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The bifurcations near a primary homoclinic orbit to a saddle-center are investigated in a 4-
dimensional reversible system. By establishing a new kind of local moving frame along the
primary homoclinic orbit and using the Melnikov functions, the existence and nonexistence of
1-homoclinic orbit and 1-periodic orbit, including symmetric 1-homoclinic orbit and 1-periodic
orbit, and their corresponding codimension 1 or codimension 3 surfaces, are obtained.

1. Introduction

In recent years, there are much interest in the phenomenon of homoclinics and heteroclinics
in reversible dynamical systems because of their extensive applications in mechanics, fluids,
and optics [1–10]. For example, Klaus and Knobloch [4] considered a homoclinic orbit to
saddle-center with two-parameter families of non-Hamiltonian reversible vector fields by
Lin’s method. They derived the occurrence of 1-homoclinic orbits to the center manifold.
Liu et al. [6] studied a singular perturbation system with action-angle variable and the
unperturbed system was assumed to possess a saddle-center equilibrium in a general system
without reversible or Hamiltonian structure. Mielke et al. [7] investigated bifurcations
of homoclinic orbit to saddle-center in 4-dimensional reversible Hamiltonian systems. By
using the Poincaré map and a special normal form, they detected the existence of N-
homoclinic orbits to the equilibrium, N-periodic orbits, and chaotic behavior near the
primary homoclinic orbit. As for purely Hamiltonian system in R

4, similar results are known
from Koltsova and Lerman [2, 5]. In all of these papers the underlying Hamiltonian structure
was heavily considered. Especially it was used to detect multiround orbits. Note that, the
Hamiltonian can make the dynamics constrict in three-dimensional manifold in a zero level
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set. In this paper, we use the method originated by Zhu [9], by constructing a local moving
coordinate system and Poincaré map near the primary homoclinic orbit, the existence of
transversal homoclinic orbits and periodic orbits bifurcated from the primary homoclinic
orbit are obtained in a 4-dimensional reversible system. It is worth to mention that a new kind
of moving coordinates is introduced firstly in our paper in order to simplify and facilitate the
reversible system.

The remainder of this paper is organized as follows. Section 2 contains the
assumptions for the perturbed and unperturbed system. The local coordinate moving frame,
cross sections, and Poincaré map are set up in Section 3. Finally, we obtain the existence and
nonexistence of 1-homoclinic orbit and 1-periodic orbit, including symmetric 1-homoclinic
orbit and 1-periodic orbit, and their corresponding surfaces with different condimensions in
Sections 4 and 5.

2. The General Setup

Consider the following system

ż = f(z) + εg
(
z;μ
)
, z ∈ R

4, μ ∈ R
l (2.1)

and the corresponding unperturbed system

ż = f(z), (2.2)

where 0 < ε � 1, l ≥ 1, f : R
4 → R

4 and g : R
4 × R → R

4 are Cr(r ≥ 4), f(0) = g(0;μ) = 0
and μ is a parameter. Also, we need the following assumptions.

(A1) System (2.1) is reversible with respect to the linear involution R such that
dim(FixR) = 2, f(Rz) + Rf(z) = g(Rz;μ) + Rg(z;μ) = 0 for all z ∈ R

4 and μ ∈ Rl.
Note that, throughout the paper, we will denote R-symmetric orbit as symmetric orbit.
(A2) The originO is a saddle-center equilibrium of (2.2),O ∈ FixR. More precisely, the

Jacobian matrix A � Df(0) has a pair of purely imaginary eigenvalues ±iω and two nonzero
real eigenvalues, that is, σ(A) = {±iω,±λ}with ω, λ > 0.

(A3) System (2.2) has a symmetric homoclinic orbit Γ = {z = r(t) : t ∈ R}, where
r(±∞) = O.

Note that, O is a symmetric equilibrium, and the eigenvalues of the Jacobian matrix
A are symmetric with respect to the imaginary axis. Thus, assumption (A2) describes a
scenario that is structurally stable. Furthermore, the saddle-center O has one-dimensional
stable manifold Ws

ε,μ(O) and one-dimensional unstable manifolds Wu
ε,μ(O) (abbr. Ws and

Wu as ε = 0), and a two-dimensional center manifold Wc
ε,μ(O) (abbr. Wc as ε = 0) for ε

close to 0. All of them are Cr . Confined to Wc
ε,μ(O), O is a center. The reversibility implies

that Wu
ε,μ(O) = RWs

ε,μ(O) and Wc
ε,μ(O) = RWc

ε,μ(O), and hence, the homoclinic orbit Γ is
symmetric, that is, RΓ = Γ.

3. Local Moving Frame and Poincaré Map

Suppose the neighborhood U0 of O is small enough, we can firstly straighten the center-
stable manifold, the center-unstable manifold, subsequently, then the stable manifold and
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the unstable manifold in U0 by using the method introduced in Zhu [9]. According to
the invariance and symmetry of these manifolds, we can deduce that system (2.1) has the
following form inU0:

ẋ = x
(
λ
(
ε, μ
)
+O(1)

)
,

ẏ = y
(−λ(ε, μ) +O(1)

)
,

u̇ = v
(
ω
(
ε, μ
)
+O(1)

)
+ u
(
O(x) +O

(
y
)
+O(u)

)
+O
(
xy
)
,

v̇ = u
(−ω(ε, μ) +O(1)

) − v
(
O(x) +O

(
y
)
+O(v)

) −O
(
xy
)
,

(3.1)

where λ(0, μ) = λ, ω(0, μ) = ω,O(1) = O(x) +O(y) +O(u) +O(v), the system is Cr−2, and the
corresponding involution acts as R(x, y, u, v) = (y, x, v, u).

In fact, by a linear transformation, system (2.1) takes the form in a small neighborhood
ofU0 as follows:

ẋ = λ
(
ε, μ
)
x +O(2),

ẏ = −λ(ε, μ)y +O(2),

u̇ = ω
(
ε, μ
)
v +O(2),

v̇ = −ω(ε, μ)u +O(2),

(3.2)

and R(x, y, u, v) = (y, x, v, u). By the invariant manifold theorem, we know that there exist
a local Cr center-stable manifold Wcs

ε,μ = {z = (x, y, u, v) : x = xcs
ε,μ(y, u, v), x

cs
ε,μ(0, 0, 0) =

0, Dxcs
ε,μ(0, 0, 0) = 0, z ∈ U0}, a local Cr center-unstable manifold Wcu

ε,μ = {z = (x, y, u, v) : y =
ycu
ε,μ(x, u, v), y

cu
ε,μ(0, 0, 0) = 0, Dycu

ε,μ(0, 0, 0) = 0, z ∈ U0} and RWcs
ε,μ = Wcu

ε,μ.
By the straightening coordinate transformation which is similar to that of [1, 6, 9], now

we straighten the local manifolds Wcs
ε,μ and Wcu

ε,μ, such that Wcs
ε,μ = {z ∈ U0 : x = 0}, Wcu

ε,μ =
{z ∈ U0 : y = 0}.

Notice that the invariance of Wcs
ε,μ and Wcu

ε,μ implies the local invariance of {z ∈ U0 :
x = 0} and {z ∈ U0 : y = 0}, respectively, which produces that, inU0,

ẋ = x
(
λ
(
ε, μ
)
+O(1)

)
,

ẏ = y
(−λ(ε, μ) +O(1)

)
.

(3.3)

Now the system is Cr−1 and still reversible. By using a similar procedure to straighten
the local Cr−1 stable manifold Ws

ε,μ and unstable manifold Wu
ε,μ, and the invariance and

symmetry of these two local manifolds (that means the transformation is also symmetric),
we get system (3.1). Clearly, corresponding to system (3.1), the center manifoldWc

ε,μ is locally
in the u-v plane, and the stable manifold Ws

ε,μ (resp., unstable manifold Wu
ε,μ) is locally the

y-axis (resp., x-axis) when they are confined in U0.
Define r(−T) = (δ, 0, 0, 0)∗, r(T) = (0, δ, 0, 0)∗ for T � 1, where δ > 0 is small enough

such that {(x, y, u, v)∗ : |x|, |y|, |u2 + v2|1/2 < 2δ} ⊂ U0.
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Consider the linear variational system

ż = Df(r(t))z, (3.4)

and its adjoint system

φ̇ = −(Df(r(t))
)∗
φ. (3.5)

Based on the invariance and symmetry of manifolds Wcs and Wcu, it is easy to know
that system (3.4) has a fundamental solution matrix Z(t) = (z1(t), z2(t), z3(t), z4(t)) satisfying
z1(t) ∈ (Tr(t)Wcu)c, z2(t) = −ṙ(t)/|ṙ(T)| ∈ Tr(t)(Ws ∩Wu), z3(t), z4(t) ∈ Tr(t)W

cu and

Z(−T) =

⎛

⎜⎜
⎝

0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠, Z(T) =

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

⎞

⎟⎟
⎠. (3.6)

Actually, in the resulting coordinates, Ws ∩ U0 and Wu ∩ U0 are y-axis and x-axis,
respectively, combining with the symmetry, it follows that

z2(T) = (0, 1, 0, 0)∗, z2(−T) = (−1, 0, 0, 0)∗. (3.7)

On the other hand, in a small tubular neighborhood of the homoclinic loop Γ, the
center-unstable manifoldWcu (resp., center-stable manifoldWcs) can be foliated into a family
of leaves, each is a 2-dimensional surface and asymptotic toWc as the base point z = r(t) ∈ Γ
tends to O as t → −∞ (resp., +∞). Notice that the limit of the linearization (3.4) of system
(2.2) with respect to Γ as t → ±∞ is

ẋ = λx, ẏ = −λy, u̇ = ωv, v̇ = −ωu. (3.8)

When confined on Wc, it becomes the following subsystem

u̇ = ωv, v̇ = −ωu, (3.9)

which is reversible with the involution (u, v) → (v, u). Obviously, for any a > 0 and t0 ∈ R,
u = u(t) = a sinω(t − t0), v = v(t) = a cosω(t − t0) is a solution of (3.9), which defines
a closed orbit Γ̂ on Wc. More precisely, its tangent vectors u1(t) = u̇(t) = aω cosω(t − t0),
v1(t) = v̇(t) = −aω sinω(t − t0) and its normal vectors u2(t) = −v̇(t) = aω sinω(t − t0),
v2(t) = u̇(t) = aω cosω(t − t0) are the solutions of (3.9). Choose some appropriate a and
t0 such that aω = 1, ω(−T − t0) = 2kπ for some k ∈ Z, then (u(−T), v(−T)) = (0, a) =
(0, w−1), z3(−T) = (u1(−T), v1(−T)) = (1, 0), z4(−T) = (u2(−T), v2(−T)) = (0, 1). Based
on the reversibility, we have (u(T), v(T)) = (a, 0) = (w−1, 0), z3(T) = (u1(T), v1(T)) =
(0,−1), z4(T) = (u2(T), v2(T)) = (1, 0) (see Figure 1 for details). Thus, if we take solutions
z3(t) and z4(t) in Tr(t)W

cu satisfying z3(−T) = (0, 0, 1, 0)∗, z4(−T) = (0, 0, 0, 1)∗, then, restricted
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Figure 1: The geometry of vectors on the center manifold.

to the u-v plane, z3(−T) is the unit tangent direction of the closed orbit Γ̂ at (u, v) = (0, a) =
(0, ω−1). In addition, the restriction of z4(−T) is its unit exterior normal direction at the same
point. By the reversibility, it is easy to obtain z3(T) = (0, 0, 0,−1)∗, z4(T) = (0, 0, 1, 0)∗.

Finally, if we choose a solution z1(t) ∈ (Tr(t)Wcu)c with z1(−T) = (0, 1, 0, 0)∗, then the
symmetry says that z1(T) = (1, 0, 0, 0)∗.

Therefore, we have demonstrated the existence of the fundamental matrix Z(t) with
the specified properties.

Remark 3.1. In the following, we will regard (z1(t), z2(t), z3(t), z4(t)) as a moving coordinate
in a small tubular neighborhood of Γ. This new kind of moving frame is firstly introduced
for the homoclinic orbit to a saddle-center, which is the extension of the corresponding
coordinates built in [1, 6, 9] for the homoclinic orbit to a saddle. The explicit advantage is
that, these coordinate vectors inherit and exhibit the geometrical and dynamical properties
of those invariant manifolds. As mentioned above, they will greatly simplify the original
reversible system.

Let Σu = {(x, y, u, v) | x = δ, |y|, |u2 + v2|1/2 ≤ δ/2} ⊂ U0 and Σs = {(x, y, u, v) | y =
δ, |x|, |u2 + v2|1/2 ≤ δ/2} ⊂ U0 be the cross sections of Γ at t = −T and t = T , respectively.

Now we turn to seek the new coordinates of q0 ∈ Σu and q1 ∈ Σs (see Figure 2 for
details) under the transformation z(t) = r(t) + Z(t) ·N, where N = (n1, 0, n3, n4)

∗. Take

q0 �
(
x0, y0, u0, v0

)
= r(−T) + Z(−T) ·

(
n0
1, 0, n

0
3, n

0
4

)∗
,

q1 �
(
x1, y1, u1, v1

)
= r(T) + Z(T) ·

(
n1
1, 0, n

1
3, n

1
4

)∗
,

(3.10)

which are solved by

x0 = δ, n0
1 = y0, n0

3 = u0, n0
4 = v0;

y1 = δ, n1
1 = x1, n1

3 = −v1, n1
4 = u1.

(3.11)
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Figure 2: Setup of cross sections and Poincaré map.

Putting the transformation z(t) = r(t) + Z(t) ·N into (2.1), we get

ṙ(t) + Ż(t) ·N + Z(t) · Ṅ = f(r(t) + Z(t) ·N) + εg
(
r(t) + Z(t) ·N,μ

)

= f(r(t)) +Df(r(t))Z(t) ·N + εg
(
r(t), μ

)
+O
(
(ε +N)2

)
.

(3.12)

That impliesZ(t) ·Ṅ = εg(r(t), μ)+O((ε+N)2), which is Cr−3. Then multiplying the resulting
equation by Z−1(t) = (φ∗

1, φ
∗
2, φ

∗
3, φ

∗
4)

∗ and integrating it on both sides from −T to T , we have
the regular map ΠR : Σu → Σs:

ni(T) = ni(−T) + εMi

(
T, μ
)
+O
(
(ε +N(−T))2

)
, i = 1, 3, 4, (3.13)

where Mi(T, μ) =
∫T
−T φ

∗
i gi(r(t), μ)dt are the Melnikov functions.

For conciseness, we will denote λ(ε, μ) � λ,ω(ε, μ) � ω. Now we consider the local
map ΠS induced by the flow (3.1) inU0, where

ΠS : Σs −→ Σu, q1 =
(
n1
1, 0, n

1
3, n

1
4

)
−→ q0 =

(
n0
1, 0, n

0
3, n

0
4

)
. (3.14)

Let τ be the flying time from q1 to q0, by variation of constants formula, we can get the
following expression:

x1 = x(T) = x0e
−λτ(1 + ρ1

)
,

y0 = y(T + τ) = y1e
−λτ(1 + ρ2

)
,

u0 = u(T + τ) = [u1 cos(ωτ) + v1 sin(ωτ)]
(
1 + ρ3

)
+ ρ5,

v0 = v(T + τ) = [−u1 sin(ωτ) + v1 cos(ωτ)]
(
1 + ρ4

)
+ ρ6,

(3.15)

where ρi = ρi(x0, y1, u1, v1, τ, ε, μ), ρi ∈ C0, i = 1, . . . , 6, and ρi = O(δ) for i = 1, 2, 3, 4, ρj =
O(δ2e−λτ) for j = 5, 6.
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Denote s = e−λτ , then we get ΠS : Σs → Σu defined by

n0
1 = δs

(
1 + ρ2

)
,

n0
3 =
[
n1
4 cos

(ω
λ
log s

)
+ n1

3 sin
(ω
λ
log s

)](
1 + ρ3

)
+ ρ5,

n0
4 =
[
n1
4 sin
(ω
λ
log s

)
− n1

3 cos
(ω
λ
log s

)](
1 + ρ4

)
+ ρ6.

(3.16)

Combining the maps (3.13) and (3.16), we obtain the Poincaré map Π = ΠR ◦ ΠS :
Σs → Σs defined as

n1(T) = δs
(
1 + ρ2

)
+ εM1

(
T, μ
)
+ h. o. t.,

n3(T) =
[
n1
4 cos

(ω
λ
log s

)
+ n1

3 sin
(ω
λ
log s

)](
1 + ρ3

)
+ εM3

(
T, μ
)
+ ρ5 + h. o. t.,

n4(T) =
[
n1
4 sin
(ω
λ
log s

)
− n1

3 cos
(ω
λ
log s

)](
1 + ρ4

)
+ εM4

(
T, μ
)
+ ρ6 + h. o. t.

(3.17)

4. Existence of 1-Homoclinic Orbit and 1-Periodic Orbit

Let G(q1) � Π(q1) − q1 be the displacement function. Based on (3.11), (3.17), and the new
coordinate of q1 = (n1

1, 0, n
1
3, n

1
4), we see the small zero point (s, u1, v1) of G will satisfy the

following equations:

δs
(
ρ2 − ρ1

)
+ εM1

(
T, μ
)
+O
(
|s, ε|2

)
= 0,

v1 +
[
u1 cos

(ω
λ
log s

)
− v1 sin

(ω
λ
log s

)](
1 + ρ3

)
+ εM3

(
T, μ
)
+ ρ5 + h. o. t. = 0,

u1 −
[
u1 sin

(ω
λ
log s

)
+ v1 cos

(ω
λ
log s

)](
1 + ρ4

) − εM4
(
T, μ
) − ρ6 + h. o. t. = 0.

(4.1)

Due to the coordinate transformations introduced in U0 at the beginning of Section 3,
the unstable manifold and the stable manifold are locally x-axis and y-axis, respectively, so
it is evident that, near Γ, system (2.1) has a symmetric 1-homoclinic orbit to O if and only if
(4.1) have a solution (s, u1, v1) with s = u1 = v1 = 0, and system (2.1) has an 1-homoclinic
orbit to a periodic orbit on the center manifold and an 1-periodic orbit if and only if (4.1)
have a solution (s, u1, v1) with s = 0, u2

1 + v2
1 > 0 and s > 0, u2

1 + v2
1 ≥ 0, respectively. Clearly,

system (4.1) is C1 in (s, u1, v1) as 0 ≤ s � 1, u2
1 + v2

1 � 1, and C3 in (ε, μ), and has a solution
s = u1 = v1 = 0 as ε = 0, thus we can rescale s = ε2s, u1 = ε2u, v1 = ε2v, such that system (4.1)
is reformulated as

M1
(
T, μ
)
+O(ε) = 0,

M3
(
T, μ
)
+O(ε) = 0,

M4
(
T, μ
)
+O(ε) = 0,

(4.2)

where O(ε) depends on ε, s, u, v and μ.
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Now the following results are verified directly by the implicit function theorem.

Theorem 4.1. Assume (A1)–(A3) are satisfied, M1(T, μ0) = M3(T, μ0) = M4(T, μ0) = 0 and
Rank(∂(M1,M3,M4)/∂μ)(T, μ0) = 3 for l ≥ 3 and μ0 ∈ R

l, then, for any given r0 > 0, s0 > 0
and ε0 > 0 small enough, there exist a single-parameter family of codimension 3 surface Σε and a
four-parameter family of codimension 3 surface Σεuvs near μ0 such that Σ0 = Σ0uvs = {μ|μ = μ0},
lims→ 0Σεuvs = Σεuv0 for 0 < ε < ε0, 0 ≤ u2 + v2 < r20 , 0 < s < s0, and system (2.1) has a symmetric
1-homoclinic orbit to O as μ ∈ Σε, a 1-periodic orbit with approximate period 2T − λ−1 log ε2s as
μ ∈ Σεuvs, and a 1-homoclinic orbit to a periodic orbit on the center manifold with u2

1(t) + v2
1(t) =

ε4(u2
0+v

2
0) as μ ∈ Σεu0v00, Σεu0v00−{μ0}/= ∅, 0 < u2

0+v
2
0 < r20 . Moreover, these codimension 3 surfaces

are either coincident, or tangent to each other at μ = μ0, and they have a common 3-dimensional normal
space spanned byM1μ(T, μ0),M3μ(T, μ0), and M4μ(T, μ0) as l > 3.

In order to study the existence of the 1-periodic orbit bifurcation surface with lower
codimension, we reconsider (4.1). Let s = e−(λ/ω)(2kπ−α), α ∈ [−(π/2), (3π/2)) and H be the
vector defined by the left hand side of the last two equations of (4.1), then, by using

W � det

⎡

⎣ ∂H

∂(u1, v1)

∣∣∣∣u1=v1=ε=0
k=∞

⎤

⎦

= −[2 + ρ3 + ρ4 + ρ3ρ4 −
(
2 + ρ3 + ρ4

)
sinα

]∣∣u1=v1=ε=0
k=∞

,

(4.3)

it follows that, for δ > 0 so small that |ρ3 + ρ4| < 0.1, |ρ3 + ρ4 + ρ3ρ4| < 0.1, we have W /= 0
for α ∈ [−(π/4), (5π/4)]. Therefore, there is a unique pair (u1, v1) which solves the last two
equations as k > −(ω/λπ) log ε and ε > 0 is small enough.

Substituting this solution (u1, v1) into the first equation of (4.1), and using s = O(ε2)
for k > −(ω/λπ) log ε, it produces

M1
(
T, μ
)
+O(ε) = 0, (4.4)

where the term O(ε) depends on ε, k, α and μ.
At this stage, we have actually demonstrated the following existence theorem.

Theorem 4.2. Suppose (A1)–(A3) are satisfied, M1(T, μ0) = 0, (∂M1/∂μ)(T, μ0)/= 0 as l ≥ 1
and μ0 ∈ R

l, then for ε0 > 0, δ > 0 small enough, 0 < ε < ε0, k > −(ω/λπ) log ε and
α ∈ [−(π/4), (5π/4)], there exists a 3-parameter (resp., 2-parameter) family of codimension 1 surface
Σεkα (resp., Σεα = Σε∞α) near μ0 satisfying Σ0∞α = {μ0}, such that system (2.1) has one 1-periodic
orbit L(ε, k, α) (resp., 1-homoclinic orbit L(ε,∞, α)) near Γ as μ ∈ Σεkα(resp., μ ∈ Σεα), and L(ε, k, α)
has an approximate period 2T + ((2kπ − α)/ω). In addition, if M1(T, μ)/= 0 for any μ ∈ R

l, then
system (2.1) has not any 1-periodic orbit near Γ.

Remark 4.3. When confined in a neighborhood of the local center-manifold, the (u, v)-
coordinates of 1-periodic or 1-homoclinic orbit guaranteed by Theorem 4.1 as μ ∈ Σεuvs or μ ∈
Σεu0v00 satisfying u2

1+v
2
1 = O(ε4), whereas, these coordinates of the corresponding orbits given

in Theorem 4.2 as μ ∈ Σεkα or μ ∈ Σεα have the scale O(ε2) in case M2
4(T, μ0) +M2

3(T, μ0)/= 0
and k > −(ω/λπ) log ε.
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5. Existence of Symmetric 1-Periodic Orbit

In this section, we turn to seek the existence of symmetric 1-periodic orbit. Note that, a 1-
periodic orbit L near Γ is symmetric if and only if R(L ∩ Σs) = L ∩ Σu, equivalently L ∩ Σs =
(x1, δ, u1, v1) and L ∩ Σu = (δ, y0, u0, v0) should satisfy

x1 = y0, u1 = v0, v1 = u0. (5.1)

Due to (3.15), it is equivalent to

ρ1 − ρ2 = 0,

u1 −
[
u1 sin

(ω
λ
log s

)
+ v1 cos

(ω
λ
log s

)](
1 + ρ4

) − ρ6 = 0,

v1 −
[
u1 cos

(ω
λ
log s

)
− v1 sin

(ω
λ
log s

)](
1 + ρ3

) − ρ5 = 0.

(5.2)

Using (5.2) and rescaling u1 = εu, v1 = εv, s = e−(λ/ω)(4kπ+2θ) = O(ε2) for k > −(ω/2λπ) log ε,
θ ∈ [0, 2π), system (4.1) reads as

M1
(
T, μ
)
+O(ε) = 0,

2v +M3
(
T, μ
)
+O(ε) = 0,

M4
(
T, μ
)
+O(ε) = 0.

(5.3)

Solving the second equation of (5.3), we have

v = −1
2
M3
(
T, μ
)
+O(ε). (5.4)

On the other hand, L ∩ Σs and L ∩ Σu are symmetric if and only if their middle point
(x(T + (1/2)τ), y(T + (1/2)τ), u(T + (1/2)τ), v(T + (1/2)τ)) lies on the plane Fix(R), that is,
(5.1) is equivalent to

x

(
T +

1
2
τ

)
= y

(
T +

1
2
τ

)
, u

(
T +

1
2
τ

)
= v

(
T +

1
2
τ

)
, (5.5)
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where

x

(
T +

1
2
τ

)
= δ

√
s
(
1 + ρ11

)
,

y

(
T +

1
2
τ

)
= δ

√
s
(
1 + ρ21

)
,

u

(
T +

1
2
τ

)
=
[
u1 cos

(ωτ

2

)
+ v1 sin

(ωτ

2

)](
1 + ρ31

)
+ ρ51,

v

(
T +

1
2
τ

)
=
[
−u1 sin

(ωτ

2

)
+ v1 cos

(ωτ

2

)](
1 + ρ41

)
+ ρ61,

(5.6)

and ρi1 = ρi1(x1, y1, u1, v1, τ, ε, μ) for i = 1, . . . , 6, ρi1 = O(x1/
√
s) + Oi(y1) + O(

√
u2
1 + v2

1) =
O(δ), Oi(y1) = O(y1) for i = 1, . . . , 4, ρj1 = O(x1y1) = O(δ2s) for j = 5, 6.

Explicitly, (5.5) can be formulated as

ρ11 − ρ21 = 0,

u1

[
cos
(ωτ

2

)
+ sin

(ωτ

2

)]
− v1

[
cos
(ωτ

2

)
− sin

(ωτ

2

)]
+O(δ) +O

(
δ2s
)
= 0.

(5.7)

Due to (5.4) and (1/2)ωτ = 2kπ + θ, θ ∈ [0, 2π), we can uniquely solve the second equation
in (5.7) by

u1 = −ε(cos θ − sin θ)
2(cos θ + sin θ)

M3
(
T, μ
)
(1 +O(δ)) +O

(
ε2
)

(5.8)

as θ /= (3/4)π , (7/4)π , and δ, ε small enough.
Up to now, there are three equations

ρ11 − ρ21 = 0,

M1
(
T, μ
)
+O(ε) = 0,

M4
(
T, μ
)
+O(ε) = 0

(5.9)

left which should be fulfilled, where v1 = εv and u1 are given by (5.4) and (5.8).
Applying the implicit function theorem to (5.9), where O(ε) depends on ε, θ, k and

μ, we derive the following result.

Theorem 5.1. Suppose that (A1)–(A3) hold, M1(T, μ0) = 0, M4(T, μ0) = 0 and

Rank

⎧
⎪⎨

⎪⎩

∂
(
ρ11 − ρ21

)

∂μ

∣∣∣∣∣ ε=0,μ=μ0
k=∞

,
∂(M1,M4)

∂μ

(
T, μ0

)

⎫
⎪⎬

⎪⎭
= 3 (5.10)
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as μ0 ∈ R
l(l ≥ 3), there exist ε0 > 0, θ0 > 0 small enough, and a 3-parameter family of

codimension 3 surface Σεθk near μ0, such that, system (2.1) has a symmetric 1-periodic orbit L near
Γ with approximate period 2T + (1/ω)(4kπ + 2θ) as μ ∈ Σεθk for ε, θ, k satisfying 0 < ε < ε0,
θ ∈ [0, (3/4)π − θ0) ∪ ((3/4)π + θ0, (7/4)π − θ0) ∪ ((7/4)π + θ0, 2π), k > −(ω/2λπ) log ε.
Moreover, if there is no μ0 ∈ R

l satisfying

M2
1

(
T, μ0

)
+M2

4

(
T, μ0

)
+
(
ρ11 − ρ21

)2∣∣
∣ ε=0,μ=μ0

k=∞
= 0, (5.11)

then system (2.1) has no symmetric 1-periodic orbit in the small neighborhood of Γ.

Remark 5.2. Similarly, if we take s � e−λτ = u1 = v1 = 0 in (3.15), then x1 = y0 = u0 = v0 = u1 =
v1 = 0 (i.e., condition (5.1)), it means that there is a symmetric 1-homoclinic orbit to O if and
only if s = u1 = v1 = 0 in Section 4.

Remark 5.3. In Theorem 4.2 (resp., Theorem 5.1), the geometric meaning of k is that, confined
inU0, the u-v component of the above 1-periodic orbit bifurcated from Γmakes circle k (resp.,
2k) times around the saddle-center.

Remark 5.4. From x1/
√
s = δ

√
s(1 +O(δ)), s = O(ε2) and the constitution of ρ11 and ρ21, it is

easy to know that the necessary condition for ρ11 = ρ21 is O1(y1) = O2(y1).
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