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A new class of generalized dynamical systems involving generalized f -projection operators is
introduced and studied in Banach spaces. By using the fixed-point theorem due to Nadler, the
equilibrium points set of this class of generalized global dynamical systems is proved to be
nonempty and closed under some suitable conditions. Moreover, the solutions set of the systems
with set-valued perturbation is showed to be continuous with respect to the initial value.

1. Introduction

It is well known that dynamics system has long time been an interest of many researchers.
This is largely due to its extremely wide applications in a huge variety of scientific fields, for
instance, mechanics, optimization and control, economics, transportation, equilibrium, and
so on. For details, we refer readers to references [1–10] and the references therein.

In 1994, Friesz et al. [3] introduced a class of dynamics named global projective
dynamics based on projection operators. Recently, Xia and Wang [7] analyzed the global
asymptotic stability of the dynamical system proposed by Friesz as follows:

dx

dt
= PK

(
x − ρN(x)

) − x, (1.1)

where N : R
n → R

n is a single-valued function, ρ > 0 is a constant, PKx denotes the projec-
tion of the point x on K; here K ⊂ R

n is a nonempty, closed, and convex subset.
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Later, in 2006, Zou et al. [9] studied a class of global set-valued projected dynamical
systems as follows:

dx(t)
dt

∈ PK

(
g(x(t)) − ρN(x(t)) − g(x(t))

)
, for a.a. t ∈ [0, J],

x(0) = b,

(1.2)

where N : R
n → 2R

n
is a set-valued function, g : R

n → R
n is a single-valued function, ρ > 0

is a constant, PKx denotes the projection of the point x on K, b is a given point in R
n.

The concept of generalized f-projection operator was first introduced by Wu and
Huang [11] in 2006. They also proved that the generalized f-projection operator is an
extension of the projection operator PK in Rn and it owns some nice properties as PK does;
see [12, 13]. Some applications of generalized f-projection operator are also given in [11–13].
Very recently, Li et al. [14] studied the stability of the generalized f-projection operator with
an application in Banach spaces. We would like to point out that Cojocaru [15] introduced
and studied the projected dynamical systems on infinite Hilbert spaces in 2002.

To explore further dynamic systems in infinite dimensional spaces in more general
forms has been one of our major motivations and efforts recently, and this paper is a response
to those efforts. In this paper, we introduce and study a new class of generalized dynamical
systems involving generalized f-projection operators. By using the fixed-point theorem due
to Nadler [16], we prove that the equilibrium points set of this class of generalized global
dynamical systems is nonempty and closed. We also show that the solutions set of the
systems with set-valued perturbation is continuous with respect to the initial value. The
results presented in this paper generalize many existing results in recent literatures.

2. Preliminaries

LetX be a Banach space and letK ⊂ X be a closed convex set, letN : X → 2X be a set-valued
mapping, and let g : X → X be a single-valued mapping. The normalized duality mapping
J fromX toX∗ is defined by

J(x) =
{
x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
, (2.1)

for x ∈ X. For convenience, we list some properties of J(·) as follows.X is a smooth Banach
space, J(·) is single valued and hemicontinuous; that is, J is continuous from the strong
topology of X to the weak∗ topology of X∗.

LetC(X) denote the family of all nonempty compact subsets ofX and letH(·, ·) denote
the Hausdorff metric on C(X) defined by

H(A,B) = max

{

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}

, ∀A,B ∈ C(X). (2.2)
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In this paper, we consider a new class of generalized set-valued dynamical system,
that is, to find those absolutely continuous functions x(·) from [0, h] → X such that

dx(t)
dt

∈ Πf

K

(
g(x(t)) − ρN(x(t))

) − g(x(t)), for a.a. t ∈ [0, h],

x(0) = b,

(2.3)

where b ∈ X, ρ > 0 is a constant and f : K → R ∪ {+∞} is proper, convex, and lower semi-
continuous and Πf

K : X → 2K is a generalized f-projection operator denoted by

Πf

Kx =
{
u ∈ K : G(J(x), u) = inf

ξ∈K
G(J(x), ξ)

}
, ∀x ∈ X. (2.4)

It is well known that many problems arising in the economics, physical equilibrium
analysis, optimization and control, transportation equilibrium, and linear and nonlinear
mathematics programming problems can be formulated as projected dynamical systems (see,
e.g., [1–10, 15, 17] and the references therein). We also would like to point out that problem
(2.3) includes the problems considered in Friesz et al. [3], Xia andWang [7], and Zou et al. [9]
as special cases. Therefore, it is important and interesting to study the generalized projected
dynamical system (2.3).

Definition 2.1. A point x∗ is said to be an equilibrium point of global dynamical system (2.3),
if x∗ satisfies the following inclusion:

0 ∈ Πf

K

(
g(x) − ρN(x)

) − g(x). (2.5)

Definition 2.2. A mapping N : X → X is said to be
(i) α-strongly accretive if there exists some α > 0 such that

(
N(x) −N

(
y
)
, J
(
x − y

)) ≥ α‖x − y‖2, ∀x, y ∈ K; (2.6)

(ii) ξ-Lipschitz continuous if there exists a constant ξ ≥ 0 such that

∥∥N(x) −N
(
y
)∥∥ ≤ ξ

∥∥x − y
∥∥, ∀x, y ∈ K. (2.7)

Definition 2.3. A set-valued mapping T : X → X is said to be ξ-Lipschitz continuous if there
exists a constant ξ > 0 such that

H(
T(x), T

(
y
)) ≤ ξ

∥∥x − y
∥∥, ∀x, y ∈ K, (2.8)

where H(·, ·) is the Hausdorff metric on C(X).

Lemma 2.4 (see [14]). Let X be a real reflexive and strictly convex Banach space with its dual X∗

and let K be a nonempty closed convex subset of X. If f : K → R ∪ {+∞} is proper, convex, and
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lower semicontinuous, then Πf

K is single valued. Moreover, if X has Kadec-Klee property, then Πf

K is
continuous.

Lemma 2.5 (see [18]). Let X be a real uniformly smooth Banach space. Then X is q-uniformly
smooth if and only if there exists a constant Cq > 0 such that, for all x, y ∈ X,

∥
∥x + y

∥
∥q ≤ ‖x‖q + q

〈
y, Jq(x)

〉
+ Cq

∥
∥y

∥
∥q

. (2.9)

Lemma 2.6 (see [19]). Let (X, d) be a complete metric space and let T1, T2 be two set-valued con-
tractive mappings with same contractive constants θ ∈ (0, 1). Then

H(F(T1), F(T2)) ≤ 1
1 − θ

sup
x∈X

H(T1(x), T2(x)), (2.10)

where F(T1) and F(T2) are fixed-point sets of T1 and T2, respectively.

Lemma 2.7 (see [19]). Let X be a real strictly convex, reflexive, and smooth Banach space. For any
x1, x2 ∈ X, let x̂1 = Πf

Kx1 and x̂2 = Πf

Kx2. Then

〈J(x1) − J(x2), x̂1 − x̂2〉 ≥ 2M2δ

(‖x̂1 − x̂2‖
2M

)
, (2.11)

where

M =

√
‖x̂1‖2 + ‖x̂2‖2

2
. (2.12)

We say that X is 2-uniformly convex and 2-uniformly smooth Banach space if there
exist k, c > 0 such that

δX(ε) ≥ kε2,

ρX(t) ≤ ct2,
(2.13)

where

δX(ε) = inf
{
1 −

∥∥∥∥
x + y

2

∥∥∥∥ : ‖x‖ =
∥∥y

∥∥ = 1,
∥∥x − y

∥∥ ≥ ε

}
,

ρX(t) = sup
{
1
2
(∥∥x + y

∥∥ +
∥∥x − y

∥∥) − 1 : ‖x‖ = 1,
∥∥y

∥∥ ≤ t

}
.

(2.14)

Based on Lemma 2.7, we can obtain the following lemma.

Lemma 2.8. LetX be 2-uniformly convex and 2-uniformly smooth Banach space. Then

∥∥∥Π
f

Kx −Πf

Ky
∥∥∥ ≤ 64

c

k

∥∥x − y
∥∥, ∀x, y ∈ X. (2.15)
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Proof. According to Lemma 2.7, we have

〈
J(x) − J

(
y
)
,Πf

Kx −Πf

Ky
〉
≥ 2M2

1δ

⎛

⎝

∥
∥
∥Π

f

Kx −Πf

Ky
∥
∥
∥

2M1

⎞

⎠, (2.16)

where

M1 =

√
‖Πf

Kx‖2 + ‖Πf

Ky‖2
2

. (2.17)

Since δX(ε) ≥ kε2, (2.16) yields

∥∥∥Π
f

Kx −Πf

Ky
∥∥∥ ≤ 2

k

∥∥J(x) − J
(
y
)∥∥. (2.18)

From the property of J(·), we have

∥∥J(x) − J
(
y
)∥∥ ≤ 2M2

2ρX
(
4
∥∥x − y

∥∥/M2
)

∥∥x − y
∥∥

≤ 32c
∥∥x − y

∥∥.

(2.19)

It follows from (2.18) and (2.19) that

∥∥∥Π
f

Kx −Πf

Ky
∥∥∥ ≤ 64

c

k

∥∥x − y
∥∥. (2.20)

This completes the proof.

3. Equilibrium Points Set

In this section, we prove that the equilibrium points set of the generalized set-valued dynam-
ical system (2.3) is nonempty and closed.

Theorem 3.1. Let X be 2-uniformly convex and 2-uniformly smooth Banach space. Let N : X →
C(X) be μ-Lipschitz continuous and let g : X → X be α-Lipschitz continuous and β-strongly
accretive. If

√
1 + α2 − 2βC2 + 64

c

k

(
α + ρμ

)
< 1, (3.1)

then the equilibrium points set of the generalized set-valued dynamical system (2.3) is nonempty and
closed.
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Proof. Let

T(x) = x − g(x) + Πf

K

(
g(x) − ρN(x)

)
, ∀x ∈ K. (3.2)

SinceN : X → C(X) andΠf

K are continuous, we know that T : X → C(X). From Definition
2.1, it is easy to see that x∗ is an equilibrium point of the generalized set-valued dynamical
system (2.3) if and only if x∗ is a fixed-point of T inX, that is:

x∗ ∈ T(x∗) = x∗ − g(x∗) + Πf

K

(
g(x∗) − ρN(x∗)

)
. (3.3)

Thus, the equilibrium points set of (2.3) is the same as the fixed-points set of T . We first prove
that F(T) is nonempty. In fact, for any x, y ∈ X and a1 ∈ T(x), there exists u ∈ N(x) such that

a1 = x − g(x) + Πf

K

(
g(x) − ρu

)
. (3.4)

Since u ∈ N(x), and N : X → C(X), it follows from Nadler [16] that there exists v ∈ N(y)
such that

‖u − v‖ ≤ H(
N(x),N

(
y
))
. (3.5)

Let

a2 = y − g
(
y
)
+ Πf

K

(
g
(
y
) − ρv

)
. (3.6)

Then a2 ∈ T(y). From (3.4) to (3.6), we have

‖a1 − a2‖ =
∥∥∥x − y − (

g(x) − g
(
y
))

+ Πf

K

(
g(x) − ρu

) −Πf

K

(
g
(
y
) − ρ(v)

)∥∥∥

≤ ∥∥x − y − (
g(x) − g

(
y
))∥∥ +

∥∥∥Π
f

K

(
g(x) − ρu

) −Πf

K

(
g
(
y
) − ρ(v)

)∥∥∥.
(3.7)

Since g is α-Lipschitz continuous and β-strongly accretive,

∥∥x − y − (g(x) − g
(
y
)∥∥2 ≤ ∥∥x − y

∥∥2 − 2
〈
g(x) − g

(
y
)
, J
(
x − y

)〉
+ C2

∥∥g(x) − g(y)
∥∥2

≤
(
1 + α2 − 2βC2

)∥∥x − y
∥∥2

.

(3.8)

From Lemma 2.8, where Πf

K is Lipchitz continuous, we have

∥∥∥Π
f

K

(
g(x) − ρu

) −Πf

K

(
g
(
y
) − (

ρv
))∥∥∥ ≤ 64

c

k

(∥∥g(x) − g
(
y
)∥∥ + ρ‖u − v‖)

≤ 64
c

k

(
α
∥∥x − y

∥∥ + ρ‖u − v‖).
(3.9)
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From the selection of v and the Lipschitz continuity of N,

‖u − v‖ ≤ H(
N(x),N

(
y
)) ≤ μ

∥
∥x − y

∥
∥. (3.10)

In light of (3.7)–(3.10), we have

‖a1 − a2‖ ≤
(√

1 + α2 − 2βC2 + 64
c

k

(
α + ρμ

)
)∥
∥x − y

∥
∥ = L

∥
∥x − y

∥
∥, (3.11)

where

L =
√
1 + α2 − 2βC2 + 64

c

k

(
α + ρμ

)
. (3.12)

Now (3.11) implies that

d
(
a1, T

(
y
))

= inf
a2∈T(y)

‖a1 − a2‖ ≤ L
∥∥x − y

∥∥. (3.13)

Since a1 ∈ T(x) is arbitrary, we have

sup
a1∈T(x)

d
(
a1, T

(
y
)) ≤ L

∥∥x − y
∥∥. (3.14)

Similarly, we can prove

sup
a2∈T(y)

d(T(x), a2) ≤ L
∥∥x − y

∥∥. (3.15)

From (3.14), (3.15), and the definition of the Hausdorff metric H on C(X), we have

H(
T(x), T

(
y
)) ≤ L

∥∥x − y
∥∥, ∀x, y ∈ K. (3.16)

Now the assumption of the theorem implies that L < 1 and so T(x) is a set-valued contractive
mapping. By the fixed-point theorem of Nadler [16], there exists x∗ such that x∗ ∈ T(x∗), and
thus x∗ is the equilibrium point of (2.3). This means that F(T) is nonempty.

Now we prove that F(T) is closed. Let {xn} ⊂ F(T) with xn → x0(n → ∞). Then
xn ∈ T(xn) and (3.16) imply that

H(T(xn), T(x0)) ≤ L‖xn − x0‖. (3.17)

Thus,

d(x0, T(x0)) ≤ ‖x0 − xn‖ + d(xn, T(xn)) +H(T(xn), T(x0))

≤ (1 + L)‖xn − x0‖ −→ 0 as n → ∞.
(3.18)

It follows that x0 ∈ F(T) and so F(T) are closed. This completes the proof.
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Remark 3.2. Theorem 3.1 is a generalization of Theorem 1 in Zou et al. [9] from R
n to Banach

space X.

4. Sensitivity of the Solutions Set

In this section, we study the sensitivity of the solutions set of the generalized dynamical sys-
tem with set-valued perturbation for (2.3) as follows:

dx(t)
dt

∈ Πf

K

(
g(x(t)) − ρN(x(t))

) − g(x(t)) + F(x(t)), for a.a.[t ∈ 0, h],

x(0) = b,

(4.1)

where g and b are the same as in (2.3), F : X → 2X is a set-valued mapping, andN : X → X
is a single-valued mapping. Let S(b) denote the set of all solutions of (4.1) on [0, h] with
x(0) = b.

Now we prove the following result.

Theorem 4.1. Let X be 2-uniformly convex and 2-uniformly smooth Banach space. Let g : X → X
be α-Lipschitz continuous, let N : X → X be μ-Lipschitz continuous, and let F : X → C(X) be a
ω-Lipschitz continuous set-valued mapping with compact convex values. If

64
c

k

(
α + ρμ

)
+ α +ω < 1, h

(
64

c

k

(
α + ρμ

)
+ α +ω

)
< 1, (4.2)

then S(b) is nonempty and continuous.

Proof. Let

M(x) = Πf

K

(
g(x) − ρN(x)

) − g(x) + F(x). (4.3)

Then M : X → C(X) is a set-valued mapping with compact convex values since F : X →
C(X) is a set-valued mapping with compact convex values. For any x1, x2 ∈ X and a1 ∈
M(x1), there exists u ∈ F(x1) such that

a1 = Πf

K

(
g(x1) − ρN(x1)

) − g(x1) + u. (4.4)

Since u ∈ F(x1), and F : X → C(X), it follows from Nadler [16] that there exists v ∈ F(x2)
such that

‖u − v‖ ≤ H(F(x1), F(x2)). (4.5)

Let

a2 = Πf

K

(
g(x2) − ρN(x2)

) − g(x2) + v. (4.6)
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Then a2 ∈ M(x2). From (4.4) and (4.6), we have

‖a1 − a2‖ =
∥
∥
∥Π

f

K

(
g(x1) − ρN(x1)

) −Πf

K

(
g(x2) − ρN(x2)

) − (
g(x2) − g(x2)

)
+ u − v

∥
∥
∥

≤ ∥
∥g(x1) − g(x2)

∥
∥ +

∥
∥
∥Π

f

K

(
g(x) − ρN(x1)

) −Πf

K

(
g
(
y
) − ρN(x2)

)∥∥
∥ + ‖u − v‖.

(4.7)

Since g is α-Lipschitz continuous,

∥
∥g(x1) − g(x2)

∥
∥ ≤ α‖x2 − x2‖. (4.8)

From Lemma 2.8,Πf

K is Lipschitz continuous. It follows from the continuity of N and g that

∥∥∥Π
f

K

(
g(x1) − ρN(x1)

)−Πf

K

(
g(x2)−ρN(x2)

)∥∥∥ ≤ 64
c

k

(∥∥g(x1)−g(x2)
∥∥+ρ‖N(x1)−N(x2)‖

)

≤ 64
c

k

(
α + ρμ

)‖x1 − x2‖.
(4.9)

From the selection of v and the Lipschitz continuity of F, we know

‖u − v‖ ≤ H(F(x1), F(x2)) ≤ ω‖x1 − x2‖. (4.10)

In light of (4.7)–(4.10), we have

‖a1 − a2‖ ≤
(
α + 64

c

k

(
α + ρμ

)
+ω

)
‖x1 − x2‖ = θ

∥∥x − y
∥∥, (4.11)

where

θ = α + 64
c

k

(
α + ρμ

)
+ω. (4.12)

Now (4.11) implies that

d(a1,M(x2)) = inf
a2∈M(x2)

‖a1 − a2‖ ≤ θ‖x1 − x2‖. (4.13)

Since a1 ∈ M(x1) is arbitrary, we obtain

sup
a1∈M(x1)

d(a1,M(x2)) ≤ θ‖x1 − x2‖. (4.14)

Similarly, we can prove

sup
a2∈M(x2)

d(M(x1), a2) ≤ θ‖x1 − x2‖. (4.15)
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From (4.13), to (4.15), and the definition of the Hausdorff metric H on C(X), we have

H(M(x1),M(x2)) ≤ θ‖x1 − x2‖, ∀x1, x2 ∈ X. (4.16)

Now (4.2) implies that 0 < θ < 1, and soM(x) is a set-valued contractive mapping. Let

Q(x, b) =

{

y ∈ C([0, h],X) | y(t) = b +
∫ t

0
z(s)ds, z(s) ∈ M(x(s))

}

, (4.17)

where

C([0, h],X) =
{
f : [0, h] −→ X | f is continuous

}
. (4.18)

Since M : X → C(X) is a continuous set-valued mapping with compact convex values,
by the Michael’s selection theorem (see, e.g., Theorem 16.1 in [20]), we know that Q(x, b) is
nonempty for each x and b ∈ X. Moreover, it is easy to see that the set of fixed-points of
Q(x, b) coincides with S(b). It follows from [21] or [8] thatQ(x, b) is compact and convex for
each x and b ∈ X. Suppose that bm is the initial value of (4.1); that is, x(0) = bm(m = 0, 1, 2, . . .)
and bm → b0(m → ∞). Since

Q(x, b0) = Q(x, bm) − bm + b0, (4.19)

it is obvious that Q(x, bm) converges uniformly to Q(x, b0).
Next we prove that Q(x, bm) is a set-valued contractive mapping. For any given

x1, x2 ∈ C([0, h],X), sinceM : X → C(X) is a continuous set-valued mapping with compact
convex values, by the Michael’s selection theorem (see, e.g., Theorem 16.1 in [20]), we know
that M(x1(s)) has a continuous selection r1(s) ∈ M(x1(s)). Let

c1(t) = bm +
∫ t

0
r1(s)ds. (4.20)

Then c1 ∈ Q(x1, bm). Since r1(s) ∈ M(x1(s)) is measurable and M(x2(s)) is a measurable
mapping with compact values, we know that there exists a measurable selection r2(s) ∈
M(x2(s)) such that

‖r1(s) − r2(s)‖ ≤ H(M(x1(s)),M(x2(s))). (4.21)

Thus, it follows from (4.16) that

‖r1(s) − r2(s)‖ ≤ H(M(x1(s)),M(x2(s))) ≤ θ‖x1 − x2‖. (4.22)

Let

c2(t) = bm +
∫ t

0
r2(s)ds. (4.23)
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Then c2 ∈ Q(x2, bm) and

‖c1 − c2‖ ≤
∫h

0
‖r1(s) − r2(s)‖ds ≤ hH(M(x1(s)),M(x2(s)))

≤ hθ‖x1 − x2‖.
(4.24)

Hence, we have

d(c1, Q(x2, bm)) = inf
c2∈Q(x2,bm)

‖c1 − c2‖ ≤ hθ‖x1 − x2‖. (4.25)

Since c1 ∈ Q(x1, bm) is arbitrary, we obtain

sup
c1∈Q(x1,bm)

d(c1, Q(x2, bm)) ≤ hθ‖x1 − x2‖. (4.26)

Similarly, we can prove that

sup
c2∈Q(x2,bm)

d(Q(x1, bm), c2) ≤ hθ‖x1 − x2‖. (4.27)

From the definition of the Hausdorff metric H on C(X), (4.26) and (4.27) imply that

H(Q(x1, bm), Q(x2, bm)) ≤ hθ‖x1 − x2‖, ∀x1, x2 ∈ X, m = 0, 1, 2, . . . . (4.28)

Since hθ < 1, it is easy to see that Q(x, b) has a fixed-point for each given b ∈ X, and so S(b)
is nonempty for each given b ∈ X. Setting

Wm(x) = Q(x, bm), m = 0, 1, 2, . . . , (4.29)

we know that Wm(x) are contractive mappings with the same contractive constant hθ. By
Lemma 2.6 and (4.28), we have

H(F(Wm), F(W0)) ≤ 1
1 − hθ

sup
x∈X

H(Wm(x),W0(x)) −→ 0. (4.30)

Thus, F(Wm) → F(W0), which implies that S(bm) → S(b); that is, the solution of (4.1) is
continuous with respect to the initial value of (4.1). This completes the proof.

Remark 4.2. Theorem 4.1 is a generalization of Theorem 2 in Zou et al. [9] from R
n to Banach

space X.
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