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Control of fluid flow is an important, underutilized process possessing potential benefits ranging
from avoidance of separation and stall on aircraft wings to reduction of friction in oil and gas
pipelines tomitigation of noise fromwind turbines. But theNavier-Stokes (N.-S.) equations, whose
solutions describe such flows, consist of a system of time-dependent, multidimensional, nonlinear
partial differential equations (PDEs)which cannot be solved in real time using current computing
hardware. The poorman’s Navier-Stokes (PMNS) equations comprise a discrete dynamical system
that is algebraic—hence, easily (and rapidly) solved—and yet which retains many (possibly all)
of the temporal behaviors of the PDE N.-S. system at specific spatial locations. Herein, we outline
derivation of these equations and discuss their basic properties. We consider application of these
equations to the control problem by adding a control force. We examine the range of behaviors that
can be achieved by changing this control force and, in particular, consider controllability of this
(nonlinear) system via numerical experiments. Moreover, we observe that the derivation leading
to the PMNS equations is very general andmay be applied to a wide variety of problems governed
by PDEs and (possibly) time-delay ordinary differential equations such as, for example, models of
machining processes.

1. Introduction

Given the ever-increasing capabilities of computers and electronic technology, the ability to
control a fluid with a range of actuators is already being investigated [1–5] both in laboratory
experiments and in numerical simulations. State-of-the-art industrial applications do not
exhibit the full potential of control that researchers may envision. Fortunately, it is likely only
a matter of time before phenomena such as separation on airfoils, effects of friction factors,



2 Journal of Applied Mathematics

and mitigation of turbulence effects are able to be attenuated or amplified to achieve desired
outcomes. For example, ability to maintain laminar flow over an airfoil is clearly important,
yet not only maintaining, but regaining laminar behavior from a separated flow via real-time
control is most desirable. In the petroleum industry, the speed at which oil may be pumped
is always subject to frictional losses in the pipelines and pumps. Reducing friction factors
through real-time control adds to the general efficiency of such systems. On the other end of
the power generation spectrum, control of blade interaction (e.g., pitch and rotation rate)with
ambient wind can help reduce chatter and other efficiency losses as well as noise generation
in wind farms.

Control schemes may be open loop or closed loop, having different methods of actu-
ation or correction and different algorithms to provide instruction and commands—largely
depending on whether open or closed. At present, some methods include microelectrome-
chanical systems (MEMSs) sensors and actuators (as in [2]), local blowing and suction
controllers (see, e.g., [4] and [6]), microscale flaps (e.g., [5]), controlled waving plates (as
in Techet et al. [7]), and many others. A review of feedback-based methods is provided in
Moin and Bewley [8]. It is not our goal to present a comprehensive fluid flow control system
herein, or to restrict the study to a particular type of sensor or actuator. Rather, we focus on
control of turbulence generically and consider application of forces to a low-order model of
the N.-S. equations, the poor man’s Navier-Stokes (PMNS) equations, to accomplish this.

The notion of turbulence control has been researched for roughly the past 20 years,
with a substantial mathematical formalism contributed by Abergel and Temam [9] in 1990.
Though numerical simulations of turbulence were becoming more feasible at that time,
the computing capability of even current modern supercomputers does not allow direct
numerical simulations (DNSs) at the smallest of length scales for practical flow geometries
and Reynolds numbers. Furthermore, it is well known that analytical solutions of the Navier-
Stokes equations are still very much an open problem. Even with the increased processor
speed and multicore parallel computing available to researchers today, wall functions and
nonphysical subgrid-scale (SGS) quantities are still used to obtain solutions. In order to
control turbulent behaviors in real time, speed and simplicity are essential. Furthermore,
the amount of (physical) correction and actuation needed in order to produce the desired
outcome should be easily determined and provided.

We propose herein the direct modeling of flow velocities through a discrete dynamical
system (DDS)with the addition of an adjustable body—or control—force to achieve a desired
system response. The behavior of this system has been shown to exhibit many—possibly all—
of the temporal behaviors found in the full (PDE) N.-S. system at specific spatial locations.
Through a straightforward process, the full N.-S. system is reduced to a coupled discrete
dynamical system of equations resembling the much studied logistic map ([10]). It has been
shown in 2D (by McDonough and Huang [11]) that the coupled system undergoes the
usual bifurcation sequence exhibited by the one-dimensional map, and furthermore that the
coupled 2D system contains additional regimes which are not possessed by one-dimensional
maps and at the same time retains behaviors found in N.-S. type differential systems. In 3D,
the DDS appears to be equally suitable for use as a velocity model (see [12]). The system has
been shown to be a practical and realistic model of SGS velocities for large-eddy simulation
as well as for the complete velocity. The system of PMNS equations can be fit to local
velocimetry measurements of flow over a backward-facing step (see [13]); thus, the system
response is sufficiently sophisticated to reproduce laboratory observations. Computationally,
the equations are algebraic, and thus very efficiently evaluated, lending themselves naturally
for application to control of small-scale turbulence.
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Using a DDS to model naturally occurring phenomena is not a new idea—ecologist
Robert May constructed the logistic map to model population dynamics [10]. Furthermore,
the work of Lorenz [14] led to a “low-order” model consisting of ordinary differential
equations (ODEs) via a procedure similar to what is employed herein. The seminal work
of Ruelle and Takens [15] viewed the N.-S. equations as a dynamical system capable of
generating chaotic, yet deterministic, solutions associated with a “strange attractor.” It has
been generally accepted for at least the past decade that the description of turbulence as
a deterministically chaotic system is justified (see, e.g., Frisch [16]). Thus, it is from this
treatment of the N.-S. equations as a dynamical system that we consider the problem of
turbulence control via a closely related DDS.

To implement a control force in the system of PMNS equations, we add a body force to
the right-hand side of the N.-S. equations. Since the PMNS equations model local velocities
directly, a positive constant control force generally increases the value of the velocity in the
respective direction. From studies such as [6], it is apparent that wall-bounded turbulence can
be controlled via suction and blowing in the direction normal to the wall. The study herein
proposes a numerically analogous approach by varying the value of this additional control
force, thus adding to, or taking from, the velocity component magnitude generated by the
PMNS equations corresponding to wall-normal directions.

Turbulent flows are known to have relatively high dimension for even low Reynolds
number due to the spatial and temporal scales over which they occur (see [8]). Furthermore,
without considering variable control forces, the PMNS dynamical system contains nine
bifurcation parameters. The codimension of the system is therefore sufficiently high that
analytical approaches to studying its behavior quickly become intractable. Though it has
already been shown that the PMNS system is capable of chaotic behavior (see [11, 12]),
it is worthwhile to mention that chaotic attractors are known to exist within systems with
codimension as low as one (e.g., Hopf bifurcations of the N.-S. equations). The system is
therefore very complex, and though previous studies have shed light on some of its features,
this investigation continues an ongoing effort to explore the gamut of potentially useful
characteristics it possesses.

In the following, sections we will outline the derivation of the PMNS equations
beginning with the full PDE system of equations. The behavior of the DDS in general is the
subject of continuous research, a precis of which will be included herein. We then present
regime maps illustrating the types of behaviors that the PMNS equations are capable of
reproducing and the corresponding bifurcation parameter and body force values for each
regime. The aforementioned system complexity due to high codimension motivates the
creation of the regime maps. In doing so, the system behavior is understood throughout the
domain of bifurcation parameter space. From these regime maps, we deduce appropriate
control forces and then implement these while iterating the PMNS equations to demonstrate
controllability of the system toward a desired behavior. Time series of these results are shown.

2. Analysis

Here, we describe the treatment applied to the N.-S. equations by which we derive the PMNS
equations. After the derivation, we present a brief discussion of the features that are common
to PMNS and full N.-S. equations, specifically the symmetry between equations and highly
coupled nature of the full PDE system. Then we discuss the extension of these equations to a
control context.
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2.1. Derivation of PMNS Equations

We begin with the incompressible N.-S. equations,

Ut +U · ∇U = −∇P + νΔU, ∀(x, t) ∈ Ω × (
t0, tf

]
, Ω ⊆ R

3, (2.1)

and the divergence-free constraint,

∇ ·U = 0, (2.2)

so that there are as many equations as necessary to obtain the velocity components and
pressure P . In (2.1), the velocity vector in the 3D domainΩ is given as U = (u, v,w)T ; ν is the
kinematic viscosity; the Laplace and gradient operators are given as Δ and ∇, respectively,
within the appropriate coordinate system. The t subscript denotes partial differentiation with
respect to time; t0 and tf are initial and final times, respectively.

As is frequently used in theoretical analysis of N.-S. equations, we employ a Leray
projection to a divergence-free subspace of solutions, thus eliminating the pressure gradient
in (2.1). We refer the reader to Constantin and Foias [17] or Foias et al. [18] for details. After
the typical scaling of dependent and independent variables and Leray projection, the 3DN.-S.
equations take the dimensionless form

ut + uux + vuy +wuz =
1
Re

Δu, (2.3)

vt + uvx + vvy +wvz =
1
Re

Δv, (2.4)

wt + uwx + vwy +wwz =
1
Re

Δw, (2.5)

which is a 3D system of Burgers’ equations. The x, y, and z subscripts denote partial
differentiation with respect to the spatial variables, and Re is the Reynolds number: Re =
UL/ν, withU and L denoting the appropriate velocity and length scales, respectively.

Consistent with themathematical understanding of theN.-S. equations (see, e.g., [17]),
we begin with representing velocity components in Fourier space:

u(x, t) =
∞∑

k=−∞
ak(t)ϕk(x), (2.6)

v(x, t) =
∞∑

k=−∞
bk(t)ϕk(x), (2.7)

w(x, t) =
∞∑

k=−∞
ck(t)ϕk(x), (2.8)

with the 3D wavevector k ≡ (k1, k2, k3)
T . We assume that the tensor product basis set {ϕk} is

complete in L2(Ω) and orthonormal. Furthermore, we note that construction of such a basis
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could be difficult for some computational purposes—for example, in constructing proper
orthogonal decomposition (POD) algorithms. It is, however, not necessary to do so for the
study herein (which distinguishes our approach from POD). For brevity, the following details
of the derivation will be provided for only the x-momentum equation, with treatment of the
y- and z-momentum equations being identical.

The Galerkin procedure is applied to (2.3), (2.4), (2.5) resulting in an infinite system of
ODEs for the Fourier coefficients contained within. Substitution of (2.6), (2.7), and (2.8) into
(2.3) leads to

∑

l

ȧlϕl + i
∑

l,m

(l1 +m1)alamϕlϕm + i
∑

l,m

(l2 +m2)albmϕlϕm

+ i
∑

l,m

(l3 +m3)alcmϕlϕm = − 1
Re

[
∑

l

(
l21 + l22 + l23

)
alϕl

]

.

(2.9)

Considering the equations without the imaginary factor (which can be removed via
methods analogous to those of elementary ODE analysis), inner products of the above
equation and each basis function are formed. Employing orthonormality then reduces the
x-momentum equation to

ȧk +
∑

l,m

A
(1)
lm,kalam +

∑

l,m

A
(2)
lm,kalbm +

∑

l,m

A
(3)
lm,kalcm = −η

(a)

Re
|k|2ak, (2.10)

where k = −∞, . . . ,∞. The factor η(a) is a normalization constant arising from the fact that
derivatives of basis functions may not possess the same normalization as the functions
themselves. Similarly, there are η(b) and η(c) terms in the omitted y- and z-equations,
respectively. The A(i)

lm,k factors, with i = 1, 2, 3, are the Galerkin triple products, for example,

A
(1)
lm,k = (l1 +m1)

∫
ϕlϕmϕkdx, (2.11)

with analogous terms B(i)
lm,k and C

(i)
lm,k used in the y- and z-equations, respectively.

Removing all but a single arbitrary wavevector in (2.10) results in a single equation,
with analogous results for the y- and z-momentum equations also shown:

ȧ = −A(1)a2 −A(2)ab −A(3)ac − η(a)

Re
|k|2a, (2.12)

ḃ = −B(1)ba − B(2)b2 − B(3)bc − η(b)

Re
|k|2b, (2.13)

ċ = −C(1)ca − C(2)cb − C(3)c2 − η(c)

Re
|k|2c, (2.14)

with wavevector subscript notation suppressed, and dot (·) notation indicating ordinary
differentiation with respect to time. The above equations are a system of three nonlinear



6 Journal of Applied Mathematics

ODEs. We discretize these using an explicit single-step forward Euler integration method
in time and denote the time-step parameter as τ . This leads to

an+1 = an − τ

[

A(1)(an)2 +A(2)anbn +A(3)ancn +
η(a)

Re
|k|2an

]

, (2.15)

bn+1 = bn − τ

[

B(1)bnan + B(2)(bn)2 + B(3)bncn +
η(b)

Re
|k|2bn

]

, (2.16)

cn+1 = cn − τ

[

C(1)cnan + C(2)cnbn + C(3)(cn)2 +
η(c)

Re
|k|2cn

]

. (2.17)

Again for brevity, we omit analysis of the y- and z-direction equations and rearrange the
x-momentum equation as

an+1 = τA(1)an

(
1 − (

η(a)/Re
)|k|2τ

τA(1)
− an

)

− τA(2)anbn − τA(3)ancn. (2.18)

Recalling the logistic map

an+1 = βan(1 − an), (2.19)

we note that to recover this form in the above equation requires

1 − (
η(a)/Re

)|k|2τ
τA(1)

= 1, (2.20)

which implies

1 − η(a)

Re
|k|2τ = τA(1). (2.21)

Having recovered the form of the logistic map via the requirement in (2.20), it is observed that
as Re → ∞, the left-hand side of (2.21) approaches unity from below. As this term approaches
one, the first term on the right-hand side of (2.18) becomes the logistic map, as shown in the
following expressions.

Thus, the advanced time step equations can be expressed as

an+1 =

(

1 − η(a)

Re
|k|2τ

)

an(1 − an) − τA(2)anbn − τA(3)ancn, (2.22)

bn+1 =

(

1 − η(b)

Re
|k|2τ

)

bn(1 − bn) − τB(1)bnan − τB(3)bncn, (2.23)

cn+1 =

(

1 − η(c)

Re
|k|2τ

)

cn(1 − cn) − τC(1)cnan − τC(2)cnbn. (2.24)
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Now define the following bifurcation parameters:

β1 = 1 − η(a)

Re
|k|2τ, (2.25)

β2 = 1 − η(b)

Re
|k|2τ, (2.26)

β3 = 1 − η(c)

Re
|k|2τ, (2.27)

γ12 = τA(2) γ13 = τA(3), (2.28)

γ21 = τB(1) γ23 = τB(3), (2.29)

γ31 = τC(1) γ32 = τC(2). (2.30)

Then the equations of motion collapse to the algebraic system

a(n+1) = β1a
(n)

(
1 − a(n)

)
− γ12a

(n)b(n) − γ13a
(n)c(n), (2.31)

b(n+1) = β2b
(n)

(
1 − b(n)

)
− γ21b

(n)a(n) − γ23b
(n)c(n), (2.32)

c(n+1) = β3c
(n)

(
1 − c(n)

)
− γ31c

(n)a(n) − γ32c
(n)b(n). (2.33)

Here, we employ parentheses with the time-level indices to emphasize that these equations
comprise an iterated map. Following [11], and in deference to Frisch [16], we term (2.31),
(2.32), and (2.33) the “poor man’s Navier-Stokes (PMNS) equations.”

For the study performed herein, we consider the isotropic case, which means that the
γij values are all equal to one another, and the βi values are also equal to one another. Note that
if γij = 0, for all i, j, then we recover the logistic map (2.19). Also notice that as Re approaches
infinity, the value of βi approaches unity from below. In the DDS of PMNS equations, we
limit the starting values between zero and one. Noting that the function f(a) ≡ a(1 − a) has
a maximum range of 1/4 for a ∈ [0, 1], we rescale the βi values by a factor of 4 (as done by
May [10]) to obtain the typical scaling for DDSs. Thus, as in the logistic map, the range of
βi values is between zero and four. It is well known that as the bifurcation parameter of the
logistic map increases, the system behavior becomes increasingly chaotic. This is in accord
with our formulation of the bifurcation parameter β, which is a function of the Reynolds
number. As Re increases, so does the value of β, and the system behaves correspondingly
chaotically.

Note the similar structure of all three components of (2.31), (2.32), and (2.33). This
feature is sharedwith the full N.-S. system of PDEs. Moreover, each equation is nonlinear, and
this property is not shared with other often-studied DDSs shown to exhibit chaotic behaviors,
for example, discretization of the Lorenz equations (see [14]) or the related 2D DDS due to
Hénon [19]. An in-depth investigation of the coupled nature of the PMNS equations is not
performed herein, yet may be found in [11, 12]. At present, it is simply important to note that
“symmetrical” structure and nonlinearity are desirable qualities preserved in the derivation
of the PMNS system from the N.-S. equations.
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2.2. Control of PMNS Equations

In order to carry out the intended computational experiments, we must begin with valid
ranges for the bifurcation parameters βi and γij . Consideration of isotropy, mentioned above,
greatly reduces the space of bifurcation parameter values to consider. Instead of a nine-
dimensional space of parameters, we set all βi, i = 1, 2, 3, values equal to one another. The
bifurcation parameters γij , i, j = 1, 2, 3 and i /= j, are also set equal. From the studies contained
in [11, 12], we know which values of bifurcation parameters produce behavior that is of
interest in the context of this study of turbulence control and collect data beginning in this
subset of bifurcation parameter space.

The following section contains results collected via numerical experiments allowing
bifurcation parameters to vary while simultaneously applying a “control force.” The control
force is simply a constant added to the right-hand side of the PMNS equations. This is
analogous to adding a force at specified wavevectors as is commonly done in DNS and
may be viewed as suction or blowing, akin to the study performed by Moin and Bewley
[6]. With aCF, bCF, and cCF, the control—or body—forces for each equation, and including the
simplification of isotropy, we will solve the following DDS:

a(n+1) = βa(n)
(
1 − a(n)

)
− γa(n)b(n) − γa(n)c(n) + aCF, (2.34)

b(n+1) = βb(n)
(
1 − b(n)

)
− γb(n)a(n) − γb(n)c(n) + bCF, (2.35)

c(n+1) = βc(n)
(
1 − c(n)

)
− γc(n)a(n) − γc(n)b(n) + cCF. (2.36)

3. Results and Discussion

Here, we present results from iteration of the DDS of (2.34), (2.35), and (2.36) for a range
of bifurcation parameter values. We will focus on the isotropic case as already noted above.
The bifurcation parameters will vary as β ∈ [0, 4], with assigned values of γ (which can
typically range from −0.8 to 0.8, with the range depending on values of β). With varying β
(related to Re) and fixed γ , we will allow the control force aCF to vary and observe the range
of behavior types which the system of PMNS equations will produce. Following the analysis
techniques in [11, 12], we first describe the types of discernible behavior the system exhibits.
Our method of categorizing behaviors—or regime types—is via processing and analysis of
the temporal power spectra. Observing the power spectra of the time series output from the
DDS and classifying the behavior types into regimes will allow a comparative study of the
system behavior, as well as provide insight into the transitions between the regimes as the
bifurcation parameter and control force are varied. Having discriminated the regime types,
we further explore the ability to control the time series of the DDS by “turning on” the control
force to obtain a desired system behavior. Thus, given a specific behavior type corresponding
to a pair of bifurcation parameters, we attempt to control the system by means of the control
force aCF.

Themajority of the data presented in this workwas calculated on a 376-node Dell high-
performance computing cluster at the University of Kentucky Computing Center. Regime
map calculations were performed in parallel using OpenMPwith three cores from a 2.66GHz
Intel Xeon X5650 six-core processor. Less intensive calculations (i.e., calculating a single time
series) were performed on a desktop computer with a 3.60GHz Intel Pentium 4 and are
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computed nearly instantaneously. Computations were performed using double precision (64-
bit) Fortran. In regime map cases, for each point corresponding to a pair of β and aCF values,
the DDS was iterated 1 × 104 times. A radix-2 fast-Fourier transform was applied to the last
212 (or 4096) iterations to produce power spectra for regime identification. In cases where a
single time series was computed, the system was iterated 2 × 104 times with the control force
activated at iteration number 104. Though the computing resources used to conduct these
experiments are somewhat powerful, it is important to observe that the PMNS equations
may be iterated O(105) times nearly instantly using a modern laptop computer. Advances
in mobile computing hardware and chip technology will soon render the computation of
numerous iterations of an algebraic map (such as the PMNS equations) a trivial task for even
the smallest and most ubiquitous of devices.

3.1. Regime Maps

As in the studies [11, 12], we present regime maps containing the behavior types—
or regimes—which the system of PMNS equations is capable of producing. In the
aforementioned investigations, various regime types were distinguished from one another
in an automatic and objective fashion. Thus, given a pair of β and γ bifurcation parameters
and a value of the control force aCF, the system response can be characterized. Furthermore,
from those studies, the range of values for which to allow the control force to vary, given
a pair of bifurcation parameters, is known via numerical experimentation. The behaviors
exhibited by the 3D PMNS equations include all of those behaviors produced by the 1D
family of logistic maps and the types of N.-S. regimes found in laboratory experiments.
Regime types are distinguished from one another via the power spectral density (PSD), and
thus their classification requires human definition of power and frequency criteria for which
one regime is distinguished from another. Some discussion of this procedure is appropriate
here; however, more detail is included in the two aforementioned studies.

Our goal is to distinguish the various behavior types which the DDS will produce,
and do so automatically and objectively. Though some insight may be gained by calculating
the fractal dimension, Lyapunov exponents, or other statistical quantities (or by constructing
bifurcation diagrams), these will not allow automatic regime classification of the chaotic
behaviors of which the DDS is capable. (Some comparison of these methods and their
effectiveness is given in [12], and we refer the reader to this citation for more detail, though
it suffices to say that the method we present is the most effective for our intents and
purposes.) Thus, in order to understand the system behavior as bifurcation parameters—
including control forces—are varied, we perform computations across the full range of values
with O(1010) realizations of the DDS contained within some regime maps. Furthermore, we
also compute regime maps over restricted subdomains of bifurcation parameter and control
force such that we can clearly study the transitions and localized—in bifurcation parameter
space—behaviors. With so many instances of the equations, our means of classifying regime
types must be efficient, automatic, and objective.

Identification of the regime type needs to be only qualitative. Thus, the PSD appears
to contain sufficient information to permit distinguishing one regime from an inherently
different one. The following is a list of the regime types which we have identified in the
time series produced by the DDS via this technique: (i) steady, (ii) periodic, (iii) periodic
with different fundamental frequency, (iv) subharmonic, (v) phase locked, (vi) quasiperiodic,
(vii) noisy subharmonic, (viii) noisy phase locked, (ix) noisy quasiperiodic with fundamental
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1.44

0.94

0.44

−0.06

−0.56
0 1 2 3 4

β

a
C
F

(0) Steady
(1) Periodic

(3) Subharmonic
(4) Phase lock
(5) Quasiperiodic
(6) Noisy subharmonic
(7) Noisy phase lock

(9) Noisy quasiperiodic w/o fundamental
(10) Broadband w/fundamental
(11) Broadband w/different fundamental
(12) Broadband w/o fundamental
(13) Divergent

(a) (b)

(8) Noisy quasiperiodic w/fundamental

(2) Periodic w/different fundamental

Figure 1: (a) 2501 × 1251 regime map for γ = −0.05 with Δβ = 0.0016 = ΔaCF, (b) legend of regime types.

frequency, (x) noisy quasiperiodic without fundamental frequency, (xi) broadband with
fundamental frequency, (xii) broadband with different fundamental frequency, (xiii)
broadband without fundamental frequency, and (xiv) divergent, as displayed in Figure 1.

Some discussion of the nomenclature and criteria for categorizing the regimes is due.
Several of the regimes are referred to as “noisy” along with another description which
identifies a distinguishing or primary characteristic of the behavior. This is to imply some
broadband features of the PSD along with a salient distinguishing characteristic. Differing
from laboratory experiments, the numerical DDS evaluation is of course done entirely within
the computer. Thus, there is no “noise” in the sense of the type of signal fluctuation coming
from instrumentation or sensors as would be a concern in laboratory experiments. The
broadband noise which is observed in the PSDs we consider herein is an actual feature of the
DDS. It has been shown in [11, 12] that this noisy behavior exhibits at least a mild sensitivity
to initial conditions (SIC) which is known as the “hallmark of chaos” (see, e.g., [20]), thus
implying existence of a strange attractor in dissipative systems as considered herein. For
further information on the nature of the PMNS equations themselves, the regime types, and
the process by which these regimes are distinguished, we defer to the studies in [11, 12].

Figure 1(a) shows the regime map corresponding to a fixed value of γ = −0.05 for β
ranging from zero to four with the forcing term aCF between −0.56 and 1.44. Other values of
γ will also be used, but the results presented herein focus on bifurcation parameter γ near
zero. This is not done for simplification; rather it is a choice which permits a more complete
investigation of the behaviors achievable via control (and is typical in LES runs where the βi
and γij are computed rather than assigned). In the studies of [11, 12], no control force terms
were used, and the regime maps were computed allowing both β and γ to vary. The types of
behavior which the PMNS equations exhibit over the range of β values with γ fixed near zero
include nearly all possible regimes, so this choice of γ results in a thorough investigation.

A key of the colors corresponding to each behavior type is presented in Figure 1(b).
There are several features of the regime map worth indicating specifically. Attention should
be given to the bifurcation sequence which occurs as the β value and the aCF value are
increased. For most of the map (β < 3.3), the sequence corresponds to that of the usual 1D
logistic map, (2.19):

steady −→ periodic −→ subharmonic −→ chaotic. (3.1)
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For β values larger than three, the system begins to show more erratic behavior with a less
clearly defined bifurcation sequence. This region of the map for values of β > 3.3 will be
of special interest later as we consider regime maps corresponding to different values of γ .
Notice that the regions of the map corresponding to steady and periodic, even including the
regions of subharmonic and quasiperiodic, are clearly demarcated. The boundaries between
the more noisy and chaotic regime types are less clearly defined and thus complicate the
matter of choosing a control parameter value.

After the system bifurcates from subharmonic behavior, as the value of control force
and bifurcation parameter are increased, there are several locations where the boundaries
between the regimes are not well defined. This result is shared with the 2D and 3D studies
of the PMNS equations in [11, 12] and is not unique to the implementation of a control
force. The unclear boundary between regimes is what will be referred to as a “fractal region”
and is an interesting and important result which is addressed in the two aforementioned
investigations. This unclear boundary persists regardless of how finely we are able to resolve
bifurcation parameter space, that is, very small steps in the β and aCF directions. We will
provide a high-resolution “zoom-in” of fractal and other interesting regions below.

The same type of behavior is observed in Figures 2(a), 2(b), and 2(c), where the same
values of β and aCF are allowed to vary with γ fixed at γ = 0.0, γ = 0.05, and γ = 0.1,
respectively. We present these regime maps to show the numerous possibilities of controlling
the PMNS equations—within a small range of control force values—given a particular pair
of bifurcation parameters. To better illustrate this, it is clear from Figure 1, corresponding to
γ = −0.05, that for β > 3.3 there are at least eight unique regime types available within a
small range of β and aCF values. The sequence of bifurcations, as β and/or aCF is increased, is
somewhat unstructured. This region for β > 3.3 becomes much more ordered when γ is held
fixed at zero, as shown in Figure 2(a). In this case—as shown in the studies of [11, 12]—the
aforementioned bifurcation sequence corresponding to the logistic map (2.19) is sustained
across the entire range of β values.

The ordered sequence of bifurcations presented in Figure 2(a) shows that there are
well-defined regions for which the values of control force and bifurcation parameter can be
determined and thus used in a control scheme. Given a pair of bifurcation parameters, the
control force required to achieve a particular behavior type is immediately known from the
regime maps presented herein. As the value of γ is increased, as in Figures 2(b) and 2(c), a
“window” of periodic behavior appears near β = 3.0, and for β = 3.5, there is an interesting
bifurcation sequence as β is increased:

steady −→ quasiperiodic −→ subharmonic −→ phaselock −→ chaos. (3.2)

Figure 2(c), however, shows that the aforementioned region of subharmonic behavior is
consumed by the adjacent quasiperiodicity and even some “islands” of phase-lock behavior.
The change from γ = 0.05 to γ = 0.1 shown in Figures 2(b) and 2(c) illustrates the wide variety
of achievable behaviors which will be available via changing the control force.

To better exhibit the range of control possibilities within a small range of bifurcation
parameter and control force, a localized regime map is presented in Figure 3. It should
be noted that this regime map is not simply a visual magnification of the corresponding
subregion in Figure 1 for which β > 3.3. Rather, it is produced from a higher-resolution
calculation consisting of 11212 points with Δβ = 0.000625 = ΔaCF, that is, the bifurcation
parameter grid is much finer. Herein, many fractal boundaries exist between the regimes; yet
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Figure 2: 2501 × 1251 regime maps (a), (b), and (c) for which γ = 0.00, γ = 0.05, and γ = 0.10, respectively,
with Δβ = 0.0016 = ΔaCF.

there are still very clear regions of behavior types, and the SIC characteristic of the PMNS
equations does not present a problem with respect to determining a suitable control force.
Furthermore, there exist ample regions of noisy behavior which may be useful for triggering
turbulent activity when desired (e.g., increased thermal advection, avoidance of boundary-
layer separation, etc.).

There is a tendency for regime types to orient themselves into regions aligned along the
direction of varying control force (vertically in the regime maps). When attempting to vary
the control force to achieve a different regime type, this presents a problem. In these regions,
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Figure 3: 1121 × 1121 regime map for γ = −0.05 with Δβ = 0.000625 = ΔaCF.

shown clearly in Figure 3, adjusting the control force aCF will lead to a bifurcation in behavior
due to the “shape” of the regime in bifurcation parameter space. In addition to this problem,
a change of control force will often times lead from one chaotic regime to another, or, worse
yet, to a nonphysical result such as divergence. Note that this pattern of regime types oriented
along the direction of the control force occurs for ranges of β corresponding to chaotic
behaviors. That said, the degree to which the regime types are structured in this manner is not
consistent for all combinations of bifurcation parameters. The case of Figure 3 considers γ =
−0.05. The tendency for regimes to be structured in this manner depends largely on the value
of γ and needs to be studied in further detail. It may in fact be the case that certain values
of γ exhibit different bifurcation sequences, and thus control is limited to certain regions
of bifurcation parameter space in which more desirable regime combinations and bifurcation
sequences may be found.

Despite this obstacle, there are still regions where the control force may be varied to
achieve a particular regime with a priori knowledge of the appropriate control force for a
given set of bifurcation parameters. This is shown in the preceding discussion. From (2.25),
(2.26), (2.27), (2.28), (2.29), and (2.30), it is clear that the bifurcation parameters contain
physical quantities which govern the behavior of the N.-S. equations, that is, the bifurcation
parameters correspond to physical flow scenarios. The regime maps presented herein show
that given a set of bifurcation parameters—or a physical scenario—employing a control force
will alter the system, allowing for a robust control to nearly any desired outcome.

3.2. Control of Time Series

In this subsection, we use contents of the regime map in Figure 1 to help select bifurcation
parameters leading to a chaotic behavior. Given the bifurcation parameters corresponding to
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Figure 4: Time series response of the PMNS equations. Control force aCF is changed half way through
2 × 104 iterations with β = 3.3, γ = −0.05, and aCF = 0.17. Control of broadband w/o fund. freq. to (a)
quasiperiodicity, (b) phase lock, (c) subharmonic, (d) periodic, and (e) steady, by setting aCF equal to
0.035, 0.098, 0.06, 0.00, and −0.2, respectively.

a particular chaotic regime type, we successfully employ a control force to induce bifurcation
to other less chaotic regimes. In the context of applying the PMNS equations to a real-time
control system, the bifurcation parameters corresponding to a given scenario can, in principle,
be computed via physical data collected from sensors. Thus, the range of control force values
appropriate for achieving the desired behavior type could be easily computed via on-board
hardware in many specific systems.

Figure 4 shows the time series of the PMNS equations while allowing the value of the
control force to change during system evolution. The DDS was iterated 1 × 104 times prior to
applying the control force required to obtain the desired system response. Prior to application
of the external force, the methods we employ for detecting the regime type distinguish the
behavior as broadband without a fundamental frequency. In starting with this regime type,
the PMNS equations produce time series which are erratic and chaotic—essentially “white
noise.” Controlling the time series of this most chaotic regime is considered herein, though it
should be noted that the PMNS equations can be controlled between essentially any regime
types. Thus, the results presented in Figure 4 are only a small fraction of the possible control
scenarios that can be achieved via this technique. We focus on controlling the broadband
without fundamental frequency regime to show that our procedure is capable of handling
even the most chaotic behaviors.

The regime map in Figure 1 was constructed with γ = −0.05 and varying values of β
and aCF. Though there are many combinations possible, we choose β = 3.3 and aCF = 0.17
so that the behavior of the x-component of velocity is broadband without a fundamental
frequency. Many other combinations of β and aCF would have produced similar results; thus,
there is nothing special about these values. Given the known behavior of the PMNS equations
using these values of β and aCF, we then allow the DDS to evolve additional 1× 104 iterations
after changing the value of aCF. The second value of aCF also comes from the regime map
in Figure 1. For example, to produce a quasiperiodic behavior from the chaotic broadband,
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Figure 5: Time series response (x-direction) of the PMNS equations with y-direction control force bCF is
changed half way through 2 × 104 iterations with β = 2.552, γ = −0.05, and bCF = 0.5872. Control of
broadband w/o fund. freq. to (a) quasiperiodicity, (b) phase lock, (c) subharmonic, (d) periodic, and (e)
steady, by setting bCF equal to 0.03888, 0.548, 0.38, 0.25, and 0.12, respectively.

the value of aCF is changed to 0.035. Again, there are many other values to which the control
force can be changed so that the DDS will produce quasiperiodicity from the broadband
signal, but a value must be assigned a priori.

The ability to control the x-direction component of velocity is clearly demonstrated in
Figure 4, and the same would also be true of the y- and z-direction components. Ability to
control a velocity component with wall-normal direction forcing as has been experimentally
investigated via blowing and suction (see [4, 6]) and is easily simulated with the PMNS
equations, the results of which are presented in Figure 5. Regime maps as constructed in
Figures 2 and 3 can be constructed for the case of varying wall-normal control force bCF, as
performed in previous studies (see [12] for details). From those regime maps, appropriate
values of the control force bCF are obtained and used to calculate the time series shown in
Figure 5.

It is clear from both Figures 4 and 5 that the system responds very quickly to a change
in control force and does not require substantial time to stabilize. This is in contrast with the
initial behavior of the DDS, where many iterations may be required before initial transient
behavior decays and the salient behavior of the system can be determined (as explained in
[11, 12]). Not only can velocity be controlled within very few iterations, but the efficiency of
the PMNS equations allows these sorts of computations to be performed quickly in wall-clock
time.

A noticeable difference between control of the PMNS system with streamwise control
force (Figure 4) and wall-normal control force (Figure 5) is the increased time required to
stabilize in the cases of phase-locked and steady behaviors. Notice that among each behavior
type, the response to change in streamwise control force (Figure 4) requires similar times to
stabilize. The wall-normal control force case differs from this in that the time required for
the phase-locked and steady behaviors to stabilize is slightly longer than in other cases. This
difference is quite negligible from the perspective of system control as only few additional
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iterations are required. That having been said, this observationmay allude tomore interesting
characteristics of the phase lock regime which has been previously studied in [11, 12] and
maybe important from the perspective of dynamical systems analysis.

Significant research has been conducted in recent years to control dynamical systems
(e.g., [21–23]). The majority of this work, however, does not pertain to systems which model
physics, especially fluid motion. The results presented herein are unique in two ways. First,
the dynamical systemmodeled is directly derived from the equations of fluidmotion. Second,
the control parameter analogously corresponds to a method which is frequently used in
laboratory experiments of turbulence control, namely, suction and blowing.

Though the PMNS dynamical system models the motions of fluids, the attempts to
control this system may be compared with other studies in which a more general dynamical
system is controlled. In [22], a 4D chaotic system is controlled by means of recursive
backstepping, and it is shown that chaotic behavior may be eradicated in a similar fashion
as in the present study. Control of the system from chaotic to stable states of steady or
periodic behavior was exhibited, and the system response times were relatively short. A
control problem of a different nature is studied in [23], where a finite-time control scheme
is implemented to synchronize two different dynamical systems with chaotic behavior.
Effective control is demonstrated as the trajectories of one system converge to those of the
other. Furthermore, convergence occurs rapidly once control is implemented.

Results from those general dynamical systems previously discussed have much in
commonwith the time series results presented in Figures 4 and 5. The primary shared features
are the ability to control the system to periodic or other stable trajectories. Moreover, rapid
system response is observed in each. With the exception of the transition to phase-locked and
steady behaviors in the case using a wall-normal control force, the response times herein only
span a few iterations. These are expected to be quicker than the results contained in [22, 23],
where an algorithm depending on the system output is implemented. No such algorithm is
yet developed for the PMNS equations, and the control is achieved with a priori knowledge
of the appropriate control force required for a given set of bifurcation parameters from the
regime maps shown in Figures 2 and 3. In the following section, we discuss a simple outline
for a potential control scheme.

3.3. A Control Algorithm

Here, we present one (of probably many) possible algorithms by means of which the PMNS
equations might be used to control turbulent fluid flow. It is important to observe that
these equations can be rapidly evaluated, as already emphasized, and their simple algebraic
structure is such as to permit easy implementations on microprocessors.

For simplicity, we assume that the desired flow regime is known, although one can
easily envision situations where this might not be true. Then to achieve this desired behavior,
carry out the following steps.

(1) Collect flow data, possibly (but not necessarily) at many locations.

(2) Use these data to construct PMNS equation bifurcation parameters.

(3) Run the PMNS equations and use the regime map algorithm to identify the current
physical flow regime.
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(4) If regime is the desired one, return to 1. If it is not, begin systematic perturbation
of control force parameters with PMNS equation and regime map calculations until
desired flow regime is obtained.

(5) Convert PMNS equation control force to physical one and send corresponding
signal to controller.

We remark that there are a number of details still to be treated in this control procedure,
not the least of which is the need to perform implementations on microprocessors. But in
this regard, the only part of the algorithm involving more than a few lines of code is the
regime map program, and even this is relatively small and should easily fit on modern
microprocessors. The more difficult parts of the algorithm are physically collecting sufficient
data to build PMNS equation bifurcation parameters with adequate accuracy to be of use,
and similarly inverting the process to convert PMNS equation control parameters to physical
ones. Clearly, these issues are system dependent; somework is currently in progress to permit
investigation of these ideas for a particularly simple system.

4. Summary and Conclusions

In this study, we have derived a discrete dynamical system directly from the 3D,
incompressible Navier-Stokes equations and investigated the use of these equations within
the context of turbulence control. We have studied the possible behaviors which the PMNS
equations may exhibit and included computational results for O(1010) instances. Having
a priori knowledge of the system behavior, we are able to select bifurcation parameters
and control forces such that time series of the PMNS equations are controlled during their
evolution. In doing this, we demonstrated the ability of the equations to control a velocity
field, and we propose that due to their efficiency, the PMNS equations are well suited for
turbulence control.

Derivation of the PMNS equations is, in principle, quite general and can be applied to
a wide variety of problems governed by PDEs and (possibly) time-delay ODEs (e.g., models
of machining processes). The derivation does not introduce any nonphysical quantities
or attempt to model any physical ones. The PMNS equations have been shown to have
significant potential as a “synthetic velocity” model, and herein, the ability to manipulate
velocity fields across a wide variety flow behaviors was shown. The subject of ongoing
investigations and future work will be implementation of the PMNS equations into hardware
for use within a real-time control system similar to that described above.

Nomenclature

U = (u, v,w)T : 3D velocity vector
ν: Kinematic viscosity
P : Pressure
Re: Reynolds number
t: Time
Ω: Spatial domain in R

3

k: Wavevector
ηi: Normalization constant, i = a, b, c
τ : Time step parameter
βi: Bifurcation parameter, i = 1, 2, 3
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γij : Bifurcation parameter, i, j = 1, 2, 3 with i /= j
n: Iteration counter
aCF: u-direction forcing term
bCF: v-direction forcing term
cCF: w-direction forcing term.
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