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We study the existence of entire positive solutions for the semilinear elliptic system with quadratic
gradient terms, Δui + |∇ui|2 = pi(|x|)fi(u1, u2, . . . , ud) for i = 1, 2, . . . , d on RN,N ≥ 3 and
d ∈ {1, 2, 3, . . .}. We establish the conditions on pi that ensure the existence of nonnegative radial
solutions blowing up at infinity and also the conditions for bounded solutions on the entire space.
The condition on fi is simple and different to the Keller-Osserman condition.

1. Introduction

We study the existence of entire blow-up positive solutions of the following elliptic system
with quadratic gradient terms:

Δu1 + |∇u1|2 = p1(|x|)f1(u1, u2, . . . , ud), x ∈ RN,

...

...

Δud + |∇ud|2 = pd(|x|)fd(u1, u2, . . . , ud), x ∈ RN,

(1.1)

where d ≥ 1, N ≥ 3, pi (i = 1, 2, . . . , d) are c-positive functions and fi : [0,∞)d → [0,∞) are
nonnegative, continuous, and nondecreasing functions for each variable.
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For convenience we recall the definitions about c-positive functions and entire blow-
up positive solutions.

(i) A function p is c-positive (or circumferentially positive) in a domain Ω ⊆ RN if p
is nonnegative on Ω and satisfies the following condition: if x0 ∈ Ω and p(x0) = 0,
then there exists a domain Ω0 such that x0 ∈ Ω0 ⊂ Ω and p(x) > 0 for all x ∈ ∂Ω0.

(ii) A solution (u1, u2, . . . , ud) of the system (1.1) is called an entire blow-up solution
(or explosive solution) if it is a classical solution of the above problem on RN and
ui(x) → ∞, (i = 1, 2, . . . , d) as |x| → ∞.

Existence and nonexistence of blow-up solutions of semilinear elliptic equations and
systems have receivedmuch attention worldwide. Bieberbach [1] is the first to study blow-up
solutions to the semilinear elliptic problem

Δu = f(u), x ∈ Ω, (1.2)

where f(u) = eu. Following Bieberbach’s work, many authors have studied related problems
for single equations and systems. In 1957, Keller [2] and Osserman [3] established the
necessary and sufficient conditions for the existence of solutions to (1.2) on bounded domains
in Rn. They showed that blow-up solutions exist on Ω if and only if f satisfies the following
Keller-Osserman condition:

∫+∞

1

[∫ t

0
f(s)ds

]−1/2
dt < +∞. (1.3)

Bandle and Marcus [4] later examined the equation

Δu = p(x)f(u) (1.4)

with f is nondecreasing on [0,+∞) and proved the existence of positive blow-up solutions
under the condition that the function f satisfies the Keller-Osserman condition (1.3) and p

is continuous and strictly positive on Ω. Lair [5] showed that the results also hold for (1.4)
when p is allowed to vanish on a large part of Ω, including its boundary. In addition, many
authors have examined some more specific forms of (1.4). The equation

Δu = p(x)uγ (1.5)

has been of particular interest. Cheng and Ni [6] considered the superlinear case γ > 1 and
proved that for this case (1.5) has blow-up solutions on bounded domains provided p is
strictly positive on ∂Ω. Lair and Wood [7] generalized this to allow p to vanish on some
portions of Ω including its boundary and also showed the existence of an entire blow-up
solution to (1.5) provided that

∫+∞

0
rmax
|x|=r

p(r)dr < +∞. (1.6)

Obviously, condition (1.6) is weaker than the requirements in [6].
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In [8], Lair and Wood proved that (1.5) has entire blow-up radial solutions if and only
if

∫+∞

0
rp(r)dr < +∞. (1.7)

They also demonstrated that for a bounded domainΩ, (1.5) has no positive blow-up solution
when p is continuous in Ω. In addition, they proved that nonnegative, entire bounded
solutions do not exist for (1.5) if

∫+∞

0
rmin
|x|=r

p(r)dr = +∞. (1.8)

Although semilinear elliptic systems are the natural extension of single equations in
many areas of applications, the results andmethods for the study of single equations are often
not applicable to the systems of equations. Recently, Lair and Wood [9] studied the existence
of entire positive solutions of the system

Δu = p1(|x|)vα, x ∈ RN,

Δv = p2(|x|)uβ, x ∈ RN.
(1.9)

In the sublinear case 0 < α ≤ β ≤ 1, the authors proved that provided that the nonnegative
functions p and q are continuous, c-positive, and satisfy the fast decay conditions

∫∞

0
tpi(t)dt < ∞, i = 1, 2, (F)

then the entire positive solutions are bounded, while if p and q satisfy the slow decay
conditions

∫∞

0
tpi(t)dt = ∞, i = 1, 2, (D)

then the entire positive solutions blow up. For the superlinear case α, β > 1, the fast decay
conditions (F) are required to hold. Later, Cı̂rstea and Rădulescu [10] improved the results
of Lair and Wood [9] and proved that for p, q ∈ C0,α

loc(R
N)(0 < α < 1), the following semilinear

elliptic system

Δu = p1(x)f(v), x ∈ RN,

Δv = p2(x)g(u), x ∈ RN
(1.10)

has entire solutions if f and g satisfy

lim
t→∞

f
(
cg(t)

)
t

= 0 (1.11)
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for all c > 0 and has solutions that are boundedwhen (D) holds. Further, entire solutions exist
and are blow-up when (F) holds. An analogous condition was also employed by Ghergu and
Rădulescu [11] to study the following elliptic system with gradient terms:

Δu + |∇u| = p1(|x|)f(v), x ∈ Ω,

Δv + |∇v| = p2(|x|)g(u), x ∈ Ω,
(1.12)

where Ω is a bounded domain or the whole space. Peng and Song [12] also studied the
existence of entire blow-up positive solutions of system (1.10) when the c-positive functions
pi, i = 1, 2 satisfy the decay conditions (F). Peng and Song [12] also imposed on f and g the
following Keller-Osserman conditions:

∫∞

1

[∫ s

0
f(t)dt

]−1/2
ds < ∞,

∫∞

1

[∫ s

0
g(t)dt

]−1/2
ds < ∞, (1.13)

and the convexity conditions

f(λa + (1 − λ)b) ≤ λf(a) + (1 − λ)f(b), λ ∈ (0, 1),

g(λa + (1 − λ)b) ≤ λg(a) + (1 − λ)g(b), a, b ≥ 0.
(1.14)

Both papers [6, 12] considered system (1.10) where the nonnegative functions pi (i = 1, 2) ∈
C[0,+∞) satisfy (F) and the functions f, g ∈ C[0,+∞) are nondecreasing and satisfy the
Keller-Osserman condition (1.13), and

f(0) = g(0) = 0, f(s) > 0, g(s) > 0, for s > 0. (1.15)

Recently, Zhang and Liu [13] studied the following semilinear elliptic system with the mag-
nitude of the gradient

Δu + |∇u| = p(|x|)f(u, v), x ∈ RN,

Δv + |∇v| = q(|x|)g(u, v), x ∈ RN.
(1.16)

The results of nonexistence of entire positive solutions have been established if f and g
are sublinear and p and q have fast decay at infinity, while if f and g satisfy some growth
conditions at infinity, and p, q are of slow decay or fast decay at infinity, then the system
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has infinitely many entire solutions, which are large or bounded. In [14], Covei studied the
existence of solution of the following semilinear elliptic system:

Δu1 = p1(x)f1(u1, u2, . . . , ud), x ∈ RN,

...

...

Δud = pd(x)fd(u1, u2, . . . , ud), x ∈ RN.

(1.17)

Under some conditions on fi, pi, the system (1.17) has a bounded positive entire solution
based on successive approximation. Furthermore, a nonradially symmetric solution also was
obtained by using a lower and upper solution method. For more complicated Schrödinger
systems, some nice work had been done by Covei in [15–17]with single equations or a system
with (p1, . . . , pd)-Laplacian in RN . For further results on relevant work on single equations
and/or systems as well as methods for the study of blow-up solutions of differential
equations, see [8, 18–32] and the references therein.

The authors in [13, 14] only studied the semilinear elliptic system with the magnitude
of the gradient term or without the gradient term. For elliptic systems involving nonlinear
quadratic gradient terms, no result has been obtained. Thus, motivated by [11–17], we study
the more general systems case with indefinite number of equations involving a nonlinear
quadratic gradient term. In our results, a simple condition (2.5) has been used instead of
the Keller-Osserman condition (1.13) commonly used in previous results. The main results
obtained are presented in Section 2 by Theorems 2.3 to 2.6, while the proofs of the theorems
are given in Section 3.

2. Main Results

For convenience in presenting the results, we here define

Pi(∞) = lim
r→∞

Pi(r), Pi(r) =
∫ r

0
t1−N

∫ t

0
sN−1pi(s)dsdt, r ≥ 0, i = 1, 2, . . . , d,

F(∞) = lim
r→∞

F(r), F(r) =
∫ r

a

ds∑d
i=1 sfi(ln s, ln s, . . . , ln s)

, r ≥ a > 1, i = 1, 2, . . . , d.

(2.1)

Remark 2.1. For any i ∈ {1, 2, . . . , d}, since

F ′(r) =
1∑d

i=1 rfi(ln r, ln r, . . . , ln r)
> 0, ∀r > a, (2.2)

F admits the inverse function F−1 on [0, F(+∞)).



6 Abstract and Applied Analysis

Lemma 2.2 (see [8, 23]). The slow decay condition
∫∞

0
tpi(t)dt = ∞, i = 1, 2, . . . , d (2.3)

holds if and only if Pi(∞) = ∞.

The first result we obtained is the condition for nonexistence of entire positive blow-
up solution, which asserts that if both fi, i = 1, 2, . . . , d are bounded, then problem (1.1) does
not have positive entire blow-up solution as detailed by the following theorem.

Theorem 2.3. Suppose fi, i = 1, 2, . . . , d satisfy

max

⎧⎨
⎩ sup∑d

i=1 ui≥1
f1(u1, u2, . . . , ud), . . . , sup∑d

i=1 ui≥1
fd(u1, u2, . . . , ud)

⎫⎬
⎭ < +∞, (2.4)

and each pi, i = 1, 2, . . . , d satisfy the decay conditions (F). Then problem (1.1) does not have positive
entire blow-up solution.

The other main results we obtained are the conditions, respectively, for the existence of
infinitelymany positive entire blow-up solutions and infinitelymany positive entire bounded
solutions, which are summarized in the following three theorems.

Theorem 2.4. If there exists a constant a > 1 such that

∫∞

a

ds∑d
i=1 sfi(ln s, ln s, . . . , ln s)

= ∞, (2.5)

then the system (1.1) has infinitely many classical positive entire solutions (u1, u2, . . . , ud). If, in
addition, pi, i = 1, 2, . . . , d satisfy the decay conditions (D), then all the positive entire solutions of
(1.1) are blow-up. Moreover, if pi, i = 1, 2, . . . , d satisfy the decay conditions (F), then all the positive
entire solutions of (1.1) are bounded.

Theorem 2.5. If there exists a constant a > 1 such that

∫∞

a

ds∑d
i=1 sfi(ln s, ln s, . . . , ln s)

< ∞, (2.6)

and pi, i = 1, 2, . . . , d satisfy the decay conditions (F) and, in addition, there exist bi > a, i =
1, 2, . . . , d such that

d∑
i=1

Pi(∞) < F(∞) − F

(
d∑
i=1

bi

)
, (2.7)

then the system (1.1) has a positive radial bounded solution (u1, u2, . . . , ud) satisfying

bi + bifi(ln b1, ln b2, . . . , ln bd)Pi(r) ≤ ui(r) ≤ F−1
(
F

(
d∑
i=1

bi

)
+

d∑
i=1

Pi(r)

)
, r ≥ 0. (2.8)
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Theorem 2.6.

(i) If pi, i = 1, 2, . . . , d satisfy the decay conditions (D) and

lim
s→∞

d∑
i=1

fi(ln s, ln s, . . . , ln s) = 0, (2.9)

then the system (1.1) has infinitely many positive entire blow-up solutions.

(ii) If pi, i = 1, 2, . . . , d satisfy the decay conditions (F) and

sup
s≥0

d∑
i=1

sfi(ln s, ln s, . . . , ln s) < ∞, (2.10)

then the system (1.1) has infinitely many positive entire bounded solutions.

3. Proofs of the Theorems

Firstly, via the change of variables φi = eui , i = 1, 2, . . . , d, we turn the system (1.1) to the
following equivalent system with no gradient terms

Δφ1 = p1(|x|)φ1f1
(
lnφ1, lnφ2, . . . , lnφd

)
, x ∈ RN,

...

...

Δφi = pi(|x|)φifi
(
lnφ1, lnφ2, . . . , lnφd

)
, x ∈ RN,

...

...

Δφd = pd(|x|)φdfd
(
lnφ1, lnφ2, . . . , lnφd

)
, x ∈ RN.

(3.1)

Thus we only need to consider system (3.1).

Proof of Theorem 2.3. We use proof by contradiction to testify. We suppose that the system (3.1)
has the positive entire blow-up solution (φ1, φ2, . . . , φd). Consider the spherical average of φi

defined by

φi(r) =
1

cNrN−1

∫
|x|=r

φi(x)dσx, r ≥ 0, (3.2)

where cN is the surface area of the unit sphere in RN . Since φi are positive entire blow-up
solutions, it follows that φi are positive and limr→∞φi(r) = +∞. By the change of variable
x = ry, we have

φi(r) =
1
cN

∫
|y|=1

φi

(
ry
)
dσy, r ≥ 0. (3.3)
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Then

φi

′
(r) =

1
cN

∫
|y|=1

∇φi

(
ry
) · ydσy, r ≥ 0. (3.4)

Thus by the divergence theorem and (3.4), we have

φi

′
(r) =

r

cN

∫
|y|<1

Δφi

(
ry
)
dy =

1
cNrN−1

∫
|x|<r

Δφi(x)dx

=
1

cNrN−1

∫ r

0
dρ

∫
|x|=ρ

Δφi(x)dσx, ∀r ≥ 0.

(3.5)

From [33], it follows from (3.5) that

φi

′′
(r) =

1
cNrN−1

∫
|x|=r

Δφi(x)dσx − N − 1
cNrN

∫ r

0
dρ

∫
|x|=ρ

Δφi(x)dσx

=
1

cNrN−1

∫
|x|=r

Δφi(x)dσx − N − 1
r

φi

′
(r), ∀r ≥ 0.

(3.6)

Set

Ui(r) = max
0≤t≤r

φi(t), (3.7)

Then, obviously,Ui are positive and nondecreasing functions. MoreoverUi ≥ φi andUi(r) →
+∞ as r → +∞. Note from (2.4) that there exists M > 0 such that

max
{
f1(u1, u2, . . . , ud), . . . , fd(u1, u2, . . . , ud)

} ≤ M, u1 + u2 + · · · + ud ≥ 0. (3.8)

Now (3.6) and (3.8) lead to

φi

′′
+
N − 1

r
φi

′ ≤ 1
cNrN−1

∫
|x|=r

Δφi(x)dσx

= pi(r)
1

cNrN−1

∫
|x|=r

φi(x)fi
(
lnφ1(x), lnφ2(x), . . . , lnφd(x)

)
dσx

≤ Mpi(r)
1

cNrN−1

∫
|x|=r

(
1 +

d∑
i=1

φi(x)

)
dσx = Mpi(r)

(
1 +

d∑
i=1

φi(r)

)

≤ Mpi(r)(1 +Ui(r)),

(3.9)

for all r ≥ 0. It follows that

(
rN−1φi

′)′ ≤ MrN−1pi(r)(1 +Ui(r)), r ≥ 0. (3.10)
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So, for all r ≥ r0 ≥ 0, we have

φi(r) ≤ φi(r0) +M

∫ r

r0

t1−N
∫ t

0
sN−1pi(s)(1 +Ui(s))dsdt

≤ φi(r0) +M

∫ r

r0

t1−N(1 +U(t))
∫ t

0
sN−1p(s)dsdt

≤ φi(r0) +M(1 +Ui(r))
∫ r

r0

t1−N
∫ t

0
sN−1pi(s)dsdt

≤ φi(r0) +M(1 +Ui(r))
∫ r

r0

t1−N
∫ t

0
sN−1pi(s)dsdt

≤ φi(r0) +
M(1 +Ui(r))

N − 2

(∫ r

r0

tpi(t)dt − 1
rN−1
0

∫ r

r0

tN−1pi(t)dt

)

≤ φi(r0) +
M(1 +Ui(r))

N − 2

∫ r

r0

tpi(t)dt.

(3.11)

Note that because of (F), we can choose r0 > 0 sufficiently large such that

max

{∫∞

r0

rp1(r)dr, . . . ,
∫∞

r0

rpd(r)dr

}
<

N − 2
4M

. (3.12)

Since limr→∞φi(t) = ∞, it follows that we can find r1 ≥ r0 such that

Ui(r) = max
r0≤t≤r

φi(t), ∀r ≥ r1. (3.13)

Thus (3.11) and (3.13) yield

Ui(r) ≤ φi(r0) +
M
(
1 +Ui(r)

)
N − 2

∫ r

r0

tpi(t)dt, ∀r ≥ r1.
(3.14)

By (3.12), we have

Ui(r) ≤ φi(r0) +
1 +Ui(r)

4
, ∀r ≥ r1, (3.15)

that is,

Ui(r) ≤ Ci +
Ui(r)
4

, ∀r ≥ r1, (3.16)

where Ci = (1/4) + φi(r0) > 0, which implies

d∑
i=1

Ui(r) ≤ 4
3

d∑
i=1

Ci, ∀r ≥ r1. (3.17)
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The inequality (3.17) means that Ui are bounded and so φi are bounded which is a contra-
diction. It follows that (1.1) has no positive entire blow-up solutions, and the proof is
completed.

Proof of Theorem 2.4. We start by showing that (1.1) has positive radial solutions. Towards
this end we fix bi > a, i = 1, 2, . . . , d and we show that the system

φi
′′ +

N − 1
r

φi
′ = pi(r)φi(r)fi

(
lnφ1(r), lnφ2(r), . . . , lnφd(r)

)
, i = 1, 2, . . . , d

φi
′ ≥ 0, on [0,∞), φi(0) = bi > a

(3.18)

has a solution (φ1, φ2, . . . , φd). Thus (U1(x), U2(x), . . . , Ud(x)) = (φ1(|x|), φ2(|x|), . . . , φd(|x|))
are positive solutions of (3.1). Integrating (3.18), for any r ≥ 0 and i = 1, 2, . . . , d, we have

φi(r) = bi +
∫ r

0
t1−N

∫ t

0
sN−1pi(s)φi(s)fi

(
lnφ1(s), lnφ2(s), . . . , lnφd(s)

)
dsdt. (3.19)

Let {φ(k)
i }k≥0 be sequences of positive continuous functions defined on [0,∞) for i =

1, 2, . . . , d by

φ
(0)
i (r) = bi,

φ
(k+1)
i (r) = bi +

∫ r

0
t1−N

∫ t

0
sN−1pi(s)φ

(k)
i (s)

× fi
(
lnφ(k)

1 (s), lnφ(k)
2 (s), . . . , lnφ(k)

d (s)
)
dsdt.

(3.20)

Obviously, for all r ≥ 0, we have φ
(k)
i (r) ≥ bi, φ0 ≤ φ1. The monotonicity of fi yields φ1(r) ≤

φ2(r), r ≥ 0. Repeating the argument, we deduce that

φ
(k)
i (r) ≤ φ

(k+1)
i (r), r ≥ 0, k ≥ 1, (3.21)

which means {φ(k)
i }k≥0 are nondecreasing sequences on [0,∞). Since

φ
(k+1)
i

′
(r) = r1−N

∫ r

0
sN−1pi(s)φ

(k)
i (s)fi

(
lnφ(k)

1 (s), lnφ(k)
2 (s), . . . , lnφ(k)

d (s)
)
ds

≤ φ
(k)
i (r)fi

(
lnφ(k)

1 (r), lnφ(k)
2 (r), . . . , lnφ(k)

d (r)
)
Pi

′(r),

(3.22)
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we have

d∑
i=1

φ
(k+1)
i

′
(r) ≤

d∑
i=1

φ
(k+1)
i (r)

d∑
i=1

fi
(
lnφ(k)

1 (r), lnφ(k)
2 (r), . . . , lnφ(k)

d (r)
)
Pi

′(r)

≤
d∑
i=1

φ
(k+1)
i (r)

d∑
i=1

fi

(
ln

d∑
i=1

φ
(k+1)
i (r), ln

d∑
i=1

φ
(k+1)
i (r), . . . , ln

d∑
i=1

φ
(k+1)
i (r)

)

×
d∑
i=1

Pi
′(r).

(3.23)

Let w(k+1)(r) =
∑d

i=1 φ
(k+1)
i (r)which implies

w′(k+1)(r)

w(k+1)(r)
∑d

i=1 fi
(
lnw(k+1)(r), lnw(k+1)(r), . . . , lnw(k+1)(r)

) ≤
d∑
i=1

Pi
′(r). (3.24)

So, we have

∫ r

0

w′(k+1)(t)

w(k+1)(t)
∑d

i=1 fi
(
lnw(k+1)(t), lnw(k+1)(t), . . . , lnw(k+1)(t)

)dt ≤
d∑
i=1

Pi(r), (3.25)

that is

F

(
d∑
i=1

φ
(k+1)
i (r)

)
− F

(
d∑
i=1

bi

)
≤

d∑
i=1

Pi(r), ∀r ≥ 0. (3.26)

As F−1 increases on [0,∞), from (3.26), we have that

d∑
i=1

φ
(k+1)
i (r) ≤ F−1

(
F

(
d∑
i=1

bi

)
+

d∑
i=1

Pi(r)

)
, ∀r ≥ 0. (3.27)

It follows from F(∞) = ∞ that F−1(∞) = ∞. By (3.27), the sequences {φ(k)
i } are bounded

and increasing on [0, c0] for any c0 > 0. Thus, {φ(k)
i } have subsequences converging

uniformly to φi on [0, c0]. Consequently, (φ1, φ2, , . . . , φd) is a positive solution of (3.18); that is,
(U1, U2, . . . , Ud) is a entire positive solution of (3.1). By noticing φi(0) = bi and that bi ∈ (0,∞)
was chosen arbitrarily, it follows that (1.1) has infinitely many positive entire solutions.

(i) If Pi(∞) = ∞, since

φi(r) ≥ bi + bifi(ln b1, ln b2, . . . , ln bd)Pi(r), r ≥ 0, (3.28)
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we have

lim
r→∞

φi(r) = ∞, (3.29)

which means that (U1, U2, . . . , Ud) are positive entire blow-up solutions of (1.1).

(ii) If Pi(∞) < ∞, then

d∑
i=1

φi(r) ≤ F−1
(
F

(
d∑
i=1

bi

)
+

d∑
i=1

Pi(∞)

)
< ∞, (3.30)

which implies that (U1, U2, . . . , Ud) are positive entire bounded solutions of (1.1).
Proof of the theorem is now completed.

Proof of Theorem 2.5. If condition (2.7) holds, then we have

F

(
d∑
i=1

φ
(k+1)
i (r)

)
≤ F

(
d∑
i=1

bi

)
+

d∑
i=1

Pi(r) ≤ F

(
d∑
i=1

bi

)
+

d∑
i=1

Pi(∞) < F(∞) < ∞. (3.31)

Since F−1 is strictly increasing on [0,∞), we have

d∑
i=1

φ
(k+1)
i (r) ≤ F−1

(
F

(
d∑
i=1

bi

)
+

d∑
i=1

Pi(∞)

)
< ∞. (3.32)

The last part of the proof is clear from that of Theorem 2.4. Thus we omit it.

Proof of Theorem 2.6. (i) It follows from (3.20) that

φ
(k)
i (r) ≤ φ

(k+1)
i (r) ≤ bi + φ

(k)
i (r)fi

(
lnφ(k)

1 (r), lnφ(k)
2 , . . . , lnφ(k)

d

)
Pi(r)

≤ bi + φ
(k)
i (r)fi

(
ln

d∑
i=1

φ
(k)
i (r), ln

d∑
i=1

φ
(k)
i (r), . . . , ln

d∑
i=1

φ
(k)
i (r)

)
Pi(r).

(3.33)

Let R > 0 be arbitrary. From (3.33) we get, for k ≥ 1,

d∑
i=1

φ
(k)
i (R) ≤

d∑
i=1

bi +
d∑
i=1

φ
(k)
i (R)

×
d∑
i=1

fi

(
ln

d∑
i=1

φ
(k)
i (R), ln

d∑
i=1

φ
(k)
i (R), . . . , ln

d∑
i=1

φ
(k)
i (R)

)
d∑
i=1

Pi(R).

(3.34)
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This implies

1 ≤
∑d

i=1 bi∑d
i=1 φ

(k)
i (R)

+
d∑
i=1

fi

(
ln

d∑
i=1

φ
(k)
i (R), ln

d∑
i=1

φ
(k)
i (R), . . . , ln

d∑
i=1

φ
(k)
i (R)

)
d∑
i=1

Pi(R).

(3.35)

Taking into account the monotonicity of (
∑d

i=1 φ
(k)
i (R))

k≥1, there exists

L(R) := lim
k→∞

(
d∑
i=1

φ
(k)
i (R)

)
. (3.36)

We claim that L(R) is finite. Indeed, if not, we let k → ∞ in (3.35), and the assumption (2.9)
leads us to a contradiction. Thus L(R) is finite. Since φ

(k)
i are increasing functions, it follows

that the map L : (0,∞) → (0,∞) is nondecreasing and

d∑
i=1

φ
(k)
i (r) ≤

d∑
i=1

φ
(k)
i (R) ≤ L(R), ∀r ∈ [0, R], ∀k ≥ 1. (3.37)

Thus the sequences {(φ(k)
i )k≥1} are bounded from above on bounded sets. Let

φi(r) := lim
k→∞

φ
(k)
i (r), ∀r ≥ 0. (3.38)

Then (φ1, φ2, . . . , φd) is a positive solution of (3.18).
In order to conclude the proof, it is sufficient to show that (φ1, φ2, . . . , φd) is a blow-up

solution of (3.18). Let us remark that (3.19) implies

φi(r) ≥ bi + bifi(ln b1, ln b2, . . . , ln bd)Pi(r), r ≥ 0. (3.39)

Since fi are positive functions and

Pi(∞) = ∞, (3.40)

we can conclude that (φ1, φ2, . . . , φd) is a blow-up solution of (3.18), and so (U1, U2, . . . , Ud)
is a positive entire blow-up solution of (3.1). Thus any blow-up solution of (3.1) provides a
positive entire blow-up solution of (1.1). Since bi ∈ (0,∞) was chosen arbitrarily, it follows
that (1.1) has infinitely many positive entire blow-up solutions.

(ii) If

sup
s≥0

d∑
i=1

sfi(ln s, ln s, . . . , ln s) < ∞ (3.41)
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holds, then by (3.35), we have

L(R) := lim
k→∞

d∑
i=1

φ
(k)
i (R) < ∞. (3.42)

Thus

d∑
i=1

φ
(k)
i (r) ≤

d∑
i=1

φ
(k)
i (R) ≤ L(R), ∀r ∈ [0, R], ∀k ≥ 1. (3.43)

So the sequences {φ(k)
i }k≥1 are bounded from above on bounded sets. Let

φ(r) := lim
k→∞

φ
(k)
i (r), ∀r ≥ 0. (3.44)

Then (φ1, φ2, . . . , φd) is a positive solution of (3.18).
It follows from (3.33) and (3.35) that (φ1, φ2, . . . , φd) is bounded, which implies that

(1.1) has infinitely many positive entire bounded solutions.

In the end of this work we also remark on a system with different gradient exponent

Δu1 + |∇u1|a1 = p1(|x|)f1(u1, u2, . . . , ud), x ∈ RN,

...

...

Δud + |∇ud|ad = pd(|x|)fd(u1, u2, . . . , ud), x ∈ RN,

(3.45)

where ai ∈ (0,+∞), ai /= 1, 2, fi : [0,∞)d → [0,∞) are nonnegative, continuous, and
nondecreasing functions for each variable. For these cases, the problem is far more complex,
and no analogous results have been established [9, 10, 13, 18, 21]. We also anticipate that the
methods and concepts here can be extended to the systems with qi-Laplacian as considered
by Covei [14–17].
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[5] A. V. Lair, “A necessary and sufficient condition for existence of large solutions to semilinear elliptic

equations,” Journal of Mathematical Analysis and Applications, vol. 240, no. 1, pp. 205–218, 1999.



Abstract and Applied Analysis 15

[6] K.-S. Cheng and W.-M. Ni, “On the structure of the conformal scalar curvature equation on Rn,”
Indiana University Mathematics Journal, vol. 41, no. 1, pp. 261–278, 1992.

[7] A. V. Lair and A. W. Wood, “Large solutions of semilinear elliptic problems,” Nonlinear Analysis A,
vol. 37, no. 6, pp. 805–812, 1999.

[8] A. V. Lair and A. W.Wood, “Large solutions of sublinear elliptic equations,”Nonlinear Analysis A, vol.
39, no. 6, pp. 745–753, 2000.

[9] A. V. Lair and A.W.Wood, “Existence of entire large positive solutions of semilinear elliptic systems,”
Journal of Differential Equations, vol. 164, no. 2, pp. 380–394, 2000.
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systems,” Journal de Mathématiques Pures et Appliquées, vol. 81, no. 9, pp. 827–846, 2002.
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