
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 735675, 9 pages
doi:10.1155/2012/735675

Research Article
Monostable-Type Travelling Wave Solutions of the
Diffusive FitzHugh-Nagumo-Type System in RN

Chih-Chiang Huang

Department of Mathematics, National Taiwan University, Taipei 10617, Taiwan

Correspondence should be addressed to Chih-Chiang Huang, loveworldsteven@hotmail.com

Received 30 March 2012; Accepted 25 May 2012

Academic Editor: Norimichi Hirano

Copyright q 2012 Chih-Chiang Huang. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

This paper is concernedwithmonostable-type travelling wave solutions of the diffusive FitzHugh-
Nagumo-type system (FHN) inRN for the two components u and v. By solving v in terms of u, this
system can be reduced to a nonlocal single equation for u. When the diffusion coefficients in the
system are equal, we construct travelling wave solutions for the non-local equation by the method
of super- and subsolutions developed by Morita and Ninomiya (2008) Moreover, we propose a
condition for γ , which is similar to the condition Reinecke and Sweers (1999) used to transform
(FHN) into a quasimonotone system.

1. Introduction

In the present paper, we are concerned with the diffusive FitzHugh-Nagumo-type system
(FHN) in RN that is,

ut = uξξ + Δyu + f
(
y, u

) − v,
vt = dvξξ + Δyv + δ

(
u − γv),

(1.1)

where (ξ, y) ∈ RN = R1 × RN−1, N ≥ 2, δ, γ > 0 and d ≥ 0. A typical example of f(y, u) is
f(y, u) = u(1 − u)(u − β) for 0 < β < 1/2. Throughout the paper we assume that f is a C2

function in u and f , fu, and fuu are bounded in {(y, u) | y ∈ Ωy, |u| ≤ K} for some large
constant K > 0. In addition, f satisfies (H1)–(H5).

FHN derived from the Hodgkin-Huxley model is a typical model for excitable media.
Inmany fields, such as physics, chemistry, and biology, FHNhas become one of the frequently
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used-reaction diffusion systems to describe interesting phenomena. The solutions of interest
here are traveling wave solutions. Let x = ξ−ct, then travelling wave solutions of (1.1) satisfy

uxx + cux + Δyu + f
(
y, u

) − v = 0, (1.2)

dvxx + cvx + Δyv + δ
(
u − γv) = 0. (1.3)

Over the past decades, this system has been extensively studied. For instance, as
N = 1, under different assumptions, Systems (1.2) and (1.3) admit standing pulses in [1–
3], infinitely many periodic solutions in [3], fronts, back waves in [4, 5] and travelling pulses
in [5]. For the higher dimension caseN ≥ 2, symmetric standing waves were established by
Reinecke and Sweers [6] and Wei and Winter [7].

As γ → ∞, if the solutions are assumed to be bounded, (1.2) and (1.3) tend to the
single equation

uxx + cux + Δyu + f
(
y, u

)
= 0. (1.4)

Let f(y, u) be a C2 function g(u) which has the property that for some ∈ (0, 1) g(0) = g(θ) =
g(1) = 0, gu(0) < 0, gu(θ) > 0, gu(1) < 0, g < 0 on (0, θ) and g > 0 on (θ, 1). In addition to the
planar waves, (1.4) admits other types of solutions, including travelling curved fronts (N =
2), conical shapes and pyramidal shapes (N ≥ 3) in [8–11]. Moreover, Hamel and Roquejoffre
[12] established travelling wave solutions of (1.4) in R2 which connect one unstable periodic
solution at x → ∞ (−∞) and one stable constant solution at x → −∞ (∞). On the other hand,
travelling wave solutions of (1.4) in RN connecting a unstable one-peak solution at x → ∞
(−∞) and a stable constant solution x → −∞ (∞) were obtained by Morita and Ninomiya
[13].

In this paper, we use the method of super- and subsolutions developed in [13]. Due to
technical restriction, we assume d = 1. Since (1.3) is linear, v can be solved formally in terms
of u. With v expressed in terms of u, Systems (1.2) and (1.3) are reduced to the non-local
equation

F[u] := uxx + cux + Δyu + f
(
y, u

) − Bc[u] = 0, (1.5)

where we denote v by Bc[u] := δ(−∂2/∂x2 − c(∂/∂x) −Δy + δγ)
−1u. It is readily seen that if u

is independent of x, then by the uniqueness theorem Bc[u] = δ(−Δy + δγ)
−1u. As x → ±∞,

the asymptotic behaviors of travelling wave solutions of (1.5) formally satisfy

Δyu + f
(
y, u

) − Bc[u] = 0, (1.6)

where Bc[u] = δ(−Δy + δγ)−1u. Our main purpose is to look for monostable-type travelling
wave solutions u(x, y)which connect a stable solution of (1.6) as x → −∞ (∞) and a unstable
one as x → ∞ (−∞). Without loss of generality, we may assume that u(+∞, y) is an unstable
solution. Throughout this paper, the following hypotheses are assumed.
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(H1) There are two solutions u±(y) of (1.6) satisfying u−(y) ≥ u+(y). Moreover, there
exist an eigenvalue μ > 0 and its corresponding eigenfunction φ(y) > 0 with
max{y∈RN−1}φ(y) = 1 and lim|y|→∞φ(y) = 0 such that

Δyφ + fu
(
y, u+

)
φ − Bc

[
φ
]
= μφ. (1.7)

(H2) There exists no other solution u(y) of (1.6)with the property u−(y) ≥ u(y) ≥ u+(y).
(H3) u−(y) ≥ u+(y) + εφ(y) for some ε > 0.

(H4) For all small η > 0, there exists solutions uη+(y) satisfying limη→ 0u
η
+(y) = u+(y),

Δyu
η
+ + f

(
y, u

η
+

)
− Bc

[
u
η
+

]
+ η = 0,

u
η
+
(
y
) ≥ u+

(
y
)
+
η

M
,

(1.8)

for some constantM > 0.

(H5)

Δyψi −
(
K1 +

√
δ
)
ψi ≤ 0, i = 1, 2, 3, (1.9)

where K1 = −min{u−(y)≥u≥u+(y),y∈RN−1}fu(y, u) > 0, ψ1 = φ, ψ2 = u− − u+ and ψ3 =
u
η
+ − u+.

To simplify the proof of the main theorem in this paper, we modify the nonlinear term
f(y, u) such that the minimum and maximum of fu(y, u) in {u(y) ∈ R, y ∈ RN−1} are the
same as those in {u−(y) ≥ u ≥ u+(y), y ∈ RN−1}. For convenience, we still denote f(y, u) for
the newmodification of f . Let K∗ := max{u−(y)≥u≥u+(y),y∈RN−1}fu(y, u) > 0 and letK2 > 0 satisfy
K2 + δ/(δγ +K2) = K∗. We state the main theorem as follows.

Theorem 1.1. Assume γ ≥ 2/
√
δ + (K1 + μ)/δ and (H1)–(H5) hold. Then there exists c∗ =

max{2√μ, 2
√
K2} > 0 such that for all c ≥ c∗, Systems (1.2) and (1.3) admit a pair of smooth

solutions (u∗, v∗) which satisfie u∗x ≤ 0, v∗
x ≤ 0 and the boundary conditions (u∗, v∗)(±∞, y) =

(u±(y), v±(y)), where v±(y) = Bc[u±(y)].

Remark 1.2. In (H1), when the inequality u−(y) ≥ u+(y) is reversed, that is, u−(y) ≤ u+(y), a
result similar to Theorem 1.1 can be proved except that the inequalities u∗x ≤ 0 and v∗

x ≤ 0 in
Theorem 1.1 need to be replaced by u∗x ≥ 0 and v∗

x ≥ 0, respectively.

Remark 1.3. In fact, (H5) can be weakened to the following assumption:

Δyψi −Miψi ≤ 0, for some constants Mi > 0. (1.10)

This condition holds if Δyψi does not decay faster than ψi as |y| → ∞. In this case, if we
choose γ ≥ 1/

√
δ + (K3 + μ)/δ, whereK3 = max{M1,M2,M3, K1 +

√
δ}, then a similar result

can be proved.
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It is not easy to find an example which satisfies assumptions (H1)–(H5) even for the
case f(y, u) = u(1 − u)(u − β) since the stability of the radially symmetric solutions obtained
in [6, 7] has not yet been studied. However, we believe that for γ 	 1 the structure of System
(1.2) and (1.3) are similar to that of (1.5). Accordingly, we extend the result of Theorem 2.1 in
[13] to the one in Theorem 1.1.

2. Proof of the Main Theorem

To prove the Theorem 1.1, we use the super- and subsolutions constructed in [13]. By
considering the following equation, we construct subsolutions of F[u]. Let w(x) satisfy

wxx + cwx + μw −w2 = 0,

w(−∞) = μ, w(∞) = 0.
(2.1)

For all c ≥ 2√μ, the above boundary value problem admits a unique solution w(x) (up to a
translation) which is strictly increasing in x. Subsolutions of F[u] are established as follows.

Lemma 2.1. Let U(x, y) = u+(y) + σφ(y)w(x). Then there exists σ1 > 0 such that F[U] ≥ 0 for
all 0 < σ ≤ σ1 and c ≥ 2√μ.

Proof. Let V := wBc[φ] − Bc[φw] ≥ 0, then V ≥ 0. Indeed, it is easy to see that Bc[φ] ≥ 0 by
the maximum principle and φ > 0. A straightforward calculation gives

Vxx + cVx + ΔyV − δγV = −w(
μ −w)

Bc
[
φ
] ≤ 0. (2.2)

Using the maximum principle, we obtain V ≥ 0. Therefore by (H1)

F[U]
= σφ(wxx + cwx) +

(
Δyu+ − Bc[u+]

)
+ σwΔyφ + f

(
y, u+ + σφw

) − σBc
[
φw

]

= σφ
(
wxx + cwx + μw

)
+ f

(
y, u+ + σφw

) − f(y, u+
) − fu

(
y, u+

)
σφw + σV

≥ σφw2 +G,

(2.3)

where G = f(y, u+ + σφw) − f(y, u+) − fu(y, u+)σφw.
Let M1 = min{u−(y)≥u≥u+(y),y∈RN−1}fuu(y, u). By choosing σ ≤ ε/μ and using (H3), we

obtain u+ ≤ u+ + σφw ≤ u+ + εφ ≤ u−. According to the mean value theorem, we have G ≥ 0
if M1 ≥ 0 and G ≥ M1σ

2φ2w2 if M1 < 0. Therefore F[U] ≥ 0 if σ ≤ σ1, where σ1 = ε/μ as
M1 ≥ 0 and σ1 = min{ε/μ,−1/M1} asM1 < 0. The proof is completed.

In what follows we construct supersolutions of F[u].

Lemma 2.2. Let Q(x) = e−((c−
√

(c2−4K2)/2))x and U+(x, y) = u
η
+(y) +Q(x), where K2 > 0 satisfies

K2 + δ/(δγ +K2) = K∗ and c ≥ 2
√
K2. Then F[U+] < 0.
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Proof. Note thatQxx +cQx +K2Q = 0 and 0 < Bc[Q] <∞. Indeed, by the uniqueness theorem
we have Bc[Q(x)] = δ(−∂2/∂x2 − c(∂/∂x) + δγ)−1Q and

Bc[Q] =
δ

√
c2 + 4γδ

∫+∞

−∞
e−(

√
c2+4γδ/2)|x−ξ|+(c/2)(ξ−x)Q(ξ)dξ =

δ

δγ +K2
Q(x). (2.4)

It follows from (H4) that

F[U+] = (Qxx + cQx) +
(
Δyu

η
+ − Bc

[
u
η
+

])
+ f

(
y, u

η
+ +Q

)
− Bc[Q]

= −K2Q + f
(
y, u

η
+ +Q

)
− f

(
y, u

η
+

)
− η − Bc[Q]

=
{
−K2 + fu

(
y, u

η
+ + θQ

)
− δ

δγ +K2

}
Q − η ≤ −η < 0,

(2.5)

where 0 ≤ θ ≤ 1. The last second inequality is due to

K2 +
δ

δγ +K2
= max
{u−(y)≥u≥u+(y),y∈RN−1}

fu
(
y, u

)
. (2.6)

We complete the proof of the lemma.

Let

L[u] = uxx + cux + Δyu −
(
K1 + μ +

√
δ
)
u, (2.7)

where K1 = −min{u−(y)≥u≥u+(y),y∈RN−1}fu(y, u) > 0.
To show the existences of travelling wave solutions of (1.6), we use the following

iteration process:

un
(
x, y

)
= L−1

(
−f(un−1) + Bc[un−1] −

(
K1 + μ +

√
δ
)
un−1

)
, n = 1, 2, . . . ,

u0
(
x, y

)
= U.

(2.8)

In the following lemma, we assert that the supersolutions ofF are greater than or equal
to the subsolutions of F. Moreover, we show that bothU+ −U and u− −U are supersolutions
of L, which is useful in the proof of iteration process.

Lemma 2.3. Assume γ ≥ 2/
√
δ + (K1 + μ)/δ and let U := min{U+(x, y),u−(y)}. Then for all

η > 0 there exists σ2 > 0 depending on η such that for all 0 < σ ≤ σ2 one has

U ≥ U, L[
U+ −U] ≤ 0, L[

u− −U
] ≤ 0. (2.9)
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Proof. For the caseU = u−(y)we take σ ≤ ε/μ, then

U −U = u−
(
y
) − u+

(
y
) − σφ(y)w(x) ≥ u−

(
y
) − u+

(
y
) − εφ(y) ≥ 0. (2.10)

The last inequality holds by (H3). On the other hand,

L[
u− −U

]
= Δy(u− − u+) −

(
K1 + μ +

√
δ
)
(u− − u+) +A, (2.11)

where A = −σφ(wxx + cwx) + (K1 + μ +
√
δ)σφw − σwΔyφ. According to (H5), |A| ≤ σCφ for

some positive constant C = C(μ, δ,K1). By choosing σ ≤ εμ/C, we obtain

L[
u− −U

] ≤ Δy(u− − u+) −
(
K1 +

√
δ
)
(u− − u+) − μ(u− − u+) + σCφ

≤ − εμφ + σCφ ≤ 0,
(2.12)

which holds due to assumptions (H3) and (H5).
For the case U = uη+(y) +Q(x), given η > 0 we choose σ ≤ η/μM and use assumption

(H4), then

U −U = uη+
(
y
)
+Q(x) − u+

(
y
) − σφ(y)w(x) ≥ η

M
− σμ ≥ 0. (2.13)

Moreover,

L[
U+ −U]

= Δy

(
u
η
+ − u+

)
−
(
K1 + μ +

√
δ
)(
u
η
+ − u+

)
+A +Qxx +Qx

−
(
K1 + μ +

√
δ
)
Q.

(2.14)

It is readily seen that Qxx +Qx − (K1 + μ +
√
δ)Q ≤ 0. By (H4) and (H5),

L[
U+ −U] ≤ −ημ

M
+ σC ≤ if σ ≤ ημ

MC
. (2.15)

Setting σ2 = min{ε/μ, εμ/C, η/μM,ημ/MC}, the lemma holds.

To generalize the result of Theorem 2.1 in [13], the nonlocal term of (1.5) needs to be
better estimated. More precisely, we point wisely control Bc[u] by the local term u such that
the iterative sequence un is comparable with un−1.

Lemma 2.4. Let u ∈ C2(RN) be nonnegative and solve uxx + cux +Δyu − au ≤ 0 for some constant
a. Assume γ ≥ a/δ + 1/b for some b. Then bu − Bc[u] ≥ 0.
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Proof. Let v = Bc[u] andU = bu−v. Then v ≥ 0 because of u ≥ 0 and the maximum principle.
Our main purpose is to claimU ≥ 0. By the assumption of u and the definition of v, we have

Uxx + cUx + ΔyU − ab + δ
b

U ≤ −
(
δγ − a − δ

b

)
v ≤ 0. (2.16)

The last inequality follows from the hypothesis of γ and the nonnegativity of v. By the
maximum principle,U ≥ 0.

As γ becomes large, we claim that the iterative sequence un is increasing.

Lemma 2.5. Assume γ ≥ 2/
√
δ + (K1 + μ)/δ and c ≥ c∗ = max{2√μ, 2

√
K2}, then for all η > 0

and 0 < σ ≤ min{σ1, σ2} one has un,x ≤ 0 and

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ U. (2.17)

Proof. We first claim that un ≤ U for all n. Indeed, by Lemmas 2.3 and 2.4 (take a = K1+μ+
√
δ

and b =
√
δ)we obtain

√
δ(U+ − u0) − Bc[U+ − u0] ≥ 0. (2.18)

Therefore Lemmas 2.2 and 2.3 yield

L[U+ − u1] ≤ − f(U+) + Bc[U+] + f(u0) − Bc[u0] −
(
K1 + μ +

√
δ
)
(U+ − u0)

≤ {−fu(θU+(1 − θ)u0) −K1
}
(U+ − u0) ≤ 0,

(2.19)

where 0 ≤ θ ≤ 1. According to the maximum principle, U+ − u1 ≥ 0. It follows form the proof
ofU+ −u1 ≥ 0 that u− −u1 ≥ 0. Therefore u1 ≤ U. Continuing this process, we have un ≤ U for
all n by induction.

Next obvert thatL[u1−u0] = −F[U] ≤ 0 due to Lemma 2.1. By themaximumprinciple,
u1 − u0 ≥ 0. Applying Lemma 2.4 to u1 − u0, we have

√
δ(u1 − u0) − Bc[u1 − u0] ≥ 0. (2.20)

Therefore

L[u2 − u1] = − (
f(u1) − f(u0)

)
+ Bc[u1 − u0] −

(
K1 + μ +

√
δ
)
(u1 − u0)

≤ {−fu(θu1 + (1 − θ)u0 −K1
}
(u1 − u0) −

√
δ(u1 − u0) + Bc[u1−u0]

≤ 0,

(2.21)
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where 0 ≤ θ ≤ 1. Thus u2 ≥ u1. By induction, the sequence of functions {un} is nondecreasing.
On the other hand, obvert that u0,x = σφwx < 0. Therefore by (H5), we obtain

L[−u0,x] = σφ
(
μwx − 2wwx

) − σwxΔyφ +
(
K1 + μ +

√
δ
)
σφwx

= − σwx

{
Δyφ −

(
K1 +

√
δ
)
φ +

(−2μ + 2w
)
φ
}
≤ 0.

(2.22)

Using Lemma 2.4 again, we have

√
δ(−u0,x) − Bc[−u0,x] ≥ 0,

L[u1,x] = −fu(u0)u0,x + Bc[u0,x] −
(
K1 + μ +

√
δ
)
u0,x ≥ 0.

(2.23)

Then u1,x ≤ 0 by the maximum principle. Inducting in n, we obtain un,x ≤ 0.

Proof of Theorem 1.1. By Lemma 2.5, we define u∗(x, y) = limn→∞un(x, y). Following the proof
of Theorem 2.1 in [13], (H2) and (H3), for all c ≥ c∗ we obtain that u∗(x, y) is a smooth
solution of (1.5), u∗x ≤ 0 and u∗(±∞, y) = u±(y). Let v∗ = Bc[u∗], then v∗

x = Bc[u∗x] ≤ 0 by the
maximum principle. We complete the proof of the theorem.
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