)

where r = Δh(dσ/dh)|T/ΔT(dσ/dT)|h is the thermosolutal surface tension ratio.
The local Nusselt and Sherwood numbers are given by (see Al-Mudhaf and Chamkha

[9])

Nux =
q′′(x)x

λ(Tw − T∞) = −C1xθ
′(0),

Shx =
h′′(x)x

D(Tw − T∞) = −C1xH
′(0),

(2.12)

where D is the mass diffusivity, q′′ is the heat flux, and h′′ is the mass flux.

3. Results and Discussion

Numerical solutions of the ordinary differential equations (2.8)–(2.10) that subject to
boundary conditions (2.11) have been solved using the Runge-Kutta-Fehlberg fourth-
fifth order (RKF45) method using Maple 12 and the algorithm RKF45 in Maple has
been well tested for its accuracy and robustness (Aziz [25]). In this method, it is most
important to choose the appropriate finite value of the edge of boundary layer, η → ∞
(say η∞) that is between 4 to 10, which is in accordance with the standard practice in
the boundary layer analysis. The influences of the magnetic field parameter (M), the
suction/injection parameter (f0), the thermosolutal surface tension ratio (r), the combined
Dufour number Df and Soret number Sr on the velocity, temperature and concentration,
and the Nusselt and Sherwood numbers are presented in tables and some graphs. These
findings are summarized and presented in the Tables 1–4 and Figures 1–9. We have
compared the present results with the results attained by Al-Mudhaf and Chamkha [9]
when the heat generation/absorption and first-order chemical reaction effects are neglected.
It is seen that the results presented in Tables 1–3 are in very well agreement. Hence,
this leads the confidence of the present results. It should be mentioned thatf ′(0), −θ′(0)
and −H ′(0) are related to the surface velocity, Nusselt number, and Sherwood numbers,
respectively.

Figures 1, 2, and 3 display the velocity, temperature, and concentration profiles for
different values of magnetic field parameter M when the other parameters are fixed. An
application of a magnetic field within boundary layer has produced resistive-type force
which known as Lorentz force. This force acts to retard the fluid motion along surface and
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Table 1: Comparison values of f ′(0), −θ′(0) and −H ′(0) with different parameter M.

M
f ′(0) −θ′(0) −H ′(0)

Al-Mudhaf and
Chamkha [9] Present Al-Mudhaf and

Chamkha [9] Present Al-Mudhaf and
Chamkha [9] Present

0 1.587671 1.587401 1.442203 1.442069 1.220880 1.220731

1 1.315181 1.314596 1.206468 1.205891 1.005541 1.005808

2 0.903945 0.9032119 0.7596045 0.7625145 0.6106418 0.6188354

3 0.6448883 0.6440222 0.4422402 0.4625877 0.3473967 0.37638077

4 0.4933589 0.4924782 0.2728471 0.3114736 0.2127706 0.25873328

Table 2: Comparison values of f ′(0), −θ′(0) and −H ′(0) with different parameter f0.

f0
f ′(0) −θ′(0) −H ′(0)

Al-Mudhaf and
Chamkha [9] Present Al-Mudhaf and

Chamkha [9] Present Al-Mudhaf and
Chamkha [9] Present

−2 2.383451 2.382975 1.251341 1.250618 1.129218 1.128784

−1 2.000379 1.999999 1.336441 1.335853 1.173002 1.173006

0 1.587671 1.58740104 1.442203 1.442067 1.220880 1.220715

1 1.179708 1.17950902 1.634990 1.634360 1.328699 1.327979

2 0.8480268 0.8477075 2.020949 2.019468 1.593570 1.592596

Table 3: Comparison values of f ′(0), −θ′(0) and −H ′(0) with different parameter r.

r
f ′(0) −θ′(0) −H ′(0)

Al-Mudhaf and
Chamkha [9]

Present
(2011)

Al-Mudhaf and
Chamkha [9]

Present
(2011)

Al-Mudhaf and
Chamkha [9]

Present
(2011)

0 1.587582 1.587297 1.442247 1.442412 1.220880 1.222427

1 2.520988 2.519819 1.817826 1.816999 1.538960 1.538688

5 5.244303 5.241482 2.621562 2.620417 2.219093 2.218261

Table 4: The values of −θ′(0) and −H ′(0) with different parameters Df and Sr .

Df Sr −θ′(0) −H ′(0)

0.03 2.0 1.624748 −0.00587659

0.06 1.0 1.603973 0.6866464

0.15 0.4 1.541646 1.102160

0.3 0.2 1.437767 1.240664

0.6 0.1 1.230011 1.309917

2.0 0.03 0.260478 1.358394
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Figure 1: Velocity profiles for different values of M when Pr = 0.78, Sc = 0.6, Df = 0.03, Sr = 2,r = 0, and
f0 = 0.
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Figure 2: Temperature profiles for different values of M when Pr = 0.78, Sc = 0.6, Df = 0.03, Sr = 2, r = 0,
and f0 = 0.

simultaneously increases its temperature and concentration values. In addition, the effect of
the magnetic parameter of the viscous shearing force and the Lorentz force is given by

ν
u

δ2
v

≈ δ∗B2
0

ρ
u. (3.1)
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Figure 3: Concentration profiles for different values of M when Pr = 0.78, Sc = 0.6, Df = 0.03, Sr = 2,
r = 0, and f0 = 0.
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Figure 4: Temperature profiles for different values of f0 when Pr = 0.78, Sc = 0.6, Df = 0.03, Sr = 2, r = 0,
and M = 0.

Thus, (3.1) gives

ηV ≈ 1
M

. (3.2)

However, the effect of surface tension can be obtained from (2.2) by the relation

ν
u

δv
≈ (σT2Ax + σhA∗x). (3.3)
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Figure 5: Concentration profiles for different values of f0 when Pr = 0.78, Sc = 0.6, Df = 0.03, Sr = 2, r = 0,
and M = 0.
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Figure 6: Temperature profiles for different values of r when Pr = 0.78, Sc = 0.6, Df = 0.03, Sr = 2, M = 1,
and f0 = 0.

Then, (3.3) becomes

f ′(0) ≈ 2(1 + r)ηV ≈ 2(1 + r)
M

. (3.4)

Therefore, one can see that the velocity boundary layer thickness decreases with the
increase of M as shown in Figure 1. However, the temperature and concentration increase
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Figure 7: Concentration profiles for different values of r when Pr = 0.78, Sc = 0.6,Df = 0.03, Sr = 2,M = 1,
and f0 = 0.
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Figure 8: Temperature profiles for different values of Df and Sr when Pr = 0.78, Sc = 0.6, r = 1, M = 1,
and f0 = 0.

with the increasing of the magnetic field parameter M. The temperature and concentration
profiles are also affected by Pr, Sc, Df , and Sr . Figures 4 and 5 show the influences of the
suction and injection parameter f0 on the temperature and concentration profiles. The results
point out that increasing values in suction parameter (f0 > 0) at the wall tend to decrease
the temperature of the flow as shown in the Figure 4. Concurrently, the concentration profiles
decrease as well with the inclusion of the suction parameter. This phenomenon is caused by
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Figure 9: Concentration profiles for different values of Df and Sr when Pr = 0.78, Sc = 0.6, r = 1, M = 1,
and f0 = 0.

the fluid moves nearer to the surface and decreases the thermal and concentration boundary
layer thickness. Conversely, these observations are found to be opposite in the case of
injection (f0 < 0). It is seen that the imposition of the injection parameter will increase the
fluid temperature and concentration.

The effect of the inclusion of the thermosolutal surface tension ratio r on the temper-
ature and concentration profiles is illustrated in Figures 6 and 7, respectively. We observed
that the parameter r significantly decreases the fluid temperature and concentration. This
finding is obtained due to the increase of the Marangoni convection effect as r increases. From
physical point of view, by increasing the Marangoni convection effect, more induced flows are
produced. As consequences, the resulting flows will propagate within the boundary layers
impling the maximum velocity obtained at the wall.

Figures 8 and 9 show the combination effects of the Dufour and Soret numbers on
the fluid temperature and concentration. The Dufour Df and Soret Sr numbers represent
the thermal diffusion and diffusion thermal effects in this problem. Moreover, we have to
be discriminating in selection of Dufour and Soret numbers in order to guarantee that the
product of SrDf is kept constant as well as assuming the mean temperature Tm is constant. To
be practical, the Dufour and Soret values that are used in the present study are referred to the
paper reported by Kafoussias and Williams [17]. Figure 8 specifically shows the influences
of the Dufour and Soret number on the variations of the fluid temperature. For the case
of increasing Dufour number and decreasing Soret number, it is seen that the temperature
profiles show dissimilar increasing on its values. The Dufour term that describes the effect of
concentration gradients as underlined in (2.9) plays a vital role in assisting the flow and is
able to increase thermal energy in the boundary layer. This is the evident that as the parameter
Df increases and Sr decreases, the fluid temperature will increase.

In Figure 9, increasing Dufour number and simultaneously decreasing Soret number
have implied significant effects on the concentration profiles. The Soret term exemplifies the
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temperature gradient effects on the variation of concentration as noted in (2.10). It is observed
as the Dufour number increases and Soret number is decreased, the concentration values
are found to decrease. For a small Soret number Sr < 0.4, it is seen that the concentration
values decrease steadily and closely to each other with similar pattern. On the other hand,
these observations are found to be contrary in the case of Sr > 1 when the graph shows
large differences in concentration values compared to curves (3–5) with low values of Soret
number. The physical reason of this phenomena that occurs is due to a strong concentration
overshoot that happens nearly to the surface.

Furthermore, the results in the Figures 8 and 9 agree well with the data in Table 4. We
can see that combination effects of the thermal diffussion and diffusion thermo can reduce
the surface temperature gradient while increase the surface concentration gradient. Hence,
the local Nusselt number decreases and the local Sherwood number increases by increasing
the Dufour number and reducing the Soret number.

4. Conclusions

The problem of thermal diffusion and diffusion thermo effects on thermosolutal Marangoni
convection boundary layer flow over a flat surface considering the fluid suction and
injection in the presence of the magnetic field is studied. The governing partial differential
equations associated with the boundary conditions were transformed into nonlinear ordinary
differential equations before being solved using the Runge-Kutta-Fehlberg method. The
effects of thermal diffusion (Soret number Sr) and diffusion thermo (Dufour number Df),
magnetic field parameter M, thermosolutal surface tension ratio r and suction or injection
parameter f0 on the velocity, temperature and concentration field, and the physical quantities
interest in engineering problem such as surface velocity, the local Nusselt number and
Sherwood number were plotted, tabulated, and analyzed. It is found that the inclusion of the
magnetic field parameter on the flow increased the temperature, and concentration profiles
while it decreased the velocity field as well as Nusselt an Sherwood numbers. The analysis
also revealed that the same behavior was drawn as thermosolutal surface tension ratio r
was decreased. We also observed that increasing the suction parameter f0 has decreased
the fluid velocity, temperature and concentration profiles as it increased the Nusselt and
Sherwood numbers. In contrast, the opposite observation was attained for the imposition
of the injection parameter. The current analysis also signifies that the temperature profile and
Sherwood number increase with the increasing in Dufour number and decreasing in Soret
number. Opposite behavior is identified on Nusselt number and concentration profile. We
also noticed that the velocity field is insensitive by changing in Dufour and Soret numbers.

Acknowledgment

This work was supported by research grants from the Ministry of Higher Education, Malaysia
(project code: FRGS/1/2011/SG/UNIMAP/03/7).

References

[1] L. G. Napolitano, “Microgravity fluid dynamics,” in Proceedings of the 2nd Levitch Conference,
Washington, DC, USA, 1978.



Journal of Applied Mathematics 13

[2] L. G. Napolitano, “Marangoni boundary layers,” in Proceedings of the 3rd European Symposium on
Materials Sciences in Space, Grenoble, France, 1979.

[3] K. Arafune and A. Hirata, “Thermal and solutal marangoni convection in In-Ga-Sb system,” Journal
of Crystal Growth, vol. 197, no. 4, pp. 811–817, 1999.

[4] K. Arafune, K. Yamamoto, and A. Hirata, “Interactive thermal and solutal Marangoni convection
during compound semiconductor growth in a rectangular open boat,” International Journal of Heat and
Mass Transfer, vol. 44, no. 13, pp. 2404–2411, 2001.

[5] Z. Galazka and H. Wilke, “Influence of Marangoni convection on the flow pattern in the melt during
growth of Y3Al5O12 single crystals by the Czochralski method,” Journal of Crystal Growth, vol. 216, no.
1, pp. 389–398, 2000.

[6] H. Neumann, Y. Plevachuk, and F. Allenstein, “Investigation of Marangoni convection in monotectic
melts by resistance measurements,” Materials Science and Engineering A, vol. 361, no. 1-2, pp. 155–164,
2003.

[7] B. Arendt and R. Eggers, “Interaction of Marangoni convection with mass transfer effects at droplets,”
International Journal of Heat and Mass Transfer, vol. 50, no. 13-14, pp. 2805–2815, 2007.

[8] Y. L. Xu, Z. B. Dong, Y. H. Wei, and C. L. Yang, “Marangoni convection and weld shape variation in
A-TIG welding process,” Theoretical and Applied Fracture Mechanics, vol. 48, no. 2, pp. 178–186, 2007.

[9] A. Al-Mudhaf and A. J. Chamkha, “Similarity solutions for MHD thermosolutal Marangoni
convection over a flat surface in the presence of heat generation or absorption effects,” Heat and Mass
Transfer, vol. 42, no. 2, pp. 112–121, 2005.

[10] D. M. Christopher and B. Wang, “Prandtl number effects for Marangoni convection over a flat
surface,” International Journal of Thermal Sciences, vol. 40, no. 6, pp. 564–570, 2001.
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