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A new set of predictor-corrector iterative methods with increasing order of convergence is
proposed in order to estimate the solution of nonlinear systems. Our aim is to achieve high order of
convergence with few Jacobian and/or functional evaluations. Moreover, we pay special attention
to the number of linear systems to be solved in the process, with different matrices of coefficients.
On the other hand, by applying the pseudocomposition technique on each proposed scheme we
get to increase their order of convergence, obtaining new efficient high-order methods. We use the
classical efficiency index to compare the obtained procedures and make some numerical test, that
allow us to confirm the theoretical results.

1. Introduction

Many relationships in nature are inherently nonlinear, which according to these effects are
not in direct proportion to their cause. Approximating a solution ξ of a nonlinear system,
F(x) = 0, is a classical problem that appears in different branches of science and engineering
(see, e.g. [1]). In particular, the numerical solution of nonlinear equations and systems is
needed in the study of dynamical models of chemical reactors [2] or in radioactive transfer
[3]. Moreover, many of numerical applications use high precision in their computations;
in [4], high-precision calculations are used to solve interpolation problems in astronomy;
in [5] the authors describe the use of arbitrary precision computations to improve the
results obtained in climate simulations; the results of these numerical experiments show that
the high-order methods associated with a multiprecision arithmetic floating point are very
useful, because it yields a clear reduction in iterations. Amotivation for an arbitrary precision
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in interval methods can be found in [6], in particular for the calculation of zeros of nonlinear
functions.

Recently, many robust and efficient methods with high convergence order have been
proposed to solve nonlinear equations, but in most of cases the schemes cannot be extended
to multivariate problems. Few papers for the multidimensional case introduce methods with
high order of convergence. The authors design in [7] a modified Newton-Jarrat scheme of
sixth order; in [8] a third-order method is presented for computing real and complex roots
of nonlinear systems; Shin et al. compare in [9] Newton-Krylov methods and Newton-like
schemes for solving big-sized nonlinear systems; the authors in [10] and A. Iliev and I. Iliev
in [11] show general procedures to design high-order methods by using frozen Jacobian
and Taylor expansion, respectively. Special case of sparse Jacobian matrices is studied in
[12].

Dayton et al. in [13] formulate the multiplicity for the general nonlinear system at an
isolated zero. They present an algorithm for computing the multiplicity structure, propose a
depth-deflation method for accurate computation of multiple zeros, and introduce the basic
algebraic theory of the multiplicity.

In this paper, we present three newNewton-like schemes, of order of convergence four,
six, and eight, respectively. After the analysis of convergence of the new methods, we apply
the pseudocomposition technique in order to get higher-order procedures. This technique
(see [14]) consists of the following: we consider a method of order of convergence p as a
predictor, whose penultimate step is of order q, and then we use a corrector step based on the
Gaussian quadrature. So, we obtain a family of iterative schemes whose order of convergence
is min{q + p, 3q}. This is a general procedure to improve the order of convergence of known
methods.

To analyze and compare the efficiency of the proposed methods we use the classic
efficiency index I = p1/d due to Ostrowski [15], where p is the order of convergence and d is
the number of functional evaluations at each iteration.

The convergence theorem in Section 2 is demonstrated by means of the n-dimensional
Taylor expansion of the functions involved. Let F : D ⊆ Rn → Rn be sufficiently Frechet
differentiable in D. By using the notation introduced in [7], the qth derivative of F at u ∈ Rn,
q ≥ 1, is the q-linear function F(q)(u) : Rn × · · · × Rn → Rn such that F(q)(u)(v1, . . . , vq) ∈ Rn.
It is easy to observe that

(1) F(q)(u)(v1, . . . , vq−1, ·) ∈ L(Rn),

(2) F(q)(u)(vσ(1), . . . , vσ(q)) = F(q)(u)(v1, . . . , vq), for all permutation σ of {1, 2, . . . , q}.

So, in the following we will denote:

(a) F(q)(u)(v1, . . . , vq) = F(q)(u)v1 · · ·vq,

(b) F(q)(u)vq−1F(p)vp = F(q)(u)F(p)(u)vq+p−1.

It is well known that, for ξ + h ∈ Rn lying in a neighborhood of a solution ξ of the
nonlinear system F(x) = 0, Taylor’s expansion can be applied (assuming that the jacobian
matrix F ′(ξ) is nonsingular), and

F(ξ + h) = F ′(ξ)

⎡
⎣h +

p−1∑
q=2

Cqh
q

⎤
⎦ +O[hp], (1.1)
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where Cq = (1/q!)[F ′(ξ)]−1F(q)(ξ), q ≥ 2. We observe that Cqh
q ∈ Rn since F(q)(ξ) ∈ L(Rn ×

· · · × Rn, Rn) and [F ′(ξ)]−1 ∈ L(Rn).
In addition, we can express the Jacobian matrix of F, F ′ as

F ′(ξ + h) = F ′(ξ)

⎡
⎣I +

p−1∑
q=2

qCqh
q−1

⎤
⎦ +O[hp], (1.2)

where I is the identity matrix. Therefore, qCqh
q−1 ∈ L(Rn). From (1.2), we obtain

[
F ′(ξ + h)

]−1 =
[
I +X2h +X3h

2 +X4h
3 + · · ·

][
F ′(ξ)

]−1 +O[hp], (1.3)

where X2 = −2C2, X3 = 4C2
2 − 3C3,. . ..

We denote ek = x(k) − ξ the error in the kth iteration. The equation e(k+1) = Lek
p +

O[ekp+1], where L is a p-linear function L ∈ L(Rn × · · · × Rn, Rn), is called the error equation
and p is the order of convergence.

The rest of the paper is organized as follows: in the next section, we present the
new methods of order four, six, and eight, respectively. Moreover, the convergence order
is increased when the pseudocomposition technique is applied. Section 3 is devoted to the
comparison of the different methods by means of several numerical tests.

2. Design and Convergence Analysis of the New Methods

Let us introduce now a new Jarratt-type scheme of five steps which we will denote as M8. We
will prove that its first three steps define a fourth-order scheme, denoted by M4, and its four
first steps become a sixth-order method that will be denoted by M6. The coefficients involved
have been obtained optimizing the order of the convergence, and the whole scheme requires
three functional evaluations of F and two of F ′ to attain eighth order of convergence. Let us
also note that the linear systems to be solved in first, second, and last step have the same
matrix and also have the third and fourth steps, so the number of operations involved is not
as high as it can seem.

Theorem 2.1. Let F : Ω ⊆ Rn → Rn be a sufficiently differentiable in a neighborhood of ξ ∈ Ω which
is a solution of the nonlinear system F(x) = 0, and let x(0) be an initial estimation close enough to
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the solution ξ. One also supposes that F ′(x) is continuous and nonsingular at ξ. Then, the sequence
{x(k)}k≥0 obtained by

y(k) = x(k) − 2
3

[
F ′
(
x(k)
)]−1

F
(
x(k)
)
,

z(k) = y(k) +
1
6

[
F ′
(
x(k)
)]−1

F
(
x(k)
)
,

u(k) = z(k) +
[
F ′
(
x(k)
)
− 3F ′

(
y(k)
)]−1

F
(
x(k)
)
,

v(k) = z(k) +
[
F ′
(
x(k)
)
− 3F ′

(
y(k)
)]−1[

F
(
x(k)
)
+ 2F

(
u(k)
)]

x(k+1) = v(k) − 1
2

[
F ′
(
x(k)
)]−1[

5F ′
(
x(k)
)
− 3F ′

(
y(k)
)][

F ′
(
x(k)
)]−1

F
(
v(k)
)

(2.1)

converges to ξ with order of convergence eight. The error equation is

ek+1 =
(
C2

2 −
1
2
C3

)(
2C3

2 + 2C3C2 − 2C2C3 − 20
9
C4

)
e8k +O

[
e9k

]
. (2.2)

Proof. From (1.1) and (1.2)we obtain

F
(
x(k)
)
= F ′(ξ)

[
ek + C2e

2
k + C3e

3
k + C4e

4
k + C5e

5
k + C6e

6
k + C7e

7
k + C8e

8
k

]
+O
[
e9k

]
,

F ′
(
x(k)
)
= F ′(ξ)

[
I + 2C2ek + 3C3e

2
k + 4C4e

3
k + 5C5e

4
k + 6C6e

5
k + 7C7e

6
k + 8C8e

7
k

]
+O
[
e8k

]
.

(2.3)

As [F ′(x(k))]
−1
F ′(x(k)) = I, we calculate

[
F ′
(
x(k)
)]−1

=
[
I +X2ek +X3e

2
k +X4e

3
k +X5e

4
k +X6e

5
k +X7e

6
k +X8e

7
k

][
F ′(ξ)

]−1 +O
[
e8k

]
,

(2.4)

where X1 = I and Xs = −∑s
j=2 jXs−j+1Cj , for s = 2, 3, . . . So,

[
F ′
(
x(k)
)]−1

F
(
x(k)
)
= ek +M2e

2
k +M3e

3
k +M4e

4
k +M5e

5
k +M6e

6
k +M7e

7
k +M8e

8
k +O

[
e9k

]
,

(2.5)

where M2 = C2 +X4 and Ms = Cs +
∑s

j=3 Xs−j+2Cj−1 +Xs+2, s = 3, 4, . . ..
Then, y(k) = ξ + (1/3)ek − (2/3)M and z(k) = ξ + (1/2)ek − (1/2)M, where M =

M2e
2
k
+M3e

3
k
+M4e

4
k
+M5e

5
k
+M6e

6
k
+M7e

7
k
+M8e

8
k
+O[e9

k
].

The Taylor expansion of F ′(y(k)) is

F ′
(
y(k)
)
= F ′(ξ)

[
I +Q1ek +Q2e

2
k +Q3e

3
k +Q4e

4
k +Q5e

5
k +Q6e

6
k +Q7e

7
k +Q8e

8
k

]
+O
[
e9k

]
,

(2.6)
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where

Q1 =
2
3
C2,

Q2 =
1
3
C3 − 4

3
C2M2,

Q3 =
4
27

C4 − 4
3
C3M2 − 4

3
C2M3,

Q4 =
5
81

C5 − 8
9
C4M2 +

4
3
C3

(
M2

2 − 2M3

)
− 4
3
C2M4,

Q5 =
2
81

C6 − 40
81

C5M2 +
4
9
C4

(
M2

2 −M3

)
+
4
3
C3(M2M3 +M3M2 −M4) − 4

3
C2M5,

Q6 =
7
729

C7− 20
81

C6M2+
40
81

C5

(
3M2

2−M3

)
+

8
27

C4

(
6M2M3+6M3M2 − 3M4 − 4M3

2

)
−C2M6,

Q7 =
4
3
C2M7 +

4
3
C3(M2M5 +M3M4 +M4M3 +M5M2 +M6M2 −M7)

+
8
27

C4

(
6M2M4 + 6M2

3 + 6M4M2 − 3M5 − 4M2
2M3 − 4M2M3M2 − 4M3M

2
2

)

+
40
81

C5

(
3M2M3 + 3M3M2 −M4 − 4M3

2

)
+
20
81

C6

(
4M2

2 −M3

)
− 28
243

C7M2 +
8

2187
C8,

Q8 = − 4
3
C2M8 +

4
3
C3

(
M2M6 +M3M5 +M2

4 +M5M3 +M6M2 −M7

)

+
16
9
C4(M2M5 +M3M4 +M4M3 +M5M2 −M6)

+
32
27

C4

(
M2

2M4 +M2M
2
3M4M2 +M3M2M3 +M2

3M2 +M4M
2
2

)

+
40
81

C5

(
−M5−4M2

2M3−4M2M3M2 − 4M3M
2
2 + 3M2M4 + 3M2

3 + 3M4M2 + 2M4

)

+
20
41

C6

(
4M2M3 + 4M3M2 −M4 − 8M3

2

)

+
28
243

C7

(
5M2

2 −M3

)
− 112
2187

C8M2 +
1
729

C9.

(2.7)

We also obtain the Taylor expansion of F ′(x(k)) − 3F ′(y(k)):

F ′
(
x(k)
)
− 3F ′

(
y(k)
)
= F ′(ξ)

[
−2I +A1ek +A2e

2
k +A3e

3
k +A4e

4
k +A5e

5
k +A6e

6
k +A7e

7
k +A8e

8
k

]

+O
[
e9k

]
,

(2.8)
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where As = (s + 1)Cs+1 − 3Qs, s = 1, 2, . . . As [F ′(x(k)) − 3F ′(y(k))]−1[F ′(x(k)) − 3F ′(y(k))] = I,
we obtain

[
F ′
(
x(k)
)
− 3F ′

(
y(k)
)]−1

=
[
−1
2
I + Y2ek + Y3e

2
k + Y4e

3
k + Y5e

4
k + Y6e

5
k + Y7e

6
k + Y8e

7
k

][
F ′(ξ)

]−1

+O
[
e8k

]
,

(2.9)

where Y2 = 0 and Ys = (1/2)
∑s

j=3 Ys−j+2Aj−2 − (1/4)As−1, s = 3, 4, . . ..
So,

[
F ′
(
x(k)
)
− 3F ′

(
y(k)
)]−1

F
(
x(k)
)
= − 1

2
ek + R2e

2
k + R3e

3
k + R4e

4
k + R5e

5
k + R6e

6
k + R7e

7
k + R8e

8
k

+O
[
e9k

]
,

(2.10)

where R2 = Y2 − (1/2)C2 and Rs = Ys +
∑s

j=3 Ys−j+2Cj−1 − (1/2)Cs, s = 3, 4, . . ..

We now calculate u(k) = z(k) + [F ′(x(k)) − 3F ′(y(k))]
−1
F(x(k)), and the error equation of

the method at this step is

eu(k) =
1
2
ek − 1

2

[
M2e

2
k +M3e

3
k +M4e

4
k +M5e

5
k +M6e

6
k +M7e

7
k +M8e

8
k

]

− 1
2
ek + R2e

2
k + R3e

3
k + R4e

4
k + R5e

5
k + R6e

6
k + R7e

7
k + R8e

8
k +O

[
e9k

]

= P4e
4
k + P5e

5
k + P6e

6
k + P7e

7
k + P8e

8
k +O

[
e9k

]
,

(2.11)

where Ps = −(1/2)Ms + Rs, s = 4, 5, . . . Then the first three steps define a fourth-order
procedure, and

F
(
u(k)
)
= F ′(ξ)

[
P4e

4
k + P5e

5
k + P6e

6
k + P7e

7
k +
(
P8 + P 2

4

)
e8k

]
+O
[
e9k

]
,

F
(
x(k)
)
+ 2F

(
u(k)
)
= F ′(ξ)

[
ek + C2e

2
k + C3e

3
k + (C4 + 2P4)e4k + (C5 + 2P5)e5k

+(C6 + 2P6)e6k + (C7 + 2P7)e7k + (C8 + 2P8)e8k
]
+O
[
e9k

]
.

(2.12)

So,

[
F ′
(
x(k)
)
− 3F ′

(
y(k)
)]−1[

F
(
x(k)
)
+ 2F

(
u(k)
)]

= − 1
2
ek + L2e

2
k + L3e

3
k + L4e

4
k + L5e

5
k + L6e

6
k

+ L7e
7
k + L8e

8
k +O

[
e9k

]
,

(2.13)

where L2 = Y2 − (1/2)(C2 + P2) and Ls = Ys +
∑s

j=3 Ys−j+2Cj−1 − (1/2)(Cs + Ps), s = 3, 4, . . ..
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At the fourth step, we calculate

ev(k) = zk − ξ +
[
F ′
(
x(k)
)
− 3F ′

(
y(k)
)]−1[

F
(
x(k)
)
+ 2F

(
u(k)
)]

= N6e
6
k +N7e

7
k +N8e

8
k +O

[
e9k

]
,

(2.14)

where Ns = Ls − (1/2)Ms and s = 6, 7, . . . This shows that the first four steps of the method
define a sixth-order scheme. Indeed,

F
(
v(k)
)
= F ′(ξ)

[
N6e

6
k +N7e

7
k +N8e

8
k

]
+O
[
e9k

]
, (2.15)

5F ′
(
x(k)
)
− 3F ′

(
y(k)
)
= F ′(ξ)

[
2I + B1ek + B2e

2
k + B3e

3
k + B4e

4
k + B5e

5
k + B6e

6
k + B7e

7
k + B8e

8
k

]

+O
[
e9k

]
,

(2.16)

where Bs = 5(s + 1)Cs+1 − 3Qs and s = 1, 2 . . . Then,

[
F ′
(
x(k)
)]−1[

5F ′
(
x(k)
)
− 3F ′

(
y(k)
)]

= 2I + S1ek + S2e
2
k + S3e

3
k + S4e

4
k + S5e

5
k + S6e

6
k

+ S7e
7
k + S8e

8
k +O

[
e9k

]
,

(2.17)

[
F ′
(
x(k)
)]−1

F
(
v(k)
)
= 2N6e

6
k + (N7 +X2N6)e7k + (N8 +X2N7 +X3N6)e8k +O

[
e9k

]
, (2.18)

where S1 = B1 + 2X2 and Ss = Bs +
∑s

j=2 Xs−j+2Bj−1 + 2Xs+1, s = 2, 3, . . . . By multiplying (2.17)
and (2.18),

[
F ′
(
x(k)
)]−1[

5F ′
(
x(k)
)
− 3F ′

(
y(k)
)][

F ′
(
x(k)
)]−1

F
(
v(k)
)
= 2N6e

6
k +K7e

7
k +K8e

8
k +O

[
e9k

]
,

(2.19)

where K7 = 2(N7 +X2N6) + S1N6 and K8 = 2(N8 +X2N7 +X3N6) + S1(N7 +X2N6) + S2N6.
Finally,

x(k+1) = ξ +
[
L8 − 1

2
M8 − 1

2
(2(N8 +X2N7 +X3N6) + S1(N7 +X2N6) + S2N6)

]
e8k +O

[
e9k

]
,

(2.20)

and the error equation is

ek+1 =
(
C2

2 −
1
2
C3

)(
2C3

2 + 2C3C2 − 2C2C3 − 20
9
C4

)
e8k +O

[
e9k

]
, (2.21)

proving that the order of convergence of the analyzed method is eight.
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Table 1: Values of the parameters for the different quadratures used.

Quadratures

Number of nodes Chebyshev Legendre Lobatto Radau

σ σ1 σ σ1 σ σ1 σ σ1

1 π 0 2 0 2 0 2 −1
2 π 0 2 0 2 0 2 0
3 π 0 2 0 2 0 2 0

In [14] the authors presented a new procedure to design higher-order schemes. This
technique, called pseudocomposition, uses the two last steps of the predictor method to
obtain a corrected scheme with higher order of convergence.

Theorem 2.2 (see [14]). Let F : Ω ⊆ Rn → Rn be differentiable enoughΩ, let ξ ∈ Ω be a solution of
the nonlinear system F(x) = 0, and let x(0) be an initial estimation close enough to the solution ξ. We
suppose that F ′(x) is continuous and nonsingular at ξ. Let y(k) and z(k) be the penultimate and final
steps of orders q and p, respectively, of a certain iterative method. Taking this scheme as a predictor we
get a new approximation x(k+1) of ξ given by

x(k+1) = y(k) − 2

[
m∑
i=1

ωiF
′
(
η
(k)
i

)]−1
F
(
y(k)
)
, (2.22)

where η(k)
i = (1/2)[(1 + τi)z(k) + (1 − τi)y(k)] and τi, ωi, i = 1, 2, . . . , m are the nodes and weights

of the orthogonal polynomial corresponding to the Gaussian quadrature used. Then,

(1) the obtained set of families will have an order of convergence at least q;

(2) if σ = 2 is satisfied, then the order of convergence will be at least 2q;

(3) if, also, σ1 = 0, the order of convergence will bemin{p + q, 3q},

where
∑n

i=1 ωi = σ and
∑n

i=1 ωiτ
j

i /σ = σj with j = 1, 2.

Depending on the orthogonal polynomial corresponding to the Gaussian quadrature
used in the corrector step, this procedure will determine a family of schemes. Furthermore,
it is possible to obtain different methods in these families by using distinct number of nodes
corresponding to the orthogonal polynomial used (see Table 1). However, according to the
proof of Theorem 2.2 the order of convergence of the obtained methods does not depend on
the number of nodes used.

Let us note that these methods, obtained by means of Gaussian quadratures, seem
to be known interpolation quadrature schemes such as midpoint, trapezoidal, or Simpson’s
method (see [16]). It is only a similitude, as they are not applied on the last iteration x(k),
and the last step of the predictor z(k), but on the two last steps of the predictor. In the
following, we will use a midpoint-like as a corrector step, which corresponds to a Gauss-
Legendre quadrature with one node; for this scheme the order of convergence will be at least
min{q + p, 3q}, by applying Theorem 2.2.

The pseudocomposition can be applied to the proposed scheme M8 with iterative
expression (2.1), but also to M6. By pseudocomposing on M6 and M8 there can be obtained
two procedures of order of convergence 10 and 14 (denoted by PsM10 and PsM14),
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Figure 1: Efficiency index of the different methods for different sizes of the system.

respectively. Let us note that it is also possible to pseudocompose on M4, but the resulting
scheme would be of third order of convergence, which is worse than the original M4, so it
will not be considered.

Following the notation used in (2.1), the last step of PsM10 is

x(k+1) = u(k) − 2

[
F ′
(

v(k) + u(k)

2

)]−1
F
(
u(k)
)
, (2.23)

and the last three steps of psM14 can be expressed as

v(k) = z(k) +
[
F ′
(
x(k)
)
− 3F ′

(
y(k)
)]−1[

F
(
x(k)
)
+ 2F

(
u(k)
)]

,

w(k+1) = v(k) − 1
2

[
F ′
(
x(k)
)]−1[

5F ′
(
x(k)
)
− 3F ′

(
y(k)
)][

F ′
(
x(k)
)]−1

F
(
v(k)
)
,

x(k+1) = v(k) − 2

[
F ′
(

w(k) + v(k)

2

)]−1
F
(
v(k)
)
.

(2.24)

In Figure 1, we analyze the efficiency indices of the proposed methods, compared
with Newton and Jarrat’s schemes and between themselves. There can be deduced the
following conclusions: the new methods M4, M6, and M8 (and also the pseudocomposed
PsM10 and PsM14) improve Newton and Jarratt’s schemes (in fact, the indices of M4 and
Jarratt’s are equal). Indeed, for n ≥ 3 the best index is that of M8. Nevertheless, none
of the pseudocomposed methods improve the efficiency index of their original partners.
Nevertheless, as wewill see in the following section, the pseudocomposed schemes will show
a very stable behavior that makes them worth.
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3. Numerical Results

In order to illustrate the effectiveness of the proposed methods, we will compare them
with other known schemes. Numerical computations have been performed in MATLAB
R2011a by using variable-precision arithmetic, which uses floating-point representation of
2000 decimal digits of mantissa. The computer specifications are Intel(R) Core(TM) i5-2500
CPU @ 3.30GHz with 16.00GB of RAM. Each iteration is obtained from the former by means
of an iterative expression x(k+1) = x(k) − A−1b, where x(k) ∈ R

n, A is a real matrix n × n and
b ∈ R

n. The matrixA and vector b are different according to the method used, but in any case,
we calculateA−1b as the solution of the linear systemAy = b, with Gaussian elimination with
partial pivoting. The stopping criterion used is ||x(k+1) − x(k)|| < 10−200 or ||F(x(k))|| < 10−200.

Firstly, let us consider the following nonlinear systems of different sizes:

(1) F1 = (f1(x), f2(x), . . . , fn(x)), where x = (x1, x2, . . . , xn)
T and fi : R

n → R, i =
1, 2, . . . , n, such that

fi(x) = xixi+1 − 1, i = 1, 2, . . . , n − 1,

fn(x) = xnx1 − 1.
(3.1)

When n is odd, the exact zeros of F1(x) are: ξ1 = (1, 1, . . . , 1)T and ξ2 =
(−1,−1, . . . ,−1)T .

(2) F2(x1, x2) = (x2
1 − x1 − x2

2 − 1,− sin(x1) + x2) and the solutions are ξ1 ≈ (−0.845257,
−0.748141)T and ξ2 ≈ (1.952913, 0.927877)T .

(3) F3(x1, x2) = (x2
1 + x2

2 − 4,− exp(x1) + x2 − 1), being the solutions ξ1 ≈ (1.004168,
−1.729637)T and ξ2 ≈ (−1.816264, 0.837368)T .

(4) F4(x1, x2, x3) = (x2
1 + x2

2 + x2
3 − 9, x1x2x3 − 1, x1 + x2 − x2

3) with roots ξ1 ≈
(2.14025,−2.09029,−0.223525)T , ξ2 ≈ (2.491376, 0.242746, 1.653518)T and ξ1 ≈
(0.242746, 2.491376, 1.653518)T .

Table 2 presents results showing the following information: the different iterative
methods employed (Newton (NC), Jarratt (JT), the new methods M4, M6, and M8, and the
pseudocomposed PsM10 and PsM14), the number of iterations Iter needed to converge to the
solution Sol, the value of the stopping factors at the last step, and the computational order of
convergence ρ (see [17]) approximated by the formula:

ρ ≈ ln
(∥∥x(k+1) − x(k)

∥∥)/(∥∥x(k) − x(k−1)∥∥)

ln
(∥∥x(k) − x(k−1)∥∥)/(∥∥x(k−1) − x(k−2)∥∥) . (3.2)

The value of ρ which appears in Table 2 is the last coordinate of the vector ρ when the
variation between their coordinates is small. Also the elapsed time, in seconds, appears in
Table 2, being the mean execution time for 100 performances of the method (the command
cputime of MATLAB has been used).

We observe from Table 2 that not only the order of convergence and the number of
new functional evaluations and operations are important in order to obtain new efficient
iterative methods to solve nonlinear systems of equations. A key factor is the range of
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Table 2: Numerical results for functions F1 to F4.

Function Method Iter Sol ‖x(k) − x(k−1)‖ ‖F(x(k))‖ ρ e-time (sec)

NC 8 ξ1 1.43e − 121 2.06e − 243 2.0000 8.6407

JT 4 ξ1 1.69e − 60 2.06e − 243 4.0000 3.9347

F1 M4 4 ξ1 1.69e − 60 2.06e − 243 4.0000 3.7813

x(0) = (0.8, . . . , 0.8) M6 4 ξ1 6.94e − 193 4.33e − 1160 6.0000 5.3911
M8 3 ξ1 9.40e − 50 3.51e − 4011 8.0913 5.0065

PsM10 3 ξ1 1.28e − 91 9.54e − 921 10.0545 4.9061

PsM14 3 ξ1 4.65e − 164 0 14.0702 6.1018

NC 17 ξ1 3.37e − 340 1.14e − 340 — 9.2128

JT 9 ξ1 8.18e − 085 1.14e − 340 4.0000 10.1416

F1 M4 9 ξ1 8.18e − 085 1.14e − 340 4.0000 10.9104

x(0) = (0.0015, . . . , 0.0015) M6 7 ξ1 1.40e − 035 9.46e − 216 — 12.3266
M8 19 ξ1 9.50e − 030 1.29e − 240 — 59.4832

PsM10 6 ξ1 3.02e − 102 5.23e − 1027 — 17.9957

PsM14 5 ξ1 1.84e − 162 0 — 22.6130

NC 9 ξ1 2.45e − 181 5.92e − 362 2.0148 0.2395

JT 5 ξ1 9.48e − 189 8.13e − 754 4.0279 0.3250

F2 M4 5 ξ1 9.48e − 189 8.13e − 754 4.0279 0.1841

x(0) = (−0.5,−0.5) M6 4 ξ1 1.34e − 146 2.14e − 878 5.9048 0.2744
M8 3 ξ1 1.90e − 038 1.23e − 302 7.8530 0.3718

PsM10 3 ξ1 6.72e − 72 2.68e − 714 9.9092 0.4674

PsM14 3 ξ1 2.13e − 122 1.95e − 1706 13.9829 0.3187

NC 13 ξ1 2.20e − 182 2.73e − 374 1.9917 0.3713

JT 7 ξ1 2.10e − 179 4.51e − 716 3.9925 0.4001

F2 M4 7 ξ1 2.10e − 179 4.51e − 716 3.9925 0.7535

x(0) = (−5,−3) M6 8 ξ1 2.55e − 036 5.81e − 216 — 0.9382
M8 >5000

PsM10 4 ξ1 2.59e − 021 3.51e − 208 — 0.4363

PsM14 29 ξ2 9.45e − 020 5.05e − 273 — 7.8090

NC 10 ξ1 1.65e − 190 4.61e − 380 2.0000 1.4675

JT 5 ξ1 8.03e − 113 7.59e − 450 3.9995 0.3151

F3 M4 5 ξ1 8.03e − 113 7.59e − 450 3.9995 0.3034

x(0) = (2,−3) M6 4 ξ1 1.25e − 082 2.83e − 493 6.0015 0.3696
M8 4 ξ1 1.54e − 162 3.16e − 1296 7.9993 0.4463

PsM10 3 ξ1 5.59e − 044 1.40e − 436 9.4708 0.4682

PsM14 3 ξ1 3.46e − 068 3.45e − 948 13.1659 0.5925

NC 35 ξ1 3.71e − 177 2.33e − 253 — 1.4828

JT 11 ξ1 3.29e − 143 1.67e − 574 — 0.7781

F3 M4 11 ξ1 3.29e − 143 1.67e − 574 — 0.7535

x(0) = (0.2, 0.1) M6 9 ξ1 1.31e − 064 3.61e − 385 — 0.8001
M8 n.c. ξ1

PsM10 5 ξ1 6.85e − 156 1.06e − 1555 — 0.6352

PsM14 8 ξ2 7.87e − 155 0 — 1.1870
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Table 2: Continued.

Function Method Iter Sol ‖x(k) − x(k−1)‖ ‖F(x(k))‖ ρ e-time (sec)

NC 10 ξ1 1.03e − 135 1.55e − 270 1.9995 2.3263

JT 5 ξ1 9.94e − 073 2.09e − 289 4.0066 0.5296

F4 M4 5 ξ1 9.94e − 073 2.09e − 289 4.0066 0.6340

x(0) = (1,−1.5,−0.5) M6 4 ξ1 9.31e − 057 4.86e − 338 5.9750 0.7443
M8 4 ξ1 4.43e − 046 1.08e − 364 — 0.8282

PsM10 3 ξ1 1.43e − 031 1.04e − 311 9.6674 0.8100

PsM14 3 ξ1 1.91e − 033 4.05e − 462 13.9954 1.0465

NC 12 ξ1 1.08e − 192 1.55e − 384 1.9996 2.7271

JT 6 ξ1 2.31e − 103 7.97e − 412 4.0090 0.7761

F4 M4 6 ξ1 2.31e − 103 7.97e − 412 4.0090 1.0301

x(0) = (7,−5,−5) M6 5 ξ1 2.99e − 086 4.69e − 515 — 1.0090
M8 15 ξ3 1.77e − 071 1.48e − 568 — 3.4007

PsM10 4 ξ1 6.86e − 067 1.25e − 666 — 1.0245

PsM14 7 ξ2 1.09e − 130 9.15e − 1825 — 1.8179
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Figure 2: Real dynamical planes for system F2(x) = 0 and methods M6 and PsM10.

applicability of the methods. Although they are slower than the original methods when
the initial estimation is quite good, when we are far from the solution or inside a region
of instability, the original schemes do not converge or do it more slowly, the corresponding
pseudocomposed procedures usually still converge or do it faster.

The advantage of pseudocomposition can be observed in Figures 2(a) and 2(b)
(methods M6 and PsM10) and Figures 3(a) and 3(b) (methods M8 and PsM14) where the
dynamical plane on R2 is represented: we consider the system of two equations and two
unknowns F2(x) = 0, for any initial estimation in R2 represented by its position in the plane,
a different color (blue or orange, as there exist only two solutions in this region) is used for
the different solutions found (marked by a white point in the figure). Black color represents
an initial point in which the method converges to infinity, and the green one means that
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Figure 3: Real dynamical planes for system F2(x) = 0 and methods M8 and PsM14.
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Figure 4: Real dynamical planes for system F3(x) = 0 and methods M6 and PsM10.

no convergence is found (usually because any linear system cannot be solved). It is clear
that when many initial estimations tend to infinity (see Figure 3(a)), the pseudocomposition
“cleans” the dynamical plane, making the method more stable as it can find one of the
solutions by using starting points that do not allow convergence with the original scheme
(see Figure 3(b)).

If an analogous study is made on system F3(x) = 0, similar conclusions can be
obtained, as the effect of smoothness is clear when the real dynamical plane of a method and
its pseudocomposed partner are compared. So, in Figure 4 the amount of points in the lower
half of the plane that converge to one of the roots is higher after the pseudocomposition, and,
in Figure 5, there is a big green region of no convergence for method M8 that shows to be
convergent when pseudocomposition is applied in PsM14.
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Figure 5: Real dynamical planes for system F3(x) = 0 and methods M8 and PsM14.

We conclude that the presented schemes M4, M6, and M8 show to be excellent, in
terms of order of convergence and efficiency, but also that the pseudocomposition technique
achieves to transform them in competent and more robust new schemes.
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