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Motivated by its possible applications in mechanics and mechanical engineering, in our previous
published work (Pitea and Postolache, 2011), we initiated an optimization theory for the
second-order jet bundle. We considered the problem of minimization of vectors of curvilinear
functionals (well known as mechanical work), thought as multitime multiobjective variational
problems, subject to PDE and/or PDI constraints. Within this framework, we introduced necessary
optimality conditions. As natural continuation of these results, the present work introduces a study
of sufficient efficiency conditions.

1. Introduction

As it is known, most of the optimization problems arising in practice have several objectives
which have to be optimized simultaneously. These problems, of considerable interest, include
various branches of mathematical sciences, engineering design, portfolio selection, game
theory, decision problems in management science, web access problems, query optimization
in databases, and so forth. Also, such kind of optimization problems arise in wide areas of
research for new technology as well. First of all, we have in mind the material sciences where
many times optimal estimation of material parameters is required, either nondestructive
determination of faults is needed. Next, chemistry which provides a huge class of constrained
optimization problems such as the determination of contamination sources given the flow
model and the variance of the source. Last, but not least, games theory in the main study is
finding optimal wining strategies. For descriptions of the web access problem, the portfolio
selection problem, and capital budgeting problem, see [1] by Chinchuluun and Pardalos, [2]
by Chinchuluun et al., and some references therein.
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In time, several authors have been interested in the study of (vector) ratio programs
in connection with generalized convexity. This study is motivated by many practical
optimization problems whose objective functions are quotients of two functions. For
advances on single-objective ratio programs, see [3] by Khan and Hanson, and [4] by Reddy
and Mukherjee, which utilized invexity assumptions in the sense of Hanson [5] to obtain
optimality conditions and duality results. As concerning vector ratio problems, Singh and
Hanson [6] applied invex functions to derive duality results, while Jeyakumar and Mond [7]
generalized these results to the class of V -invex functions. Later, Liang et al. [8] introduced a
unified formulation of the generalized convexity to derive optimality conditions and duality
results for vector ratio problems.

Despite of these important advances in optimization, our multitime multiobjective
problem—required by practical reasons—had not been studied so far. In the problem of our
very recent study [9, 10], the objective vector function is of curvilinear integral type, the
integrand depending both on velocities and accelerations, that is why we have chosen as
framework the second-order jet bundle [11] (also, see [12]).

This work extends, generalizes, and further develops our research in [13, 14] from
the first-order jet bundle (which considers the movement as function of velocities only)
to the second-order jet bundle (where the movement is a function both on velocities and
accelerations). Note that passing from the first-order jet bundle to the second-order jet bundle
is not a facile task, it requests specific techniques to the latter one (e.g., a new quasiinvexity,
an appropriate mathematical framework).

Our study is encouraged by its possible application, especially in mechanical en-
gineering, where curvilinear integral objectives are extensively used due to their physical
meaning as mechanical work. The objective functions of our type play an essential role in
mathematical modeling of certain processes in relation with robotics, tribology, engines, and
so forth.

This paper aims to establish some new results on nonlinear optimization on the second
order jet bundle. It is organized as follows. In Section 2 our framework is introduced and the
minimization problem is described, while in Section 3 sufficient efficiency conditions for our
problem are given. Finally, we conclude the paper and suggest possible further development.

2. Our Framework and Problem Description

Let (T, h) and (M,g) be Riemannian manifolds of dimensions p and n, respectively. The local
coordinates on T andMwill be written t = (tα) and x = (xi), respectively. Let J2(T,M) be the
second-order jet bundle associated to T and M, see [11].

Throughout this work, we use the customary relations between two vectors of the
same dimension, [9]. With the product-order relation on R

p, the hyperparallelepiped Ωt0,t1 ,
in R

p, with the diagonal opposite points t0 = (t10, . . . , t
p

0) and t1 = (t11, . . . , t
p

1), can be written as
interval [t0, t1]. Suppose γt0,t1 is a piecewise C2-class curve joining the points t0 and t1.

Important note

To simplify the presentation, in our subsequent theory, we shall set

πx(t) =
(
t, x(t), xγ(t), xθσ(t)

)
, πx◦(t) =

(
t, x◦(t), x◦

γ(t), x
◦
θσ(t)

)
, (2.1)
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where xγ(t) = (∂x/∂tγ)(t), γ = 1, p, and xθσ(t) = (∂2x/∂tθ∂tσ)(t), θ, σ = 1, p, are partial
velocities and partial accelerations respectively.The closed Lagrange 1-form densities of C∞-
class:

fα =
(
f�
α

)
: J2(T,M) −→ R

r , kα =
(
k�
α

)
: J2(T,M) −→ R

r , � = 1, r, α = 1, p, (2.2)

determine the following path independent functionals, respectively,

F�(x(·)) = ∫γt0 ,t1 f
�
α (πx(t))dtα, K�(x(·)) = ∫γt0 ,t1 k

�
α(πx(t))dtα. (2.3)

We accept that the Lagrange matrix densities:

g =
(
gb
a

)
: J2(T,M) −→ R

md, a = 1, d, b = 1, m, m < n, (2.4)

of C∞-class define the partial differential inequations (PDI of evolution)

g(πx(t)) � 0, t ∈ Ωt0,t1 , (2.5)

and the Lagrange matrix densities

h =
(
hb
a

)
: J2(T,M) −→ R

qd, a = 1, d, b = 1, q, q < n, (2.6)

defines the partial differential equations (PDE) (of evolution)

h(πx(t)) = 0, t ∈ Ωt0,t1 . (2.7)

Let C∞(Ωt0,t1 ,M) be the space of all functions x : Ωt0,t1 −→ M of C∞-class, with the norm

‖x‖ = ‖x‖∞ +
p∑

α=1

‖xα‖∞ +
p∑

θ,σ=1

‖xθσ‖∞. (2.8)

For each � = 1, r, suppose K�(x(·)) > 0, and consider

F(x(·))
K(x(·)) =

(
F1(x(·))
K1(x(·)) , . . . ,

Fr(x(·))
Kr(x(·))

)

. (2.9)

With conditions (2.5) and (2.7), we denote by

F(Ωt0,t1) =
{
x ∈ C∞(Ωt0,t1 ,M) | x(t0) = x0, x(t1) = x1, g(πx(t)) � 0,

h(πx(t)) = 0, t ∈ Ωt0,t1}
(2.10)
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the set of all feasible solutions of problem;

(MFP)

⎧
⎨

⎩
min

F(x(·))
K(x(·))

subject to x(·) ∈ F(Ωt0,t1),
(2.11)

a PDI and/or PDE-constrained minimum problem.Using the terminology from analytical
mechanics, in MFP there are given numbers of r sources, each of them producing mechanical
work. This one have to be minimized on a set of limited resources, namely, F(Ωt0,t1).In our
previous work [9], we introduced necessary efficiency conditions for problem (MFP). In
Section 3, we would like to further develop these results by introducing sufficient efficiency
conditions for problem (MFP).

3. Main Results

Definition 3.1. A feasible solution x◦(·) ∈ F(Ωt0,t1) is called efficient for program (MFP) if and
only if for any feasible solution x(·) ∈ F(Ωt0,t1):

F(x(·))
K(x(·)) � F(x◦(·))

K(x◦(·)) =⇒ F(x(·))
K(x(·)) =

F(x◦(·))
K(x◦(·)) . (3.1)

Consider that x◦(·) ∈ F(Ωt0,t1) is an efficient solution of problem (MFP). In a very
recent article [9], Pitea and Postolache proved that there exist Λ1◦, Λ2◦ ∈ R

r and the smooth
functions μ◦ : Ωt0,t1 → R

mdp, ν◦ : Ωt0,t1 → R
qdp, such that

〈
Λ1◦,

∂fα
∂x

(πx◦(t))
〉
−
〈
Λ2◦,

∂kα
∂x

(πx◦(t))
〉
+
〈
μ◦
α(t),

∂g

∂x
(πx◦(t))

〉
+
〈
ν◦α(t),

∂h

∂x
(πx◦(t))

〉

−Dγ

(〈

Λ1◦,
∂fα
∂xγ

(πx◦(t))

〉

−
〈

Λ2◦,
∂kα
∂xγ

(πx◦(t))

〉

+

〈

μ◦
α(πx◦(t)),

∂g

∂xγ
(πx◦(t))

〉

+

〈

ν◦α(t),
∂h

∂xγ
(πx◦(t))

〉)

+D2
θσ

(〈
Λ1◦,

∂fα
∂xθσ

(πx◦(t))
〉
−
〈
Λ2◦,

∂kα
∂xθσ

(πx◦(t))
〉

+
〈
μ◦
α(πx◦(t)),

∂g

∂xθσ
(πx◦(t))

〉
+
〈
ν◦α(t),

∂h

∂xθσ
(πx◦(t))

〉)
= 0,

t ∈ Ωt0,t1 , α = 1, p
(3.2)

A Natural Question Arises.

Are these conditions sufficient for x◦(·) to be an efficient solution for program (MFP)?
To develop our theory, we have to introduce an appropriate generalized convexity.
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Let ρ be a real number, b : C∞(Ωt0,t1 ,M) × C∞(Ωt0,t1 ,M) → [0,∞) a functional, and
a = (aα), α = 1, p, a closed 1-form. To a, we associate the curvilinear integral.

A(x(·)) =
∫

γt0 ,t1

aα(πx(t))dtα. (3.3)

Definition 3.2. The functional A is called [strictly](ρ, b)-quasiinvex at the point x◦(·) if there
exists a vector function η : J2(Ωt0,t1 ,M) × J2(Ωt0,t1 ,M) → R

n, vanishing at the point
(πx◦(t), πx◦(t)), and the function θ defined on C∞(Ωt0,t1 ,M) × C∞(Ωt0,t1 ,M) to R

n, such that
for any x(·)[x(·)/=x◦(·)], the following implication holds:

(A(x(·)) ≤ A(x◦(·))) =⇒
(

bx((·), x◦(·))
∫

γt0 ,t1

[〈
η(πx(t), πx◦(t)),

∂aα

∂x
(πx◦(t))

〉

+

〈

Dγη(πx(t), πx◦(t)),
∂aα

∂xγ
(πx◦(t))

〉

+
〈
D2

θση(πx(t), πx◦(t)),
∂aα

∂xθσ
(πx◦(t))

〉]
dtα

[<] ≤ −ρb(x(·), x◦(·))‖θ(x(·), x◦(·))‖2
)
.

(3.4)

The quasiinvexity is used, in appropriate forms, in recent works for studies of some mul-
tiobjective programming problems, see [15–17] by Mititelu et al., [18] by Nahak and
Mohapatra.

Now, we can establish efficiency sufficient conditions for problem (MFP).

Theorem 3.3. Consider the vectors Λ1◦, Λ2◦ from R
r and the functions x◦(·), μ◦(·), ν◦(·) satisfying

conditions (3.2). Suppose that the following properties hold:

(a) the functional 〈Λ1◦, F(x(·))〉−〈Λ2◦, K(x(·))〉 is (ρ1, b)-quasiinvex at the point x◦(·) with
respect to η and θ;

(b) the functional
∫
γt0 ,t1

〈μ◦
α(t), g(πx(t))〉dtα is (ρ2, b)-quasiinvex at the point x◦(·) with

respect to η and θ;

(c) the functional
∫
γt0 ,t1

〈ν◦α(t), h(πx(t))〉dtα is (ρ3, b)-quasiinvex at the point x◦(·)with respect
to η and θ;

(d) one of the integrals of (a)—(c) is strictly (ρ1, b), (ρ2, b) or (ρ3, b)-quasiinvex at the point
x◦(·) with respect to η and θ;

(e) ρ1 + ρ2 + ρ3 ≥ 0;

(f) Λ1◦
�
F�(x◦(·)) −Λ2◦

�
K�(x◦(·)) = 0, for each � = 1, r.

Then the point x◦(·) is an efficient solution of problem (MFP).
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Proof. Let us suppose that the point x◦(·) is not an efficient solution for problem (MFP). Then,
there is a feasible solution x(·) for problem (MFP), such that

F�(x(·))
K�(x(·)) ≤ F�(x◦(·))

K�(x◦(·)) , � = 1, r, (3.5)

the case x(·) = x◦(·) being excluded. That is:

Λ1◦
� F�(x(·)) −Λ2◦

� K�(x(·)) ≤ Λ1◦
� F�(x◦(·)) −Λ2◦

� K�(x◦(·)), � = 1, r. (3.6)

Making the sum after � = 1, r, we get

〈
Λ1◦, F(x(·))

〉
−
〈
Λ2◦, K(x(·))

〉
≤
〈
Λ1◦, F(x◦(·))

〉
−
〈
Λ2◦, K(x◦(·))

〉
. (3.7)

According to condition (a), it follows that

b(x(·), x◦(·))
∫

γt0 ,t1

[〈
η(πx(t), πx◦(t)),

〈
Λ1◦,

∂fα
∂x

(πx◦(t))
〉
−
〈
Λ2◦,

∂kα
∂x

(πx◦(t))
〉〉

+

〈

Dγη(πx(t), πx◦(t)),

〈

Λ1◦,
∂fα
∂xγ

(πx(t))

〉

−
〈

Λ2◦,
∂kα
∂xγ

(πx◦(t))

〉〉

+
〈
D2

θση(πx(t), πx◦(t)),
〈
Λ1◦,

∂fα
∂xθσ

(πx(t))
〉
−
〈
Λ2◦,

∂kα
∂xθσ

(πx◦(t))
〉〉]

dtα

� −ρ1b(x(·), x◦(·))‖θ(x(·), x◦(·))‖2.
(3.8)

Applying property (b), the inequality

∫

γt0 ,t1

〈
μ◦
α(t), g(πx(t))

〉
dtα �

∫

γt0 ,t1

〈
μ◦
α(t), g(πx◦(t))

〉
dtα (3.9)

leads us to

b(x(·), x◦(·))
∫

γt0 ,t1

(〈
η(πx(t), πx◦(t)),

〈
μ◦
α(t),

∂g

∂x
(πx◦(t))

〉〉

+

〈

Dγη(πx(t), πx◦(t)),

〈

μ◦
α(t),

∂g

∂xγ
(πx◦(t))

〉〉

+
〈
D2

θση(πx(t), πx◦(t)),
〈
μ◦
α(t),

∂g

∂xθσ
(πx◦(t))

〉〉)
dtα

� −ρ2b(x(·), x◦(·))‖θ(x(·), x◦(·))‖2.

(3.10)
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Taking into account condition (c), the equality

∫

γt0 ,t1

〈ν◦α(t), h(πx(t))〉dtα =
∫

γt0 ,t1

〈ν◦α(t), h(πx◦(t))〉dtα (3.11)

implies

b(x(·), x◦(·))
∫

γt0 ,t1

(〈
η(πx(t), πx◦(t)),

〈
ν◦α(t),

∂h

∂x
(πx◦(t))

〉〉

+

〈

Dγη(πx(t), πx◦(t)),

〈

ν◦α(t),
∂h

∂xγ
(πx◦(t))

〉〉

+
〈
D2

θση(πx(t), πx◦(t)),
〈
ν◦α(t),

∂h

∂xθσ
(πx◦(t))

〉〉)
dtα

� −ρ3b(x(·), x◦(·))‖θ(x(·), x◦(·))‖2.

(3.12)

Summing side by side relations (3.8), (3.10), (3.12) and using condition (d), it follows that

b(x(·), x◦(·))
∫

γt0 ,t1

〈
η(πx(t), πx◦(t)),

〈
Λ1◦,

∂fα
∂x

(πx◦(t))
〉

−
〈
Λ2◦,

∂kα
∂x

(πx◦(t))
〉
+
〈
μ◦
α(t),

∂g

∂x
(πx◦(t))

〉
+
〈
ν◦α(t),

∂h

∂x
(πx◦(t))

〉〉
dtα

+ b(x(·), x◦(·))
∫

γt0 ,t1

〈

Dγη(πx(t), πx◦(t)),

〈

Λ1◦,
∂fα
∂xγ

(πx◦(t))

〉

−
〈

Λ2◦,
∂kα
∂xγ

(πx◦(t))

〉

+

〈

μ◦
α(t),

∂g

∂xγ
(πx◦(t))

〉〉

dtα +

〈

ν◦α(t),
∂h

∂xγ
(πx◦(t))

〉

+ b(x(·), x◦(·))
∫

γt0 ,t1

〈
D2

θση(πx(t), πx◦(t)),
〈
Λ1◦,

∂fα
∂xθσ

(πx◦(t))
〉
−
〈
Λ2◦,

∂kα
∂xθσ

(πx◦(t))
〉

+
〈
μ◦
α(t),

∂g

∂xθσ
(πx◦(t))

〉〉
dtα +

〈
ν◦α(t),

∂h

∂xθσ
(πx◦(t))

〉

< −(ρ1 + ρ2 + ρ3
)
b(x(·), x◦(·))‖θ(x(·), x◦(·))‖2.

(3.13)

This inequality implies that b(x(·), x◦(·))〉0, therefore, we obtain

∫

γt0 ,t1

〈
η(πx(t), πx◦(t))

〈
Λ1◦,

∂fα
∂x

(πx◦(t))
〉
−
〈
Λ2◦,

∂kα
∂x

(πx◦(t))
〉

+
〈
μ◦
α(t),

∂g

∂x
(πx◦(t))

〉
+
〈
ν◦α(t),

∂h

∂x
(πx◦(t))

〉〉
dtα

+
∫

γt0 ,t1

〈

Dγη(πx(t), πx◦(t))

〈

Λ1◦,
∂fα
∂xγ

(πx◦(t))

〉

−
〈

Λ2◦,
∂kα
∂xγ

(πx◦(t))

〉
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+

〈

μ◦
α(t),

∂g

∂xγ
(πx◦(t))

〉

+

〈

ν◦α(t),
∂h

∂xγ
(πx◦(t))

〉〉

dtα

+
∫

γt0 ,t1

〈
D2

θση(πx(t), πx◦(t)),
〈
Λ1◦,

∂fα
∂xθσ

(πx◦(t))
〉
−
〈
Λ2◦,

∂kα
∂xθσ

(πx◦(t))
〉

+
〈
μ◦
α(t),

∂g

∂xθσ
(πx◦(t))

〉
+
〈
ν◦α(t),

∂h

∂xθσ
(πx◦(t))

〉〉
dtα

< −(ρ1 + ρ2 + ρ3
)‖θ(x(·), x◦(·))‖2.

(3.14)

According to [19], we have the following.

Lemma 3.4. A total divergence is equal to a total derivative.

After integrating by parts the last two integrals, the left-hand side of the previous
inequality can be written as the sum of two integrals. The former has as integrant the scalar
product between η(πx(t), πx◦(t)) and the null expression from (3.2). The later is also null,
being and integral from a total derivative by Lemma 3.4. Therefore, the previous inequality
leads us to a contradiction, that is 0 < −(ρ1 + ρ2 + ρ3)‖θ(x(·), x◦(·))‖2. Thus, the point x◦(·) is
an efficient solution for problem (MFP).

Replacing the integrals from hypotheses (b) and (c), of Theorem 3.3, by the integral

∫

γt0 ,t1

[〈
μ◦
α(t), g(πx(t))

〉
+ 〈ν◦α(t), h(πx(t))〉

]
dtα, (3.15)

the following statement is obtained.

Corollary 3.5. Let x◦(·) be a feasible solution of problem (MFP), μ◦(·), ν◦(·) be functions, and Λ1◦,
Λ2◦ vectors from R

r such that relations (3.2) are satisfied. Suppose that the following conditions are
fulfilled:

(a) the functional 〈Λ1◦, F(x(·))〉−〈Λ2◦, K(x(·))〉 is (ρ1, b)-quasiinvex at the point x◦(·) with
respect to η and θ;

(b) the functional
∫
γt0 ,t1

[〈μ◦
α(t), g(πx(t))〉 + 〈ν◦α(t), h(πx(t))〉]dtα is (ρ2, b)-quasiinvex at the

point x◦(·) with respect to η and θ;

(c) one of the integrals from (a) or (b) is strictlyquasiinvex at the point x◦(·);
(d) ρ1 + ρ2 ≥ 0;

(e) Λ1◦
�
F�(x◦(·)) −Λ2◦

�
K�(x◦(·)) = 0, for each � = 1, r.

Then, the point x◦(·) is an efficient solution of problem (MFP).

4. Conclusion and Further Development

In our work [9], we initiated an optimization theory for the second-order jet bundle. We
considered the problem of minimization of vectors of curvilinear functionals (well known
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as mechanical work), thought as multitime multiobjective variational problem, subject to
PDE and/or PDI constraints (limited resources). Within this framework, we introduced
necessary conditions. As natural continuation of our results in [9], and strongly motivated
by its possible applications in mechanics, the present work introduced a study of sufficient
efficiency conditions for (MFP).

Since ratio programming problems with objective function of our type arise from
applied areas as decision problems in management, game theory, engineering studies, and
design, wewill orient our future research to the development of (strong) dual program theory
for these problems [20].
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[16] Ş. Mititelu and M. Postolache, “Mond-Weir dualities with Lagrangians for multiobjective fractional
and non-fractional variational problems,” Journal of Advanced Mathematical Studies, vol. 3, no. 1, pp.
41–58, 2010.
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