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This paper presents Pareto design of decoupled sliding-mode controllers based on amultiobjective
genetic algorithm for several fourth-order coupled nonlinear systems. In order to achieve an
optimum controller, at first, the decoupled sliding mode controller is applied to stablize the
fourth-order coupled nonlinear systems at the equilibrium point. Then, the multiobjective genetic
algorithm is applied to search the optimal coefficients of the decoupled sliding-mode control to
improve the performance of the control system. Considered objective functions are the angle and
distance errors. Finally, the simulation results implemented in the MATLAB software environment
are presented for the inverted pendulum, ball and beam, and seesaw systems to assure the
effectiveness of this technique.

1. Introduction

There are many control techniques that have been used to investigate the control behavior
of the nonlinear systems [1–4]. A variable structure control with sliding mode, which is
commonly known as sliding-mode control, is a nonlinear control strategy that is well-known
for its guaranteed stability, robustness against parameter variations, fast dynamic response,
and simplicity in implementation [1]. Although the sliding mode control method gives a
satisfactory performance for the second-order systems, its performance for a fourth-order
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coupled system is questionable. For example, in an inverted pendulum system controlled
by the sliding-mode control, either the pole or cart can be successfully controlled, but not
both. A remedy to this problem is to decouple the states and apply a suitable control law to
stabilize the whole system. Recently, a decoupled sliding-mode control has been proposed to
cope with this issue. It provides a simple way to decouple a class of fourth-order nonlinear
systems in two second-order subsystems such that each subsystem has a separate control
objective expressed in terms of a sliding surface [5, 6]. An important consequence of the using
decoupled sliding-mode control is that the second subsystem is successfully incorporated
into the first one via a two-level decoupling strategy.

It is very important to note that for design of the sliding-mode control and decoupled
sliding-mode control, the sliding surface parameters should be determined, properly. This
point is very crucial for the performance of the control system. The problem can be
solved using evolutionary optimization techniques such as the genetic algorithm [7–10].
In this paper, a new intelligent decoupled sliding-mode control scheme based on an
improved multiobjective genetic algorithm is proposed. Using this optimization algorithm,
the important parameters of the decoupled sliding mode controller are optimized in a way to
decrease the errors of the position and angle, simultaneously. The results obtained from this
study illustrate that there are some important optimal design facts among objective functions
which have been discovered via the Pareto optimumdesign approach. Such important design
facts could not be found without using the multiobjective Pareto optimization process. In the
end, simulations are presented to show the feasibility and efficiency of the proposed Pareto
optimum decoupled sliding-mode control for the nonlinear systems.

2. Sliding-Mode Control

Sliding-mode controller is a powerful robust control strategy to treat the model uncertainties
and external disturbances [11]. Furthermore, it has been widely applied to robust control
of nonlinear systems [12–18]. In this section we recall the general concepts of sliding mode
control for a second-order dynamic system. Suppose a nonlinear system is defined by the
general state space equation as follows:

ẋ = f(x, u, t), (2.1)

where x ∈ Rn is the state vector, u ∈ Rm the input vector, n is the order of the system, and m
is the number of inputs. Then, the sliding surface s(e, t) is given by the following:

s(e, t) =
{
e : HTe = 0

}
, (2.2)

where H ∈ Rn represents the coefficients or slope of the sliding surface. Here,

e = x − xd (2.3)

is the negative tracking error vector.
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Usually a time-varying sliding surface s(t) is simply defined in the state-space Rn by
the scalar equation as the following:

s(e, t) =
(

d

dt
+ λ

)n−1
e = 0, (2.4)

where λ is a strictly positive constant that can also be explained as the slope of the sliding
surface. For instance, if n = 2 (for a second-order system) then,

s = ė + λe, (2.5)

and hence, s is simply a weighted sum of the position and velocity error from (2.4). The
nth-order tracking problem is now being replaced by a first-order stabilization problem in
which scalar s is to be kept at zero by a governing reaching condition. By choosing Lyapunov
function V (x) = (1/2)s2, the following equation can guarantee that the reaching condition is
satisfied,

V̇ (x) = sṡ < 0. (2.6)

The existence and convergence conditions can be rewritten as follows:

sṡ ≤ −η|s|. (2.7)

This equation permits a nonswitching region. Here, η is a strictly positive constant, and its
value is usually chosen based on some knowledge of disturbances or system dynamics in
terms of some known amplitudes.

In this control method, by changing the control law according to certain predefined
rules which depend on the position of the error states of the system with respect to sliding
surfaces, those states are switched between stable and unstable trajectories until they reach
the sliding surface.

It can be shown that the sliding condition of (2.6) is always satisfied by the following:

u = ueq − k · sgn(s), (2.8)

where ueq is called equivalent-control input which is obtained by ṡ = 0. k is a design
parameter and k ≥ η.

Function sgn makes the high frequency chattering in control command. Using a
proper definition of a thin boundary layer around the sliding surface, the chattering can be
eliminated (Figure 1). This is accomplished by defining a boundary layer of thickness Φ,
and replacing function sgn with function sat. This function is as the following and shown in
Figure 2,

sat
( s

Φ

)
=

⎧
⎪⎨
⎪⎩

sgn
( s

Φ

)
if
∣∣∣ s
Φ

∣∣∣ ≥ 1

( s

Φ

)
if
∣∣∣ s
Φ

∣∣∣ < 1
. (2.9)
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Figure 1: Sliding plant of a smooth controller.
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Figure 2: Function Sat (s/Φ) to eliminate the chattering phenomena in the sliding mode controller.

3. Inverted Pendulum System

In this section, the model of an inverted pendulum is recalled. In fact, the work deals with
the stabilization control of a complicated, nonlinear, and unstable system. A pole, hinged to
a cart moving on a track, is balanced upwards by motioning of the cart via a DC motor. The
system observable state vector is x = [x1, x2, x3, x4]

T , including, respectively, the position of
the cart, the angle of the pole with respect to the vertical axis, and their derivatives. The force
to motion the cart may be expressed as F = αu, where u is the input that is the limited motor
supply voltage. The system dynamic model is as follows:

ẋ1 = x3,

ẋ2 = x4,

ẋ3 = f1(x) + b1(x)u,

ẋ4 = f2(x) + b2(x)u,

(3.1)
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Figure 3: Inverted pendulum system.

where

f1(x) =
a
(−fr − μx2

4 sinx2
) − l cos(x2)

(
μg sinx2 − Cx4

)

J + μl sin2x2
,

b1(x) =
aα

J + μl sin2x2
,

f2(x) =
l cos(x2)

(−fr − μx2
4 sinx2

)
+ μg sinx2 − Cx4

J + μl sin2x2
,

b2(x) =
l cosx2α

J + μl sin2x2
,

(3.2)

That is

l =
LM1

2(M2 +M1)
, a = l2 +

J

M2 +M1
, μ = (M2 +M1)l. (3.3)

Masses of the cart and pole are, respectively, M2 and M1, g represents the gravity
acceleration, L is the half length of the pole, and J is the overall inertia moment of the cart
and pole with respect to the system centre of mass. C is the rotational friction coefficient of
the pole, and fr is the horizontal friction coefficient of the cart (Figure 3). This system is a
nonlinear fourth-order system that includes two second-order subsystems in the canonical
form with states [x1, x3]

T and [x2, x4]
T .

4. Ball and Beam System

The ball and beam system is one of the most enduringly popular and important laboratory
models for teaching control systems engineering. Because it is very simple to understand as a
system, and control techniques that can stable it cover many important classical and modern
design methods. The system has a very important property, it is open-loop unstable. The
system is very simple, a steel ball rolling on the top of a long beam. The beam is mounted on
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Figure 4: Ball and beam system.

the output shaft of an electrical motor, and so the beam can be tilted about its center axis by
applying an electrical control signal to the motor amplifier. The control job is to automatically
regulate the position of the ball on the beam by changing the angle of the beam. This is a
difficult control task because the ball does not stay in one place on the beam, and moves with
acceleration that is approximately proportional to the tilt of the beam. In control terminology,
the system is open-loop unstable because the system output (the ball position) increases
without any limitation for a fixed input (beam angle). Feedback control must be used to
stabilize the system and to keep the ball in a desired position on the beam.

Consider a ball and beam system depicted in Figure 4 and its dynamic is described
below:

ẋ1 = x3,

ẋ2 = x4,

ẋ3 = f1(x) + b1(x)u,

ẋ4 = f2(x) + b2(x)u,

(4.1)

where

f1(x) = − 5
7

(
g sin(x2) − x1x

2
4

)
,

b1(x) = 0,

f2(x) =
−mx1

(
2x3x4 − g cos(x2)

)

mx2
1 + J

,

b2(x) =
1

mx2
1 + J

.

(4.2)

The mass of the ball is m, g represents the gravity acceleration, and J is the inertia moment
of the beam (Figure 4). The system observable state vector is x = [x1, x2, x3, x4]

T , including,
respectively, the position of the ball, the angle of the beam with respect to the horizontal
axis, and their derivatives. This system is a nonlinear fourth-order system that includes two
second-order subsystems in the canonical form with states [x1, x3]

T and [x2, x4]
T .
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5. Seesaw System

According to the basic physical concepts, in the seesaw mechanism, if the vertical line
along the centre of gravity of the inverted wedge is not passing through the fulcrum
perpendicularly, then the inverted wedge will result in a torque and rotates until reaching
the stable state. If we want to balance the inverted wedge, we have to put an external force
to produce an appropriate opposite torque. For this reason, the inverted wedge is equipped
with a cart to balance the unstable system. The cart can move to produce the appropriate
torque against the internal force (Figure 5).

The observable state vector is x = [x1, x2, x3, x4]
T , including, respectively, the cart

position, the wedge angle with respect to the vertical axis, and their derivatives. The system
dynamic model is as the following:

ẋ1 = x3,

ẋ2 = x4,

ẋ3 = f1(x) + b1(x)u,

ẋ4 = f2(x) + b2(x)u,

(5.1)

where

f1(x) = g sin(x2) − Tc
m

x3,

b1(x) =
1
m
,

f2(x) =
Mgr2 sin(x2) +mg

√
x2
1 + r21 sin(x2 + α) − fpx4

J
,

b2(x) =
r1
J
,

(5.2)

that is α = tan−1(x1/r1).
The cart and wedge masses are, respectively, m and M, g represents the gravity

acceleration, r1 is the height of the wedge, r2 is the height of mass centre, J is the inertia
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moment of the wedge, fp is the rotational friction coefficient of the wedge, and Tc is the
friction coefficient of the cart. This system is a nonlinear fourth-order system that includes
two second-order subsystems in the canonical form with states [x1, x3]

T and [x2, x4]
T .

6. Decoupled Sliding-Mode Control

Consider the nonlinear fourth-order coupled system expressed as the following.

ẋ1 = x3,

ẋ2 = x4,

ẋ3 = f1(x) + b1(x)u,

ẋ4 = f2(x) + b2(x)u.

(6.1)

This system includes two second-order subsystems in the canonical formwith states [x1, x3]
T

and [x2, x4]
T , and the sliding-mode control mentioned in the Section 2 can only control

one of these subsystems. Hence, the basic idea of the decoupled sliding-mode control is
proposed to design a control law such that the single input u simultaneously controls two
coupled subsystems to accomplish the desired performance [5, 6, 19]. To achieve this goal,
the following sliding surfaces are defined:

s1(x) = λ1 · (x2 − x2d − z) + x4 − x4d = 0 (6.2a)

s2(x) = λ2 · (x1 − x1d) + x3 − x3d = 0. (6.2b)

Here, z is a proportional value of s2 and has a proper range with respect to x2. A comparison
of (6.2a) with (2.5) shows the meaning of (6.2a): the control objective in the first subsystem
of (6.1) changes from x2 = x2d and x4 = x4d to x2 = x2d + z and x4 = x4d. On the other hand,
(6.2b) has the samemeaning of (2.5) and its control objectives are x1 = x1d and x3 = x3d. Now,
let the control law for (6.2a) be a sliding mode with a boundary layer, then:

u1 = û1 −Gf1 sat(s1(x)b2(x)Gs1), Gf1 , Gs1 > 0, (6.3)

with

û1 = −b−11 (x)
(
f2(x) − ẍ2d + λ1x4 − λ1ẋ2d

)
. (6.4)

So

z = sat(s2 ·Gs2) ·Gf2 , 0 < Gf2 < 1, (6.5)

where Gs2 represents the inverse of the width of the boundary layer for s2, Gf2 transfers s2
to the proper range of x2. Notice, in (6.5) z is a decaying oscillation signal since Gf2 < 1.
Moreover, in (6.2a), if s1 = 0, then x2 = x2d + z and x4 = x4d.
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Now, the control sequence is as follows: when s2 /= 0, then z/= 0 in (6.2a) causes (6.3) to
generate a control action that reduces s2; as s2 decreases, z decreases too. Hence, at the limit
s2 → 0 with x1 → x1d, then z → 0 with x2 → x2d; so, s1 → 0, and the control objective
would be achieved [19].

7. Genetic Algorithm

Optimization in engineering design has always been of great importance and interest
particularly in solving complex real-world design problems. Basically, the optimization
process is defined as finding a set of values for a vector of design variables so that
it leads to an optimum value of an objective or cost function. In such single-objective
optimization problems, there may or may not exist some constraint functions on the design
variables, and they are, respectively, referred to as constrained or unconstrained optimization
problems. There are many calculus-based methods including gradient approaches to search
for mostly local optimum solutions and these are well documented in [20, 21]. However,
some basic difficulties in the gradient methods such as their strong dependence on the
initial guess can cause them to find a local optimum rather than a global one. This has led
to other heuristic optimization methods, particularly genetic algorithms (GAs) being used
extensively during the last decade. Such nature-inspired evolutionary algorithms [22, 23]
differ from other traditional calculus based techniques. The main difference is that GAs
work with a population of candidate solutions, not a single point in search space. This
helps significantly to avoid being trapped in local optima [24] as long as the diversity of
the population is well preserved.

One of complex real-world problems is the controller design, because it is necessary
to assign the control parameters. This parameter tuning is traditionally based on the trial
and error procedure; however, this problem can be solved via evolutionary algorithms,
for example, genetic algorithms. In the existing literature, several previous works have
considered the evolutionary algorithms for control design. For an overview of evolutionary
algorithms in the control engineering, [25] is appropriate. In particular, the pole placement
procedure to design a discrete-time regulator in [26] and the observer-based feedback
control design in [27] are formulated as multiobjective optimization problems and solved via
genetic algorithms. Moreover, in [28], two decoupled sliding-mode control configurations are
designed for a scale model of an oil platform supply ship while the genetic algorithm is used
for optimization.

A simple genetic algorithm includes individual selection from population based on
the fitness, crossover, and mutation with some probabilities to generate new individuals.
With the genetic operation going on, the individual maximum fitness and the population
average fitness are increased, steadily. When applied to a problem, GA uses a genetics-based
mechanism to iteratively generate new solutions from currently available solutions. It then
replaces some or all of the existing members of the current solution pool with the newly
created members. The motivation behind the approach is that the quality of the solution pool
should improve with the passage of time [22, 23].

8. Multiobjective Optimization

In multiobjective optimization problems which is also called multi-criteria optimization
problems or vector optimization problems, there are several objective or cost functions
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(a vector of objectives) to be optimized (minimized or maximized), simultaneously. These
objectives often conflict with each other so that as one objective function improves, another
deteriorates. Therefore, there is no single optimal solution that is best with respect to all
the objective functions. Instead, there is a set of optimal solutions, well-known as Pareto
optimal solutions [29–32], which distinguishes significantly the inherent natures between
single-objective and multiobjective optimization problems.

In fact, multiobjective optimization has been defined as finding a vector of decision
variables satisfying constraints to give acceptable values to all objective functions. Such
multiobjective minimization based on Pareto approach can be conducted using some
definitions [33].

8.1. Definition of Pareto Dominance

A vector �U = [u1, u2, . . . , un], is dominance to vector �V = [v1, v2, . . . , vn] (denoted by �U ≺ �V )
if and only if for all i ∈ {1, 2, . . . , n}, ui ≤ vi ∧ ∃j ∈ {1, 2, . . . , n} : uj < vj .

8.2. Definition of Pareto Optimality

A point X∗ ∈ Ω (Ω is a feasible region in Rn) is said to be Pareto optimal (minimal) if and
only if there is not X ∈ Ω which is dominance to X∗. Alternatively, it can be readily restated
as following. For all X ∈ Ω, X /=X∗, ∃i ∈ {1, 2, . . . , m} : fi(X∗) < fi(X).

8.3. Definition of Pareto Set

For a given multiobjective optimization problem, a Pareto set P ∗ is a set in the decision
variable space consisting of all the Pareto optimal vectors. P ∗ = {X ∈ Ω | �X′ ∈ Ω : F(X′) ≺
F(X)}.

8.4. Definition of Pareto Front

For a given multiobjective optimization problem, the Pareto front PT ∗ is a set of vectors of
objective functions which are obtained using the vectors of decision variables in the Pareto
set P ∗, that is PT ∗ = {F(X) = (f1(X), f2(X), . . . , fm(X)) : X ∈ P ∗}. In other words, the Pareto
front PT ∗ is a set of the vectors of objective functions mapped from P ∗.

In fact, evolutionary algorithms have been widely used for multiobjective opti-
mization because of their natural properties suited for these types of problems. This is
mostly because of their parallel or population-based search approach. Therefore, most
of the difficulties and deficiencies within the classical methods in solving multiobjective
optimization problems are eliminated. For example, there is no need for either several runs
to find all individuals of the Pareto front or quantification of the importance of each objective
using numerical weights. In this way, the original nondominated sorting procedure given by
Goldberg [22] was the catalyst for several different versions of multiobjective optimization
algorithms [29, 30]. However, it is very important that the genetic diversity within the
population be preserved sufficiently. This main issue inmultiobjective optimization problems
has been addressed by many related research works [34]. Consequently, the premature
convergence of multiobjective optimization evolutionary algorithms is prevented, and the
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solutions are directed and distributed along the true Pareto front if such genetic diversity is
well provided. The Pareto-based approach of NSGAII [33] has been used recently in a wide
area of engineering multiobjective optimization problems because of its simple yet efficient
non-dominance ranking procedure in yielding different level of Pareto frontiers. However,
the crowding approach in such state-of-the-art multiobjective optimization problems [35] is
not efficient as a diversity preserving operator [36]. In this paper, a new diversity preserving
algorithm called ε-elimination diversity algorithm [36], as a multiobjective tool, searches the
definition space of decision variables and returns the optimum answers in Pareto form. In this
ε-elimination diversity approach that is used to replace the crowding distance assignment
approach in NSGAII [33], all the clones and/or ε-similar individuals based on Euclidean
norm of two vectors are recognized and simply eliminated from the current population.
Therefore, based on a predefined value of ε as the elimination threshold (ε = 0.01 has been
used in this paper) all the individuals in a front within this limit of a particular individual are
eliminated. It should be noted that such ε-similarity must exist both in the space of objectives
and in the space of the associated design variables. This will ensure that very different
individuals in the space of design variables having ε-similarity in the space of objectives
will not be eliminated from the population. Evidently, the clones or ε-similar individuals are
replaced from the population with the same number of new randomly generated individuals.
Meanwhile, this will additionally help to explore the search space of the given multiobjective
optimization problems more efficiently [36].

9. Multiobjective Optimization of Decoupled Sliding Mode Control

As mentioned before this, it is necessary for the practical engineering applications to
solve the optimization problems involving multiple design criteria which are also called
objective functions. Furthermore, the design criteria may conflict with each other so that
improving one of them will deteriorate since another. The inherent conflicting behavior of
such objective functions lead to a set of optimal solutions named Pareto solutions. These
types of problems can be solved using evolutionary multiobjective optimization techniques.
Here, for multiobjective optimization of the decoupled sliding mode controller, vector
[Gf1 , Gs1 , λ1, Gf2 , Gs2 , λ2] is the vector of selective parameters of the decoupled sliding mode
controller. Gf1 and Gs1 are positive constant. λ1 and λ2 are coefficients of sliding surfaces,
and Gs2 represents the inverse of the width of the boundary layer of s2. Gf2 transfers s2 to
the proper range of x2. The error of the position and the error of the angle are functions
of this vector’s components. This means that by selecting various values for the selective
parameters, we can make changes in the position and angel errors. In this paper, we are
concerned in choosing values for the selective parameters to minimize above two functions.
Clearly, this is an optimization problem with two object functions (errors of position
and angle) and six decision variables [Gf1 , Gs1 , λ1, Gf2 , Gs2 , λ2]. The regions of the selective
parameters are as follows:

Gs2 , Gf1 ,Gs1 : positive constant, Gs2 , Gf1 , Gs1 > 0,

λ1, λ2: coefficients of the sliding surface, λ1, λ2 > 0,

Gf2 : transfers s2 to a proper range of x2, 0 < Gf2 < 1.

The following parameters of the genetic algorithm are considered.



12 Journal of Applied Mathematics

0.35 0.4 0.45 0.5 0.55
5

10

15

20

25

Angle error

D
is

ta
n

ce
 e

rr
o

r

A

C

B

Figure 6: Pareto front of the angle error and distance error for the inverted pendulum.
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Figure 7: Simulation results for the pole angle.

Population size = 100, chromosome length = 48, generations = 300, crossover
probability = 0.8, and mutation probability = 0.02. Also, the stopping criterion for this
algorithm is the maximum number of generations.

10. Simulation and Results for the Inverted Pendulum System

The simulation for the inverted pendulum system considered here is carried out byMATLAB
software. The initial values are as the following:

x1(0) = 0, x2(0) =
π

6
rad, x3(0) = 0, x4(0) = 0. (10.1)

The system parameters and constants used in the simulation are given in Table 1.
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Figure 12: Pareto front of the angle error and distance error for the ball and beam system.

Table 1: Inverted pendulum parameters.

The mass of the pole M1 0.5

The mass of the cart M2 2

The half length of the pole L 0.5

The inertia moment of the cart and pole J 0.4

The friction constant of the pole C 0.1

The friction constant of the cart fr 0.25

The gravity acceleration g 9.81

The force coefficient α 3
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When we apply the multiobjective genetic algorithm, we achieve a Pareto front of the
angle error and distance error as demonstrated in Figure 6.

Figure 6 is the chart resulted frommultiobjective optimization which all the presented
points are nondominated to each other. Each point in this chart is a representative of a vector
of selective parameters which if we choose it for the decoupled sliding-mode controller, the
analysis tends to objective functions corresponding to that point of chart. The design variables
and objective functions of the optimum design points A, B, and C are presented in Table 2.

Achieving several solutions, all of which are considered optimum is a unique property
of multiobjective optimization. Designer in facing to Pareto charts, among several different
optimum points can choose a suitable multisided design point, easily. According to the Pareto
chart, we applied point C for simulation, as shown in Figures 7, 8, 9, 10, and 11.

The simulation results (Figures 7, 8, 9, 10, and 11) show that the pole and the cart can
be stabilized to the equilibrium point.
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Figure 15: Simulation results for the control action.

Time (s)

0 2 4 6 8 10
−20

−10

0

10

20

30

40

50

S
1

Figure 16: Sliding surface s1(x).

The numerical results show that the control action is bounded between −15 and 10 (N),
and sliding surface s2(x) reaches to zero during the simulation.

11. Simulation and Results for the Ball and Beam System

The initial values of the ball and beam system are considered in the following form:

x1(0) = 0.1m, x2(0) =
π

3
rad, x3(0) = 0, x4(0) = 0. (11.1)

The system parameters and constants used in the simulation are given in Table 3.
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Figure 17: Sliding surface s2(x).

0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Angle error

D
is

ta
n

ce
 e

rr
o

r

B

C

A

Figure 18: Pareto front of the angle error and distance error for the seesaw system.

When the multiobjective genetic algorithm is applied, a Pareto front of the angle error
and distance error would be achieved (Figure 12).

Figure 12 shows the Pareto front obtained from the modified NSGAII algorithm in
an arbitrary run for the ball and beam system. In this figure, points A and C stand for the
best distance error and angle error, respectively. Furthermore, point B could be a trade-off
optimum choice when considering minimum values of both angle error and distance error.
Table 4 illustrates the design variables and objective functions corresponding to the optimum
design points A, B, and C.

The time responses of the ball and beam system related to point B are shown in
Figures 13, 14, 15, 16, and 17. These figures demonstrate that the ball and beam system can be
stabilized to the equilibrium point.
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Figure 19: Simulation results for the wedge angle.
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Figure 20: Simulation results for the cart position.
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Figure 21: Simulation results for the control action.
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Table 2: Comparison among points A, B, and C for Figure 6.

Point Gf1 Gs1 λ1 Gf2 Gs2 λ2 Angle error Distance error

A 9.9294 9.8941 1.4941 0.9608 0.1851 0.1459 0.3699 22.6927
B 9.9294 9.8941 1.4941 0.9608 0.1851 0.2987 0.4271 12.2111
C 9.8941 9.8941 1.4941 1.0000 0.1772 0.4946 0.5065 7.2827

Table 3: Ball and beam system parameters.

The mass of the ball m 0.05
The inertia moment of the beam J 0.0833
The gravity acceleration g 9.81

Table 4: Comparison among points A, B, and C for Figure 12.

Point Gf1 Gs1 λ1 Gf2 Gs2 λ2 Angle error Distance error

A 29.8443 1.5451 48.4345 0.6823 46.8690 0.1074 0.0824 0.6174
B 0.2957 0.4158 48.2388 0.6647 41.5855 0.4725 0.0944 0.1402
C 9.8843 1.0040 41.5855 0.6612 2.0569 1.5008 0.1525 0.0225

Table 5: Seesaw system parameters.

The mass of the cart m 0.46
The mass of the wedge M 1.52
The height of the wedge r1 0.148
The height of center of mass r2 0.123
The inertia moment of the wedge J 0.044
The friction coefficient of the wedge fp 0.3
The friction coefficient of the cart Tc 0.7
The gravity acceleration g 9.8

Table 6: Comparison among points A, B, and C for Figure 18.

Point Gf1 Gs1 λ1 Gf2 Gs2 λ2 Angle error Distance error

A 9.9612 7.6706 9.7671 0.0088 0.0060 0.0245 0.0963 0.4489
B 9.9612 0.2165 5.1082 0.0088 0.0557 0.0010 0.1319 0.3345
C 5.0306 0.29416 8.75766 0.60046 0.09306 0.9491 0.1984 0.1729

Furthermore, the simulation shows that the control action is bounded between −1.2
and 4 (N), and sliding surface s2(x) reaches to zero during simulation.

12. Simulation and Results for the Seesaw System

In this section, the simulation results for seesaw system are investigated. The initial values of
this system are described by the following equations:

x1(0) = 0.3m, x2(0) = −π
6
rad, x3(0) = 0, x4(0) = 0. (12.1)
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Figure 22: Sliding surface s1(x).
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The system parameters used in the simulation are given in Table 5.
Figure 18 demonstrates a Pareto front of two objective functions (angle error and

distance error) which is achieved of the multiobjective genetic algorithm (e.g. modified
NSGAII).

It is clear that all points in Figure 18 are nondominated to each other, and each point
in this chart is a representative of a vector of selective parameters for the decoupled sliding
mode controller. Moreover, choosing a better value for any objective function in the Pareto
front would cause a worse value for another objective function. Here, point B has been chosen
from Figure 18 to design an optimum decupled sliding mode controller (Figures 19, 20, 21,
22, and 23). Design variables and objective functions related to the optimum design points A,
B, and C are detailed in Table 6.

The simulations (Figures 19, 20, 21, 22, and 23) shows that the seesaw system is
stabilized to the equilibrium point after 3 seconds, and the control effort is bounded between
−5 and 10 (N).
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13. Conclusion

This paper proposes the decoupled sliding-mode technique for stabilising the coupled
nonlinear systems while the multiobjective genetic algorithm is employed in order to
optimize two objective functions. This method is a universal design method and suitable
to various kinds of control objects. Usage this method includes two steps. The first step is
to design the decoupled sliding-mode controller for the nonlinear system. The second step
is to apply the multiobjective optimization tool to search the definition space of decision
variables and to return the optimum answers in the Pareto form. The simulation results on
three different and typical control systems show good control and robust performance of the
proposed strategy.
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