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We are concerned with three-species predator-prey model including two prey-taxes and Holling
type II functional response under no flux boundary condition. By applying the contraction
mapping principle, the parabolic Schauder estimates, and parabolic Lp estimates, we prove that
there exists a unique global classical solution of this system.

1. Introduction

In addition to random diffusion of the predator and the prey, the spatial-temporal variations
of the predators’ velocity are directed by prey gradient. Several field studies measuring
characteristics of individual movement confirm the basis of the hypothesis about the
dependence of acceleration on a stimulus [1]. Understanding spatial and temporal behaviors
of interacting species in ecological system is a central problem in population ecology. Various
types of mathematical models have been proposed to study problem of predator-prey.
Recently, the appearance of prey-taxis in relation to ecological interactions of species was
studied by many scholars, ecologists, and mathematicians [2–5].

In [2] the authors proved the existence and uniqueness of weak solutions to the two-
species predator-prey model with one prey-taxis. In [3], the author extended the results of
[2] to an n × m reaction-diffusion-taxis system. In [4], the author proved the existence and
uniqueness of classical solutions to this model. In this paper, we deal with three-species
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predator-prey model with two prey-taxes including Holling type II functional response as
follows:

∂u1

∂t
−d1Δu1+∇ · (β1u1∇u2

)
+∇ · (β2u1∇u3

)
=−au1+

e2c2u1u2

m2 + b2u2
+

e3c3u1u3

m3 + b3u3
in (0, T) ×Ω,

∂u2

∂t
− d2Δu2 = r2

(
1 − u2

K2

)
u2 − c2u1u2

m2 + b2u2
in (0, T) ×Ω,

∂u3

∂t
− d3Δu3 = r3

(
1 − u3

K3

)
u2 − c3u1u3

m3 + b3u3
in (0, T) ×Ω,

∂u1

∂ν
=

∂u2

∂ν
=

∂u3

∂ν
= 0 on (0, T) × ∂Ω,

(u1(0, x), u2(0, x), u3(0, x)) = (u10(x), u20(x), u30(x)) ≥ (0, 0) in Ω,

(1.1)

where Ω is a bounded domain in RN(N ≥ 1 is an integer) with a smooth boundary ∂Ω; u1

and ui (i = 2, 3) represent the densities of the predator and prey, respectively; the positive
constants d1, d2, and d3 are the diffusion coefficient of the corresponding species; the positive
constants a,Ki, ri,mi, ei,mi/ci, bi/ci,mi/bi (i = 2, 3) represent the death rate of the predator,
the carrying capacity of prey, the prey intrinsic growth rate, the half-saturation constant, the
conversion rate, the time spent by a predator to catch a prey, the manipulation time which
is a saturation effect for large densities of prey, the density of prey necessary to achieve one-
half the rate, respectively; the predators are attracted by the preys, and the positive constant
βi (i = 1, 2) denotes their prey-tactic sensitivity. The parts β1u1∇u2 and β2u1∇u3 of the flux are
directed toward the increasing population density of u2 and u3, respectively. In this way, the
predators move in the direction of higher concentration of the prey species.

The aim of this paper is to prove that there is a unique classical solution to the model
(1.1). It is difficult to deal with the two prey-taxes terms. To get our goal we employ the
techniques developed by [6, 7] to investigate.

Throughout this paper we assume that

β1 = 0, β2 = 0, for u1 ≥ u1m. (1.2)

The assumptions that β1 = 0 for u1 ≥ u1m and β2 = 0 for u1 ≥ u1m have a clear biological
interpretation [2]: the predators stop to accumulate at given point of Ω after their density
attains a certain threshold value u1m and the prey-tactic sensitivity β1 and β2 vanishes
identically when u1 ≥ u1m.

Throughout this paper we also assume that

u20, u30 ≤ K, ∂Ω ∈ C2+α, u10(x), u20(x), u30(x) ∈ C2+α
(
Ω
)
, where 0 < α < 1,

∂u10

∂ν
=

∂u20

∂ν
=

∂u30

∂ν
= 0, on ∂Ω.

(1.3)
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Denote by C
m+α,β
x,t (QT ) (m ≥ 0 is integer, 0 < α < 1, 0 < β < 1) the space of function u(x, t)

with finite norm [8]:

‖u‖
C

m+α,β
x,t (QT )

=
m∑

|l|=0

[

sup
QT

∣
∣
∣Dl

xu
∣
∣
∣ +

〈
Dl

xu
〉(α)

x,QT

+
〈
Dl

xu
〉(β)

t,QT

]

, (1.4)

where

〈w〉(α)x,QT
=

∑

(x,t),(y,t)∈QT

∣
∣w(x, t) −w

(
y, t

)∣∣
∣
∣x − y

∣
∣α

,

〈w〉(β)t,QT
=

∑

(x,t),(x,τ)∈QT

|w(x, t) −w(x, τ)|
|t − τ |β

.

(1.5)

We denote by C
2+α,1+β
x,t (QT ) the space of functions u(x, t) with norm

‖u‖
C

2+α,β
x,t (QT )

+ ‖ut‖Cα,β
x,t (QT )

. (1.6)

The main result of this paper is as follows.

Theorem 1.1. Under assumptions (1.2) and (1.3), for any given T > 0 there exists a unique solution
U = (u1, u2, u3) ∈ C2+α,1+(α/2)(QT ) of the system (1.1), where QT = (0, T) ×Ω. Moreover,

u1(x, t) ≥ 0, 0 ≤ u2(x, t) ≤ K2, 0 ≤ u3(x, t) ≤ K3, (1.7)

for any x ∈ Ω and t > 0.

This paper is organized as follows. In Section 2, we present some preliminary lemmas
that will be used in proving later theorem. In Section 3, we prove local existence and
uniqueness to system (1.1). In Section 4, we prove global existence to system (1.1).

2. Some Preliminaries

For the convenience of notations, in what follows we denote various constants which depend
on T by N, while we denote various constants which are independent of T byN0.

Lemma 2.1. Let (u, x) ∈ C2+α, 1+(α/2)(QT ). Then

‖u(x, t) − u(x, 0)‖C1+α,α/2(QT ) ≤ N0η(T)‖u‖C2+α,1+(α/2)(QT ), (2.1)

where η(T) = max{Tα/2, T (1−α)/2}.
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Proof. Using the definition of Hölder norm, we have

|u(x, t) − u(x, 0)|
|t|(1+α)/2

≤ |Dtu| · |T |(1−α)/2,

[u(x, t) − u(x, 0)]C1+α,0(QT ) ≤ N0

∥
∥
∥D2

xu(x, t) −D2
xu(x, 0)

∥
∥
∥
L∞(QT )

≤ N0

[
D2

xu
]

C0,α/2(QT )
· |T |α/2

≤ N0[u]C2,α/2(QT ) · |T |α/2,

(2.2)

which yields that

‖u(x, t) − u(x, 0)‖C1+α,(1+α)/2(QT ) ≤ N0η‖u‖C2+α,(1+α)/2(QT ). (2.3)

Therefore,

‖u(x, t) − u(x, 0)‖C1+α,α/2(QT ) ≤ N0η‖u‖C2+α,1+(α/2)(QT ). (2.4)

We now consider the following nonlinear parabolic problem:

∂u1

∂t
− d1Δu1 +∇ · (β1u1∇u2

)
+∇ · (β2u1∇u3

)
= u1f in (0, T) ×Ω,

∂u1

∂ν
= 0 on (0, T) × ∂Ω,

u1(0, x) = u10(x) in Ω.

(2.5)

By the parabolic maximum principle, we have u1(x, t) ≥ 0.

Lemma 2.2. Let

u2(x, t), u3(x, t) ∈ C2+α, 1+(α/2)(QT ) , f(x, t) ∈ Cα,α/2(QT ),

‖u2‖C2+α,1+(α/2)(QT ), ‖u3‖C2+α,1+(α/2)(QT ),
∥∥f

∥∥
Cα,α/2(QT )

≤ N0.
(2.6)

Then, under assumptions (1.2) and (1.3), there exists a unique nonnegative solution u1(x, t) ∈
C2+α,1+(α/2)(QT ) of the nonlinear problem (2.5) for small T > 0 which depends on ‖u10(x)‖C2+α(Ω).

Proof. This proof is similar to that of Lemma 2.1 in [4]. For reader’s convenience we include
the proof here. We will prove by a fixed point argument. Let us introduce the Banach spaceX
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of function u1 with norm ‖u1‖C1+α,α/2(QT )(0 < T < 1) and a subset XA = {u1 ∈ X : u1(x, 0) =
u10(x) and ‖u1‖C1+α,α/2(QT ) ≤ A}, whereA=‖u10(x)‖C2+α(Ω)+‖u20(x)‖C2+α(Ω)+‖u30(x)‖C2+α(Ω)+1. For
any u1 ∈ XA, we define a corresponding function ũ1 = Fu1, where ũ1 satisfies the equations

∂ũ1

∂t
−d1Δũ1−ũ1f =−β1∇u1 · ∇u2 − β2∇u1 · ∇u3 − β1u1Δu2 − β2u1Δu3 in (0, T) ×Ω,

∂ũ1

∂ν
= 0 on (0, T) × ∂Ω,

ũ1(0, x) = u10(x) in Ω.

(2.7)

By u1 ∈ XA, we have

h1 � −β1∇u1 · ∇u2 − β2∇u1 · ∇u3 − β1u1Δu2 − β2u1Δu3 ∈ Cα,α/2(QT ). (2.8)

By the parabolic Schauder theory, this yields that there exists a unique solution ũ to (2.7) and

‖ũ1‖C2+α,1+(α/2)(QT ) ≤ ‖ũ1|t=0‖C2+α(Ω) +M1(A)

≤ A +M1(A) � M2(A),
(2.9)

where M2(A) is some constant which depends only on A. For any function ũ1(x, t), by
Lemma 2.1 and combining (2.9), if T is sufficiently small (T depends only on A), then we
have

‖ũ1(x, t)‖C1+α,α/2(QT ) ≤ ‖ũ1(x, 0)‖C1+α,α/2(QT) +N0η(T)‖ũ1‖C2+α,1+(α/2)(QT )

≤ ‖ũ10(x)‖C2+α + 1 ≤ A.
(2.10)

Therefore, ũ1(x, t) ∈ XA and F maps XA into itself. We now prove that F is contractive. Take
u11, u12 in XA, and set ũ11 = Fu11, ũ12 = Fu12, ṽ = ũ11 − ũ12. Then, it follows from (2.7) that ṽ
solves the following systems:

∂ṽ

∂t
− d1Δṽ − ṽf = h2 in (0, T) ×Ω,

∂ṽ

∂ν
= 0 on (0, T) × ∂Ω,

ṽ(0, x) = 0 in Ω,

(2.11)

where

h2 � −β1(∇u11 − ∇u12) · ∇u2 − β2(∇u11 − ∇u12) · ∇u3

− β1(u11 − u12)Δu2 − β2(u11 − u12)Δu3.
(2.12)
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By u11, u12 ∈ XA and conditions of Lemma 2.2, it is easy to check that

‖h2‖L∞(QT ) ≤
∥
∥β1(∇u11 − ∇u12) · ∇u2

∥
∥
C0(QT )

+
∥
∥β2(∇u11 − ∇u12) · ∇u3

∥
∥
C0(QT )

+
∥
∥β1(u11 − u12)Δu2

∥
∥
C0(QT )

+
∥
∥β2(u11 − u12)Δu3

∥
∥
C0(QT )

≤ N0‖u11 − u12‖C1,0 +N0‖u11 − u12‖C0(QT )

≤ N0‖u11 − u12‖C1,0(QT ).

(2.13)

Using the assumption ‖f‖α,α/2 ≤ N0 and the Lp-estimate, we have

∥
∥f

∥
∥
L∞(QT )

≤ ∥
∥f

∥
∥
Cα,α/2 ≤ N0, ‖ṽ‖w2,1

p
≤ N0‖h2‖L∞(QT ). (2.14)

For any p ≥ 1, by using Sobolev embeddingW2,1
p (QT ) ↪→ C1+γ,(1+γ)/2(QT ) (γ = 1 − (5/p) > α if

we take p sufficiently large), we have

‖ṽ‖C1+γ,(1+γ)/2(QT ) ≤ N0‖h2‖L∞(QT ) ≤ N0‖u11 − u12‖C1,0(QT ). (2.15)

Then, noting γ > α, we can easily check that [4]

‖ṽ‖C1+α,α/2(QT ) ≤ N0T
α/2‖u11 − u12‖C1+α,α/2(QT ). (2.16)

Taking T small such that N0T
α/2 < 1/2, we conclude from (2.16) that F is contractive in XA.

Therefore F has a unique fixed point u1, which is the unique solution to (2.5). Moreover, we
can raise the regularity of u1 toC2+α,1+(α/2)(QT ) by using the parabolic Schauder estimates.

3. Local Existence and Uniqueness of Solutions

In this section, we will prove Theorem 3.1 which show that system (1.1) has a unique solution
U(x, t) = (u1, u2, u3) ∈ C2+α,1+(α/2)(QT ) as done in [6, 7].

Theorem 3.1. Assume that (1.2) and (1.3) hold, then there exists a unique solution U(x, t) =
(u1, u2, u3) ∈ C2+α,1+(α/2)(QT ) of the system (1.2) for small T > 0 which depends on

‖U0(x)‖C2+α(Ω) � ‖u10(x)‖C2+α(Ω) + ‖u20(x)‖C2+α(Ω) + ‖u30(x)‖C2+α(Ω). (3.1)

Furthermore, u1(x, t) ≥ 0, u2(x, t) ≥ 0, u3(x, t) ≥ 0.

Proof. We will prove the local existence by a fixed point argument again. Introducing the
Banach space X of the function U, we define the norm

‖U‖Cα,α/2(QT ) = ‖u1‖Cα,α/2(QT ) + ‖u2‖Cα,α/2(QT ) + ‖u3‖Cα,α/2(QT ) (0 < T < 1), (3.2)
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and a subset

XA =
{
U ∈ X : u1, u2, u3 ≥ 0, ‖U‖Cα,α/2(QT ) ≤ A

}
, (3.3)

where

U(x, 0) = (u10(x), u20(x), u30(x)),

A = ‖u10(x)‖C2+α(Ω) + ‖u20(x)‖C2+α(Ω) + ‖u30(x)‖C2+α(Ω) + 1.
(3.4)

For any U ∈ XA, we define correspondingly function U = HU by U = (u1, u2, u3), where U
satisfies the equations

∂u2

∂t
− d2Δu2 =

[
r2

(
1 − u2

K2

)
− c2u1

m2 + b2u2

]
u2 in (0, T) ×Ω,

∂u3

∂t
− d3Δu3 =

[
r3

(
1 − u3

K3

)
− c3u1

m3 + b3u3

]
u3 in (0, T) ×Ω,

∂u2

∂ν
=

∂u3

∂ν
= 0 on (0, T) × ∂Ω,

u2(x, 0) = u20(x), u3(x, 0) = u30(x), x ∈ Ω,

(3.5)

∂u1

∂t
−d1Δu1+∇ · (β1u1∇u2

)
+∇ · (β2u1∇u3

)
=−au1 +

e2c2u1u2

m2 + b2u2
+

e3c3u1u3

m3 + b3u3
in (0,T) ×Ω,

∂u1

∂ν
= 0 on (0, T) × ∂Ω,

u1(x, 0) = u10(x), x ∈ Ω.

(3.6)

By (3.5), (u1, u2, u3) ∈ XA, assumption (1.3), and the parabolic Schauder theory, we have that
there exists a unique solution u2, u3 to (3.5) and

‖u2‖C2+α,1+(α/2)(QT ) ≤ ‖u2|t=0‖C2+α +M3(A) ≤ A +M3(A) � M4(A). (3.7)

Similarly,

‖u3‖C2+α,1+(α/2)(QT ) ≤ ‖u3|t=0‖C2+α +M5(A) ≤ A +M5(A) � M6(A). (3.8)

Moreover, by parabolic maximum principle, we have

u2(x, t) ≥ 0 in QT, u3(x, t) ≥ 0 in QT. (3.9)
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Similarly, by using Lemma 2.2, from (3.6)we can conclude that there exists a unique solution
u1 satisfying

‖u1‖C2+α,1+(α/2)QT
≤ M7(A), (3.10)

and by parabolic maximum principle we have u1(x, t) ≥ 0 inQT . From (3.7), (3.8), and (3.10),
we have

∥
∥
∥U

∥
∥
∥
C2+α,1+(α/2)(QT )

≤ M8(A). (3.11)

For any function U(x, t), using Lemma 2.1 we get

∥∥∥U(x, t) −U(x, 0)
∥∥∥
Cα,α/2(QT )

≤ N0η(T)‖U‖C2+α,1+(α/2)(QT ). (3.12)

From (3.11) and (3.12), if T is sufficiently small we have

∥∥∥U(x, t)
∥∥∥
Cα,α/2(QT )

≤
∥∥∥U(x, 0)

∥∥∥
Cα,α/2

+N0η(T)M8(A)

≤ ‖U0(x)‖C2+α(Ω) + 1 ≡ A,

(3.13)

which yields U ∈ XA. Therefore, H maps XA into itself.
Next, we can prove that H is contractive as done in the proof of Lemma 2.2 in XA

if we take T sufficiently small. By the contraction mapping theorem H has a unique fixed
point U, which is the unique solution of (1.1). Moreover, we can raise the regularity of U to
C2+α,1+(α/2)(QT ) by using the parabolic Schauder estimates.

4. Global Existence

First we establish some a priori estimates to (1.1).

Lemma 4.1. Suppose that U = (u1, u2, u3) ∈ C2,1(QT ) is a solution to the system (1.1), then there
holds

u1 ≥ 0, 0 ≤ u2 ≤ K2, 0 ≤ u3 ≤ K3. (4.1)
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Proof. It follows from (1.1) that

∂u1

∂t
− d1Δu1 +

(
β1∇u2 + β2∇u3

) · ∇u1

+
(
β1Δu2 + β2Δu3 + a − e2c2u2

m2 + b2u2
− e3c3u3

m3 + b3u3

)
u1 = 0 in (0, T) ×Ω,

∂u1

∂ν
= 0 on (0, T) × ∂Ω,

u1(0, x) = u10(x) ≥ 0 in Ω.

(4.2)

Obviously, u1 ≡ 0 is a subsolution to (4.2). Using the maximum principle, we get u1 ≥ 0.
Similarly, we have u2 ≥ 0 and u3 ≥ 0.

On the other hand, it follows from model (1.1) that

∂u2

∂t
− d2Δu2 − r2

(
1 − u2

K2

)
u2 +

c2u1u2

m2 + b2u2
= 0 ≤ c2K2u1

m2 + b2K2
in (0, T) ×Ω,

∂u2

∂ν
= 0 on (0, T) × ∂Ω,

u2(0, x) = u20(x) in Ω,

(4.3)

which implies that K2 is a subsolution to problem (4.3). Hence we have 0 ≤ u2(x, t) ≤ K2.
Similarly, we get 0 ≤ u3(x, t) ≤ K3. This completes the proof of Lemma 4.1.

Lemma 4.2. Suppose that U = (u1, u2, u3) ∈ C2,1(QT ) is a solution to the system (1.1), then for any
p > 1 there holds

‖u1‖Lp(QT ) ≤ N, ‖u2‖Lp(QT ) ≤ N, ‖u2‖Lp(QT ) ≤ N. (4.4)

Proof. Multiplying the first equation of (1.1) by u
p−1
1 , integrating over QT , using the no-flux

boundary condition, and noting u1 ≥ 0, we get

1
p

∫

Ω
u
p

1(x, t)dx − 1
p

∫

Ω
u
p

0(x, t)dx +
(
p − 1

)
d1

∫ t

0

∫

Ω
u
p−2
1 |∇u1|2dx dt

≤ (
p − 1

)
∫ t

0

∫

Ω
β1u

p−1
1 ∇u1 · ∇u2dx dt +

(
p − 1

)
∫ t

0

∫

Ω
β2u

p−1
1 ∇u1 · ∇u3dx dt

+
e2c2
b2

∫ t

0

∫

Ω
u
p

1dx dt +
e3c3
b3

∫ t

0

∫

Ω
u
p

1dx dt.

(4.5)
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For u1 ≥ u1m, we get

1
p

∫

Ω
u
p

1(x, t)dx − 1
p

∫

Ω
u
p

0(x, t)dx +
(
p − 1

)
d1

∫ t

0

∫

Ω
u
p−2
1 |∇u1|2dx dt

≤
(
e2c2
b2

+
e3c3
b3

)∫ t

0

∫

Ω
u
p

1dx dt.

(4.6)

Therefore

∫

Ω
u
p

1(x, t)dt ≤ N0 +N0

∫ t

0

∫

Ω
u
p

1dx dt. (4.7)

Using Gronwall’s Lemma, we have

∫ t

0

∫

Ω
u
p

1(x, t)dt ≤ N. (4.8)

Therefore, for u1 < u1m, we have

∫ t

0

∫

Ω
u
p

1(x, t)dt ≤
∫ t

0

∫

Ω
u
p

1m(x, t)dt ≤ N. (4.9)

Obviously, we have

∫ t

0

∫

Ω
u
p

2(x, t)dt ≤
∫ t

0

∫

Ω
K

p

2 (x, t)dt ≤ N,

∫ t

0

∫

Ω
u
p

3(x, t)dt ≤
∫ t

0

∫

Ω
K

p

3 (x, t)dt ≤ N.

(4.10)

This completes the proof of Lemma 4.2.

Lemma 4.3. Suppose that U = (u1, u2, u3) ∈ C2,1(QT ) is a solution to the system (1.1), then for any
p > 5 there holds

‖u1‖w2,1
p (QT ) ≤ N, ‖u2‖w2,1

p (QT ) ≤ N, ‖u3‖w2,1
p (QT ) ≤ N. (4.11)

Proof. Note that the second equation of (1.1) can be rewritten as follows:

∂u2

∂t
− d2Δu2 −

(
r2 − r2

K2
u2 − c2u1

m2 + b2u2

)
u2 = 0, (4.12)

where ‖r2 − (r2/K2)u2 − (c2u1/(m2 + b2u2))‖Lp(QT ) ≤ N.
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By the parabolic Lp-estimate, we have

‖u2‖w2,1
p (QT ) ≤ N. (4.13)

Using the Sobolev embedding theorem (taking p > 5), we get

‖∇u2‖L∞(QT ) ≤ N. (4.14)

Similarly, we can obtain

‖u3‖w2,1
p (QT ) ≤ N,

‖∇u3‖L∞(QT ) ≤ N.
(4.15)

It follows from the first equation of (1.1) that

∂u1

∂t
− d1Δu1 +

(
β1∇u2 + β2∇u3

) · ∇u1

= −
(
β1Δu2 + β2Δu3 + a − e2c2u2

m2 + b2u2
− e3c3u3

m3 + b3u3

)
u1 in (0, T) ×Ω,

∂u1

∂ν
= 0 on (0, T) × ∂Ω,

u1(0, x) = u10(x) ≥ 0 in Ω,

(4.16)

where

∥∥∥∥−
(
β1Δu2 + β2Δu3 + a − e2c2u2

m2 + b2u2
− e3c3u3

m3 + b3u3

)
u1

∥∥∥∥
Lp(QT )

≤ N. (4.17)

Using the parabolic Lp-estimates again, we have

‖u1‖w2,1
p (QT ) ≤ N. (4.18)

This completes the proof of Lemma 4.3.

Lemma 4.4. Suppose that U = (u1, u2, u3) ∈ C2,1(QT ) is a solution to the system (1.1), then there
holds

‖u1‖C2+α,1+(α/2)(QT ) ≤ N, ‖u2‖C2+α,1+(α/2)(QT ) ≤ N, ‖u3‖C2+α,1+(α/2)(QT ) ≤ N. (4.19)

Proof. Using the Sobolev embedding theorem (taking p > 5) and Lemma 4.3, we have

‖u1‖Cα,α/2(QT ) ≤ N, ‖u2‖Cα,α/2(QT ) ≤ N, ‖u3‖Cα,α/2(QT ) ≤ N. (4.20)
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Using (4.20) and the Schauder estimates to the second and third equation of model (1.1), we
have

‖u2‖C2+α,1+(α/2)(QT ) ≤ N, ‖u3‖C2+α,1+(α/2)(QT ) ≤ N. (4.21)

Applying the parabolic Schauder estimate to (4.16) and using (4.21), we have

‖u1‖C2+α,1+(α/2)(QT ) ≤ N. (4.22)

This completes the proof of Lemma 4.4.

Therefore, we can extend the local solution established in Theorem 3.1 to all t > 0, as
done in [6, 7]. Namely, we have the following.

Theorem 4.5. Under assumptions (1.2) and (1.3), there exists a unique solution U = (u1, u2, u3) ∈
C2+α,1+(α/2)(QT ) of the system (1.2) for any given T > 0. Moreover,

u1(x, t) ≥ 0, 0 ≤ u2 ≤ K2, 0 ≤ u3 ≤ K3. (4.23)

for any x ∈ Ω and t > 0.
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