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The problem of a two-dimensional, unsteady flow and a heat transfer of a viscous fluid past a
surface in the presence of variable suction/injection is analyzed. The unsteadiness is due to the
time dependent free stream flow. The governing equations are derived with the usual boundary
layer approximation. Using Lie group theory, a group classification of the equations with respect
to the variable free stream flow and suction/injection velocity is performed. Restrictions imposed
by the boundary conditions on the symmetries are discussed. Adopting the obtained symmetry
groups, governing partial differential equations are converted into ordinary differential equations
and then solved numerically. Effects of the dimensionless problem parameters on the velocity and
temperature profiles are outlined in the figures.

1. Introduction

Boundary layer flow and heat transfer for an incompressible viscous fluid past a heated
porous surface have attracted a great interest because of the importance in engineering
applications such as cooling of nuclear reactors and turbine blades, food processing, crystal
growth, flow control on airfoils, and electronic cooling. Blasius [1] first presented a similarity
solution for velocity distribution within the boundary layer for a viscous incompressible
fluid over a flat plate. Khaled and Vafai [2] studied hydromagnetic effects on dynamical
and thermal boundary layer characteristics. This analysis is concerned with a family
of squeezed flows. They displayed effects of the magnetic parameter, Prandtl number,
suction/injection parameter, and squeezing parameter on velocity and temperature profiles
graphically. Elbashbeshy and Bazid [3] studied the heat transfer over an unsteady stretching
surface. They obtained a new similarity solution for the temperature field. They investigated
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the effect of the Prandtl number and the unsteadiness parameter which determine the
velocity and temperature profiles and heat transfer coefficient. Mahmood et al. [4] studied
flow and heat transfer over a permeable sensor surface placed in a squeezing channel. They
displayed effects of the squeezing parameter on values of velocity and temperature and the
variation of skin friction coefficient and heat transfer coefficient against the transpiration
parameter with the graphics. Bataller [5] investigated the flow influenced by nonlinearly
stretching of the sheet with heat transfer. They analyzed the effects of various physical
parameters on heat transfer phenomena in a viscous flow over a nonlinearly stretching sheet.
Mukhopadhyay [6] investigated the effects of thermal radiation on unsteady boundary
layer mixed convection heat transfer problem from a vertical porous stretching surface
embedded in a porous medium. Their study indicated that the flow and temperature field
are significantly influenced by the unsteadiness parameter, buoyancy force, and suction
parameter in both porous and nonporous media. Aziz [7] studied thermal boundary layer
flow over a flat plate considering convective surface heat flux at the lower surface of the
plate and determined the condition which the convection heat transfer coefficient must
meet for a similarity solution to exist. Aziz [8] studied the boundary layer flow over a
flat plate with slip flow and constant heat flux surface condition velocity and shear stress
distributions were presented for a range of values of the parameter characterizing the slip
flow. Ishak [9] considered the problem of steady laminar boundary layer flow and heat
transfer over a stationary flat plate immersed in a uniform free stream with convective
boundary condition. They found that suction increases the surface shear stress and as a
consequence increases the heat transfer rate at the surface. Yao et al. [10] investigated heat
transfer flow over a stretching/shrinking sheet with convective boundary conditions. They
found that temperature at the surface of the plate increases with the increase of the surface
convection parameter. Rahman [11] studied locally similar solutions for the hydromagnetic
thermal boundary layer flow of a viscous incompressible electrically conducting fluid over
a flat plate with a partial slip at the surface of boundary in the presence of the convective
surface boundary condition numerically and displayed results for the velocity, temperature,
and Prandtl number within the boundary layer delineating the effect of various parameters
characterizing the flow.

In most of the published studies in the literature [12–16], the partial differential equa-
tions were converted to ordinary differential equations via a similarity transformation found
by ad hoc methods. The resulting ordinary differential equations were then solved by numer-
ical methods. Lie groupmethods are performed to investigate similarity transformation of the
boundary layer equations in only a few studies [17–19]. However, a detailed investigation of
the complete symmetries for unsteady boundary layer flow and heat transfer equations are
lacking in the literature.

In this paper, Lie group analysis of unsteady flow and heat transfer over a porous
surface in the presence of suction/injection velocity is analyzed. Group classification of the
governing equations with respect to the variable free stream flow and suction/injection
velocity is performed. The infinitesimal generators are obtained. The restrictions imposed by
the boundary conditions on the generators are discussed. Using the resulting generators, the
governing equations are transformed into ordinary differential equations and solved numer-
ically. Numerical results are presented for the selected dimensionless problem parameters
and discussed in detail. Present study reveals that injection decreases temperature gradient
whereas suction increases the temperature gradient. The increase in the Prandtl number
causes increase in the temperature gradient with increasing the slope.
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2. Mathematical Formulation

Consider the unsteady two-dimensional, incompressible laminar flow over a porous surface.
Under the boundary layer approximation, the continuity, momentum, and energy equations
can be written as

∂u

∂x
+
∂v

∂y
= 0,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

∂U

∂t
+U

∂U

∂x
+ ν

∂2u

∂y2
,

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
,

(2.1)

where x is the coordinate along the surface and y is the coordinate vertical to x. t is time,
u and v are the velocity components in x and y coordinates. U is the free stream velocity
outside the boundary layer, T is the temperature, ν and α are the kinematic viscosity and
thermal diffusivity of the fluid, respectively.

The boundary conditions are

u
(
x, 0, t

)
= 0, v

(
x, 0, t

)
= V

(
x, t

)
, T

(
x, 0, t

)
= Ts,

u
(
x,∞, t

)
= U

(
x, t

)
, T

(
x,∞, t

)
= T∞,

(2.2)

where V (x, t) is the suction/injection velocity of the permeable surface. Ts is the constant
surface temperature and T∞ is the temperature of the ambient fluid.

The nondimensional form of (2.1) and boundary conditions are as follows:

∂u

∂x
+
∂v

∂y
= 0, (2.3)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= F(x, t) +

1
Re

∂2u

∂y2
, (2.4)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

1
Re Pr

∂2T

∂y2
, (2.5)

u(x, 0, t) = 0, v(x, 0, t) = V (x, t), T(x, 0, t) = 1,

u(x,∞, t) = U(x, t), T(x,∞, t) = 0.
(2.6)
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The nondimensional parameters are related to the dimensional ones through the following
relations:

u =
u

U0
, v =

v

U0
, U =

U

U0
, T =

(
T − T∞

)

(Ts − T∞)
, x =

x

L
, y =

y

L
, t =

U0t

L
,

Re =
U0L

ν
, Pr =

ν

α
, F(x, t) =

∂U

∂t
+U

∂U

∂x
,

(2.7)

where U0, L, Re, and Pr are the average free stream velocity, length of the horizontal surface,
Reynolds number, and Prandtl number, respectively. F(x, t) is used for simplicity in the
equations.

3. Symmetry Analysis

The symmetry groups of (2.3)–(2.5) are calculated by using classical Lie group approach.
Details of the theory can be found in Bluman and Kumei [20] and Stephani [21]. The one-
parameter infinitesimals Lie group of transformations are defined as

x∗ = x + εξ1
(
x, y, t, u, v, T

)
,

y∗ = y + εξ2
(
x, y, t, u, v, T

)
,

t∗ = t + εξ3
(
x, y, t, u, v, T

)
,

u∗ = u + εη1
(
x, y, t, u, v, T

)
,

v∗ = v + εη2
(
x, y, t, u, v, T

)
,

T ∗ = T + εη3
(
x, y, t, u, v, T

)
.

(3.1)

The prolonged infinitesimal generator which includes higher order derivatives is

X = ξ1
∂

∂x
+ ξ2

∂

∂y
+ ξ3

∂

∂t
+ η1

∂

∂u
+ η2

∂

∂v
+ η3

∂

∂T
+ η1x

∂

∂ux
+ η1y

∂

∂uy
+ η1t

∂

∂ut

+ η2y
∂

∂vy
+ η3x

∂

∂Tx
+ η3y

∂

∂Ty
+ η3t

∂

∂Tt
+ η1yy

∂

∂uyy
+ η3yy

∂

∂Tyy
.

(3.2)

The invariance conditions for (2.3)–(2.5) are obtained by applying the generator to the equa-
tions:

η1x + η2y = 0,

η1t + η1ux + uη1x + η2uy + vη1y = ξ1Fx + ξ3Ft +
1
Re

η1yy,

η3t + η1Tx + uη3x + η2Ty + vη3y =
1

Re Pr
η3yy.

(3.3)



Journal of Applied Mathematics 5

MathLie program [22] is used to calculate higher order infinitesimals and then equations are
separated with respect to higher order variables. The initial restrictions on the infinitesimals
are

ξ1 = ξ1(x, t), ξ2 = ξ2
(
x, y, t

)
, ξ3 = ξ3(t),

η1 = η1
(
x, y, t, u

)
, η2 = η2

(
x, y, t, u, v

)
, η3 = η3

(
x, y, t, T

)
,

(3.4)

and the remaining determining equations are

∂2η1

∂u2
= 0,

∂2η3

∂T2
= 0,

−2∂ξ2
∂y

+
∂ξ3
∂t

= 0,

∂η1
∂x

+
∂η2
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= 0,

−∂ξ2
∂x

+
∂η2
∂u
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∂t

− u
∂ξ1
∂x

+ 2u
∂ξ2
∂y

= 0,

−∂ξ1
∂x

+
∂ξ2
∂y

+
∂η1
∂u

− ∂η2
∂v

= 0,

PrReη2 − PrRe
∂ξ2
∂t

− PrReu
∂ξ2
∂x

+ PrRev
∂ξ2
∂y

+
∂2ξ2
∂y2

− 2
∂2η3
∂y∂T

= 0,

Reη2 − Re
∂ξ2
∂t

− Reu
∂ξ2
∂x

+ Rev
∂ξ2
∂y

+
∂2ξ2
∂y2

− 2
∂2η1
∂y∂u

= 0,

PrRe
∂η3
∂t

+ PrReu
∂η3
∂x

+ PrRev
∂η3
∂y

− ∂2η3

∂y2
= 0,

−Re ξ1
∂F

∂x
− Re ξ3

∂F

∂t
− 2F Re

∂ξ2
∂y

+ Re
∂η1
∂t

+ F Re
∂η1
∂u

+ Reu
∂η1
∂x
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∂η1
∂y

− ∂2η1

∂y2
= 0.

(3.5)

Equations (3.5) are an overdetermined partial differential system. Solving the system, the inf-
initesimals are finally obtained:

ξ1 = ax + b(t),

ξ2 =
c

2
y + d(x, t),
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ξ3 = ct + e,

η1 = (a − c)u +
db

dt
,

η2 = −c
2
v +

∂d

∂t
+ u

∂d

∂x
,

η3 = gT + h.

(3.6)

F(x, t) is to be determined from the following equation:

d2b

dt2
+ F(a − 2c) − ξ1

∂F

∂x
− ξ3

∂F

∂t
= 0. (3.7)

The generator is applied to the boundary conditions which should also be invariant under
the transformation leading to restrictions in (3.6):

ξ1 = ax + b,

ξ2 =
c

2
y,

ξ3 = ct + e,

η1 = (a − c)u,

η2 = −c
2
v,

η3 = 0,

F(a − 2c) − ξ1
∂F

∂x
− ξ3

∂F

∂t
= 0

(3.8)

or

F = (ct + e)(a−2c)/cf
(
μ
)
, μ =

(ax + b)1/a

(ct + e)1/c
. (3.9)

V (x, t) andU(x, t) functions should satisfy the following equations:

−c
2
V = (ax + b)

∂V

∂x
+ (ct + e)

∂V

∂t
,

(a − c)U = (ax + b)
∂U

∂x
+ (ct + e)

∂U

∂t
.

(3.10)
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Different functions can be obtained from (3.10) for V (x, t) and U(x, t) via setting the para-
meters as follows.

(I) Parameter a: selecting parameter a = 1 without a loss of generality and all other
parameters zero yields

x
∂V

∂x
= 0 =⇒ V = s(t),

U = x
∂U

∂x
=⇒ U = xf(t).

(3.11)

In this case, suction or injection velocity is an arbitrary function of time. Solving (3.11) for
U(x, t) yields U = xf(t), where f(t) is an arbitrary function of time for this special choice.

(II) Parameter c: selecting parameter c = 1 and all other parameters zero yields

−V
2

= t
∂V

∂t
= 0 =⇒ V =

s(x)√
t
,

−U = t
∂U

∂t
=⇒ U =

1
t
f(x).

(3.12)

For this choice, V (x, t) and U(x, t) yield V = s(x)/
√
t andU = (1/t)f(x) from (3.10).

(III) Parameter b: selecting parameter b = 1 and all other parameters zero yields

∂V

∂x
= 0 =⇒ V = s(t),

∂U

∂x
= 0 =⇒ U = f(t).

(3.13)

In this case, suction or injection velocity and free stream velocity are arbitrary functions of
time.

(IV) Parameter e: selecting parameter e = 1 and all other parameters zero yields

∂V

∂t
= 0 =⇒ V = s(x),

∂U

∂t
= 0 =⇒ U = f(x).

(3.14)

In this case, suction or injection velocity and free stream velocity are arbitrary functions of
the spatial variable x.

4. Similarity Transformations and Reductions

Similarity transformations and reductions of the partial differential system to an ordinary
differential system will be considered.
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4.1. A Similarity Transformation

In this section, we choose the first case (case I) for obtaining similarity transformations as fol-
lows:

dx

x
=

dy

0
=

dt

0
=

du

u
=

dv

0
=

dT

0
. (4.1)

Similarity variables and functions are obtained from (4.1):

μ1 = y, μ2 = t, u = xF1
(
μ1, μ2

)
, v = F2

(
μ1, μ2

)
, T = F3

(
μ1, μ2

)
,

V = s
(
μ2
)
, U = xf

(
μ2
)
.

(4.2)

The substitution of these variables and functions into the original equations and boundary
conditions yields

F1 +
∂F2

∂μ1
= 0,

∂F1

∂μ2
+ F2

1 + F2
∂F1

∂μ1
=

df
(
μ2
)

dμ2
+ f

(
μ2
)2 + 1

Re
∂2F1

∂μ1
2
,

∂F3

∂μ2
+ F2

∂F3

∂μ1
=

1
Re Pr

∂2F3

∂μ1
2
,

(4.3)

F1
(
0, μ2

)
= 0, F2

(
0, μ2

)
= s

(
μ2
)
, F3

(
0, μ2

)
= 1, F1

(∞, μ2
)
= f

(
μ2
)
,

F3
(∞, μ2

)
= 0.

(4.4)

The partial differential system with three independent variables is reduced to a system with
two independent variables.

4.2. The Second Reduction

To reduce (4.3) and (4.4) into an ordinary differential system, one-parameter infinitesimal Lie
group of transformations is defined as

μ1
∗ = μ1 + εγ1

(
μ1, μ2, F1, F2, F3

)
,

μ2
∗ = μ2 + εγ2

(
μ1, μ2, F1, F2, F3

)
,

F1
∗ = F1 + εϕ1

(
μ1, μ2, F1, F2, F3

)
,

F2
∗ = F2 + εϕ2

(
μ1, μ2, F1, F2, F3

)
,

F3
∗ = F3 + εϕ3

(
μ1, μ2, F1, F2, F3

)
.

(4.5)
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The prolonged infinitesimal generator is

X = γ1
∂

∂μ1
+ γ2

∂

∂μ2
+ ϕ1

∂

∂F1
+ ϕ2

∂

∂F2
+ ϕ3

∂

∂F3
+ ϕ1μ1

∂

∂F1μ1

+ ϕ2μ1

∂

∂F2μ1

+ ϕ3μ1

∂

∂F3μ1

+ ϕ1μ2

∂

∂F1μ2

+ ϕ3μ2

∂

∂F3μ2

+ ϕ1μ1μ1

∂

∂F1μ1μ1

+ ϕ3μ1μ1

∂

∂F3μ1μ1

.

(4.6)

The invariance conditions for (4.3) are

ϕ1 + ϕ2μ1 = 0, (4.7)

ϕ1μ2 + 2F1ϕ1 + ϕ2F1μ1 + F2ϕ1μ1 = γ2
d2f

dμ2
2

+ 2γ2f
df

dμ2
+

1
Re

ϕ1μ1μ1 , (4.8)

ϕ3μ2 + ϕ2F3μ1 + F2ϕ3μ1 =
1

Re Pr
ϕ3μ1μ1 . (4.9)

Substituting the higher order infinitesimals, separating the equations with respect to higher
order variables yields

∂2ϕ1

∂F1
2
= 0,

∂2ϕ3

∂F3
2
= 0,

−2 ∂γ1
∂μ1

+
∂γ2
∂μ2

= 0,

ϕ2 −
∂γ1
∂μ2

+
1
Re

∂2γ1

∂μ2
1

− 2
1
Re

∂2ϕ1

∂μ1∂F1
+ F2

∂γ1
∂μ1

= 0,

ϕ2 −
∂γ1
∂μ2

+
1

RePr
∂2γ1

∂μ2
1

− 2
1

RePr
∂2ϕ3

∂μ1∂F3
+ F2

∂γ1
∂μ1

= 0,

1
Re

∂ϕ3

∂μ2
+

1
RePr

f2 ∂ϕ3

∂F1
+

1
RePr

f ′ ∂ϕ3

∂F1
− 1
Re2Pr

∂2ϕ3

∂μ1
2
− 1
RePr

F1
2 ∂ϕ3

∂F1
+

1
Re

∂2ϕ3

∂μ1∂F2
= 0,

−2ff ′γ2− 2f2 ∂γ1
∂μ1

− 2f ′ ∂γ1
∂μ1

+
∂ϕ1

∂μ2
+ f2 ∂ϕ1

∂F1
+ f ′ ∂ϕ1

∂F1
− f ′′γ2 − 1

Re
∂2ϕ1

∂μ1
2
+ 2F1ϕ1

+ 2F2
1
∂γ1
∂μ1

− F2
1
∂ϕ1

∂F1
+ F2

∂ϕ1

∂μ1
= 0,

− 2
Re2Pr

∂2ϕ3

∂μ1∂F1
− 1
RePr

F2
∂ϕ3

∂F1
+

1
Re

F2
∂ϕ3

∂F1
= 0,
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− 2
Re2 Pr

∂2ϕ1

∂μ1∂F3
+

1
Re Pr

F2
∂ϕ1

∂F3
− 1
Re

F2
∂ϕ1

∂F3
= 0,

ϕ1 +
∂ϕ2

∂μ1
+ F1

∂γ1
∂μ1

− F1
∂ϕ2

∂F2
= 0,

(4.10)

from which the above equations are solved:

γ1 = −c1
2
μ1 + c2

(
μ2
)
,

γ2 = −c1μ2 + c3,

ϕ1 = c1F1,

ϕ2 =
c1
2
F2 +

dc2
dμ2

,

ϕ3 = c4F3 + c5.

(4.11)

The determining equation for f(μ2)which is selected toU(x, t), outer velocity, is obtained as
follows:

−2f df

dμ2
γ2 −

d2f

dμ2
2

γ2 − f2γ ′2 −
df

dμ2
γ ′2 +

(
f2 +

df

dμ2

)
∂ϕ1

∂F1
= 0. (4.12)

The boundaries and boundary conditions should be invariant under the transformations also
(Bluman and Kumei [20]):

γ1 = −c1
2
μ1,

γ2 = −c1μ2 + c3,

ϕ1 = c1F1,

ϕ2 =
c1
2
F2,

ϕ3 = 0,

−2f df

dμ2
γ2 −

d2f

dμ2
2

γ2 − f2γ ′2 −
df

dμ2
γ ′2 +

(
f2 +

df

dμ2

)
∂ϕ1

∂F1
= 0.

(4.13)

Two parameters are involved in Lie group Transformations.
s(μ2) and f(μ2) functions should satisfy the following equations:

c1
2
s =

(−c1μ2 + c3
) ds

dμ2
,

c1f =
(−c1μ2 + c3

) df

dμ2
.

(4.14)
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Different functions can be obtained from the above equations for s(μ2) and f(μ2) via setting
the parameters. The general case in which both parameters are involved will be considered.

Solving (4.14) results

s =
λ1√

c1μ2 − c3
, f =

1
c1μ2 − c3

. (4.15)

The equations determining the similarity transformations are

dμ1

−(c1/2)μ1
=

dμ2

−c1μ2 + c3
=

dF1

c1F1
=

dF2

(c1/2)F2
=

dF3

0
, (4.16)

from which the similarity variables and functions are derived:

β = μ1
(
c1μ2 − c3

)−1/2
, θ1

(
β
)
=
(
c1μ2 − c3

)
F1, θ2

∗(β) =
(
c1μ2 − c3

)1/2
F2,

θ3
(
β
)
= F3.

(4.17)

Inserting these variables and functions into (4.3) and (4.4) yields the following ordinary
differential system:

θ1 + θ∗
2β = 0,

θ2
1 − c1θ1 + θ∗

2θ1β −
c1β

2
θ1β = (1 − c1) +

1
Re

θ1ββ

−c1β
2

θ3β + θ2θ3β =
1

Re Pr
θ3ββ.

(4.18)

Further, we scale variables θ∗
2 and β as

θ∗
2 =

1√
Re

θ2, β =
1√
Re

Y. (4.19)

The substitution of these variables into (4.18) yields

θ2
2Y + c1θ2Y − θ2θ2YY +

c1Y

2
θ2YY = (1 − c1) − θ2YYY ,

−c1Yθ3Y + θ2θ3Y =
1
Pr

θ3YY .

(4.20)

The associated boundary conditions are

θ1(0) = 0, θ2(0) = λ1, θ3(0) = 1, θ1(∞) = 1, θ3(∞) = 0, (4.21)

where λ1 is the suction/injection parameter; c1 and c3 are the unsteadiness parameters.
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Figure 1: Variation of θ1 for different values of unsteadiness parameter c1 (Pr = 10, λ1 = 0).
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Figure 2: Variation of θ1 for different values of suction/injection (Pr = 10, c1 = 0.5).

5. Result and Discussion

The nonlinear reduced ordinary differential equation system (4.20) with the boundary
conditions in (4.21) is solved numerically by applying a finite difference code that implements
the three-stage Lobatto IIIA formula that provides continuous solutions of fourth order
accuracy in the problem domain. Description of the numerical method is given by Shampine
et al. [23] and Kierzenka and Shampine [24]. Results are displayed graphically for various
values of problem parameters to see developments in the velocity and temperature fields.

The variation of the dimensionless x-component of velocity is shown for various val-
ues of unsteadiness parameter c1 in the absence of suction/injection in Figure 1. It is clear that
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Figure 3: Variation of θ3 for different values of the Prandtl number (λ1 = 0, c1 = 0.5).
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Figure 4: Variation of θ3 for different values of c1 (Pr = 10, λ1 = 0).

an increase in the c1 causes a reduction in the velocity until a certain point. After this point,
reverse effect in velocity is observed for increasing values of c1.

The effect of suction/injection parameter on the velocity profile is presented in
Figure 2. It is noted that suction decreases the boundary layer thickness whereas injection
increases.

Effects of Prandtl number on the temperature profiles are given in Figure 3. An
increase in the Prandtl number decreases the temperature profiles. Effects of unsteadiness
parameter c1 on the temperature profiles are depicted in Figure 4. An increase in c1 decreases
the temperature profiles. Thermal boundary layer is narrower for higher unsteadiness
parameter. In Figure 5 effects of suction-injection parameter on the temperature profiles are
depicted. λ1 = 0 corresponds to no suction/injection case. Suction decreases the thickness of
thermal boundary layer whereas injection increases the thickness of thermal boundary layer.
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Figure 6: Variation of the velocity gradient with c1 (Pr = 1).

In Figure 6, we displayed the velocity gradient against suction/injection parameter
for the case of flow along a horizontal porous surface for different values of the unsteadiness
parameter, c1. Injection decreases the velocity gradient whereas suction increases the velocity
gradient. The reduction in c1 causes an increase in velocity gradient with decreasing the slope.

In Figure 7, we show the temperature gradient against suction/injection parameter for
different c1-unsteadiness parameter. Injection decreases the temperature gradient whereas
suction increases the temperature gradient. In Figure 8, we displayed the temperature gradi-
ent against unsteadiness parameter for different Prandtl numbers. The increase in the Prandtl
number causes increase in temperature gradient.
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Figure 8: Variation of the temperature gradient with c1 (λ1 = 0).

6. Conclusions

In this paper, we have studied the problem of two-dimensional, unsteady flow and heat
transfer of a viscous fluid past a surface in the presence of variable suction/injection. The
unsteadiness is due to time dependent free stream flow.

The governing equations are derived with the usual boundary layer approximation.
Using Lie group theory, a group classification of the equations with respect to the variable
free stream flow and suction/injection velocity is performed. Restrictions imposed by the
boundary conditions on the symmetries are discussed. Adopting the obtained symmetry
groups, governing partial differential equations are converted into ordinary differential
equations and then solved numerically.
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Effects of dimensionless problem parameters on the velocity and temperature profiles
are outlined in the figures. From the present investigation the following results are obtained.

(i) An increase in the unsteadiness parameter c1 causes a reduction in the velocity.

(ii) Suction decreases the boundary layer thickness whereas injection increases.

(iii) An increase in the Prandtl number and unsteadiness parameter decreases the temp-
erature profiles.

(iv) Suction decreases the thickness of thermal boundary layer whereas injection in-
creases the thickness of boundary layer.

(v) Injection decreases the velocity gradient whereas suction increases. Moreover the
reduction of c1 causes an increase in the velocity gradient.

(vi) Injection decreases the temperature gradient whereas suction increases the
temperature gradient. The increase in the Prandtl number causes increase in the
temperature gradient with increasing the slope.
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