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A predator-prey system with Holling type II functional response and stage structure for prey is
presented. The local and global stability are studied by analyzing the associated characteristic
transcendental equation and using comparison theorem. The existence of a Hopf bifurcation at
the positive equilibrium is also studied. Some numerical simulations are also given to illustrate
our results.

1. Introduction

Predator-prey system is a very classical and important mathematical model in population
dynamics, there are many studies in progress nowadays (see [3–5]). In recent years, many
scholars are giving their attention to predator-prey model with stage structure, and many
results have been published. In [6, 7], the influences of prey or predator with stage structure
to the state of the ecosystem are studied, respectively. A time-delay model of single-species
growth incorporating stage structure as a reasonable generation of the logistic model was
derived in [8]. This model assumes an average age to maturity which appears as a constant
time delay reflecting a delayed birth of immatures and a reduced survival of immatures to
their maturity. The model takes the form

ẋi(t) = bxm(t) − d1xi(t) − be−d1τxm(t − τ),

ẋm(t) = be−d1τxm(t − τ) − d2xm(t) − βx2
m(t),

(1.1)

where xi(t) and xm(t) denote the immature and mature population densities, respectively; b
represents the birth rate of the immature population; d1 and d2 are the death rate of immature
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and mature population, respectively; τ denotes the length of time from the birth to maturity.
It is shown in [8] that the introduction of stage structure does not affect the permanence of
the species, but, under some hypotheses, it may maximize the total carrying capacity of the
population.

Based on the previous model, several predator-prey models with stage structure are
developed and studied (see [9–15]). Recently, Song et al. [16] investigated the following
model with stage structure for prey:

ẋi(t) = bxm(t) − d1xi(t) − be−d1τxm(t − τ),

ẋm(t) = be−d1τxm(t − τ) − βx2
m(t) −

a1xm(t)y(t)
xm(t) + cy(t)

,

ẏ(t) =
a2xm(t)y(t)
xm(t) + cy(t)

− dy(t).

(1.2)

Their results showed that the positive equilibrium of system (1.2) was globally stable under
some conditions.

On the other hand, the functional response plays an important role in all prey
interactions. A functional response refers to the change in the density of prey attached
per unit time per predator as the prey density changes. One significant component of the
predator-prey relationship is the predator’s functional responses. When the predator spends
some time searching for prey and some time, exclusive of searching, processing each captured
prey item (i.e., handling time), Holling type II is a useful functional response (see [17–21]).
For example, Sun et al. [22] considered the following model with Holling type II functional
response and stage structure for predator:

ẋ(t) = bx(t) − βx2(t) − a1x(t)y(t)
1 + cx(t)

,

Ẏ (t) =
a2x(t)y(t)
1 + cx(t)

− d1Y (t) − a2
x(t − τ)y(t − τ)
1 + cx(t − τ)

e−d1τ ,

ẏ(t) = a2
x(t − τ)y(t − τ)
1 + cx(t − τ)

e−d1τ − d2y(t).

(1.3)

By analyzing the corresponding characteristic equations, the local stability of equilibria
and existence of a Hopf bifurcation at the positive equilibrium are obtained in [22].

In this paper, we consider and study the followingmodel with stage structure for prey:

ẋi(t) = bxm(t) − d1xi(t) − be−d1τxm(t − τ),

ẋm(t) = be−d1τxm(t − τ) − d2xm(t) − βx2
m(t) −

a1xm(t)y(t)
1 + cxm(t)

,

ẏ(t) =
a2xm(t)y(t)
1 + cxm(t)

− dy(t).

(1.4)
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For continuity of the initial conditions, we further require

xi(t) > 0, xm(t) > 0, y(t) > 0, t ∈ [−τ, 0],

xi(0) = b

∫0

−τ
xm(s)ed1sds.

(1.5)

The remainder of the paper is organized as follows: in the next section, results on
positivity and boundedness of solutions are presented. In Section 3, through using geometric
stability switch criteria [1] to analyze the corresponding characteristic equations, we discuss
the local stability of equilibria. Further, we study the existence of a Hopf bifurcation at
the positive equilibria. The global stability of boundary equilibrium is obtained by using
comparison theorem in Section 4. In Section 5, we try to interpret our results by numerical
simulation. At last, we give some discussions.

2. Positive and Bounded

In this section, we discuss the positivity and boundedness of the solutions of system (1.4).
Positivity means that the species is persistent and boundedness implies a natural restriction,
which shows our model (1.4) is reasonable.

Theorem 2.1. The solutions of system (1.4) with initial conditions (1.5) are positive for all t ≥ 0.

Proof. It is easy to see that xm(t) and y(t) are positive for all t ≥ 0.
We only show xi(t) > 0.
Since

xm(t) > 0, (2.1)

hence

ẋi(t) > −d1xi(t) − be−d1τxm(t − τ). (2.2)

Considering the equation

u̇(t) = −d1u(t) − be−d1τxm(t − τ),

u(0) = xi(0),
(2.3)

we have xi(t) > u(t) on t ∈ (0, τ], and from variation-of-constants formula, we get

u(t) = e−d1t

[
xi(0) −

∫ t

0
bed1(s−τ)xm(s − τ)ds

]
, (2.4)
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hence,

u(τ) = e−d1τ

[
xi(0) −

∫ τ

0
bed1(s−τ)xm(s − τ)ds

]

= e−d1τ

[
xi(0) −

∫0

−τ
bed1θxm(θ)dθ

]

= 0.

(2.5)

Thus, xi(t) > 0 on t ∈ [0, τ]. By induction, we can show that xi(t) > 0 for all t ≥ 0. The proof is
complete.

Theorem 2.2. Every solution of system (1.4) with initial conditions (1.5) are bounded for all t ≥ 0,
and all of these solutions are ultimately bounded.

Proof. Let V (t) = a2xi(t) + a2xm(t) + a1y(t), calculating the derivative of V (t) with respect to
t along the positive solution of system (1.4), we have

V̇ (t) = a2ẋi(t) + a2ẋm(t) + a1ẏ(t)

= a2

[
bxm(t) − d1xi(t) − d2xm(t) − βx2

m(t) −
a1xm(t)y(t)
1 + cxm(t)

]

+ a1

[
−dy(t) + a2xm(t)y(t)

1 + cxm(t)

]

= (a2b − a2d2)xm(t) − a2d1xi(t) − a1dy(t) − a2βx
2
m(t).

(2.6)

For a small positive constant s ≤ min{d1, d},

V̇ (t) + sV (t) = (a2b1 − a2d2 + a2s)xm(t) − (a2d1 − a2s)xi(t)

− (a1d − a1s)y(t) − a2βx
2
m(t)

< a2(b − d2 + s)x2(t) − a2βx
2
2(t).

(2.7)

Hence there exists a positive constant K, such that

V̇ (t) + sV (t) ≤ K, (2.8)

thus we get

V (t) ≤
(
V (0) − K

s

)
e−st +

K

s
. (2.9)

Therefore, V (t) is ultimately bounded, that is, each solution z(t) = (xi(t), xm(t), y(t)) of
system (1.4) is ultimately bounded. The proof is complete.
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3. Equilibria Analysis

Note that, in the system (1.4), the equation for the variable xi has a form

ẋi(t) = bxm(t) − d1xi(t) − be−d1τxm(t − τ) := −d1x1(t) + f(xm(t), xm(t − τ)). (3.1)

If xm(t) is bounded and xm(t) → x∗ as t → ∞, then xi(t) → f(x∗, x∗)/d1 as t → ∞; that
is, the asymptotic behavior of xi(t) is dependent on that of xm(t). Therefore, in following
sections we just need to study the asymptotic behavior of the following system:

ẋ(t) = be−d1τx(t − τ) − d2x(t) − βx2(t) − a1x(t)y(t)
1 + cx(t)

,

ẏ(t) =
a2x(t)y(t)
1 + cx(t)

− dy(t).

(3.2)

By a straightforward calculation, we can get two nonnegative equilibria:
E0 = (0, 0) and E1 = (x1, 0) = ((be−d1τ − d2)/β, 0), E1 exists if and only if

(H1): be−d1τ > d2 holds.

Further, if

(H2): a2 − cd > 0 and (be−d1τ − d2) (a2 − cd) − βd > 0 are satisfied, then system (3.2) has a
unique positive equilibrium E = (x∗, y∗) = (d/(a2 − cd), (a2[(be−d1τ − d2)(a2 − cd) −
βd])/a1(a2 − cd)2).

Remark 3.1. (H1) is equivalent to τ ∈ [0, τ1), where τ1 = (1/d1) ln(b/d2). From (H2), we
have τ ∈ [0, τ2) and τ2 = (1/d1) ln(b(a2 − cd)/(βd + d2(a2 − cd))); hence, if E is a positive
equilibrium, there must be

(b − d2)(a2 − cd) > βd, (3.3)

τ1 > τ2. (3.4)

In some of the subsequent sections, we always assume that (3.3) is valid; otherwise, there is
no positive equilibrium of system (3.2).

3.1. E0 = (0, 0)

First, we analyze the stability of equilibrium E0, and the associated characteristic equation
has the form

(
λ + d2 − be−λτ−d1τ

)
(λ + d) = 0. (3.5)

Theorem 3.2. (1) If d2 > b, then the equilibrium E0 of system (3.2) is uniformly asymptotically
stable.



6 Abstract and Applied Analysis

(2) If d2 < b, then the equilibrium E0 of system (3.2) is

(i) unstable for all τ ∈ [0, τ1) (see Remark 3.1),

(ii) stable, but not asymptotically stable when τ = τ1,

(iii) asymptotically stable for all τ ∈ (τ1,+∞).

Proof. λ = −d has always negative real part. Denote G(λ, τ) = λ + d2 − be−d1τe−λτ .
(1) Let τ = 0 in G(λ, τ), then we have that

G(λ, 0) = λ + d2 − b = 0, (3.6)

if d2 > b, then

λ = b − d2 < 0, (3.7)

that is, the trivial solutionE0 of system (3.2) is stable when there is no delay τ . If the increasing
of τ leads to instability of system (3.2), then there is an ω > 0 such that G(ωi, τ) = 0 for some
τ > 0. Note that

d2 = be−d1τ cosωτ,

ω = −be−d1τ sinωτ.
(3.8)

Hence,

ω2 =
(
be−d1τ

)2 − d2
2. (3.9)

But, from hypothesis d2 > b, we know that (3.9) has no real root. Hence, the equilibrium E0

of system (3.2) is uniformly asymptotic stable for any delay τ > 0.
(2) If d2 < b, then the trivial solution E0 of system (3.2) is unstable when there is no

delay τ .
(i) When τ ∈ [0, τ1), we know that (3.9) has a positive root ω(τ). For τ ∈ [0, τ1), let

θ(τ) ∈ (0, 2π) be defined by

cos θ(τ) =
d2

be−d1τ
,

sin θ(τ) = − ω(τ)
be−d1τ

,

(3.10)

where, jointly with (3.9), we define the following maps:

Sn(τ) = τ − θ(τ) + 2nπ
ω(τ)

, n ∈ N. (3.11)
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If Sn(τ) = 0 has no roots in [0, τ1)when n = 0, then we know that the equilibrium E0 of
system (3.2) is unstable through using geometric stability switch criteria [1]. Otherwise, let
τ∗ = min{τ : τ ∈ [0, τ1), S0(τ) = 0}, then

sign

{
dReλ
dτ

∣∣∣∣
λ=ω(τ∗)i

}
= sign

{
dSn(τ)
dτ

∣∣∣∣
τ=τ∗

}
> 0 (because of S0(0) < 0), (3.12)

which straightforwards implies (i).
(ii) When τ = τ1, we have G(λ, τ1) = λ + d2 − d2e

−λτ1 , and λ = 0 is always a simple
eigenvalue. Suppose that G(λ, τ1) = 0 has a root λ = u + iv, where u > 0, then

(u + d2)
2 + v2 = d2

2e
−2uτ1 ≤ d2

2, (3.13)

a contradiction. Hence, (ii) is true.
(iii)When τ ∈ (τ1,+∞), (3.9) has no positive root, which means that the stability of E0

does not change as τ increases. Let τ01 = τ1 + ε, where ε is a positive constant; we consider the
following characteristic equation with delay-independent coefficients:

λ + d2 − be−d1τ
0
1 e−λτ = 0, d2 > be−d1τ

0
1 . (3.14)

By Theorem 3.4.1 [2, page 66] we know that (3.14) has only negative real-part
eigenvalues; thus, (iii) is valid. The proof is complete.

Remark 3.3. From Theorem 3.2 we know that when the birth rate of prey species is less than
death rate of itself, then the prey species tend to be extinct; therefore, the predator species
reduces to zero since there is no enough foods, which accords with the basic evolution law
of biology. We also see that time delay can stabilize an unstable system and keep this state
to τ large enough. This phenomenon cannot appear in the case that the coefficients of a
corresponding characteristic equation are independent of the delay.

3.2. E1 = (x1, 0)

Now, we analyze the stability of E1. The characteristic equation of system (3.2) at E1 takes the
form

(
λ − d2 + 2be−d1τ − be−λτ−d1τ

)(
λ + d − a2x1

1 + cx1

)
= 0. (3.15)

Denote H1(λ, τ) = λ − d2 + 2be−d1τ − be−λτ−d1τ and H2(λ) = λ + d − a2(x1)/(1 + cx1).
Obviously, the root of equation H2(λ) = 0 is positive when τ ∈ [0, τ2) and negative

when τ ∈ (τ2, τ1); hence, we only need to consider H1(λ, τ) = 0. By the same method with
the proof of Theorem 3.2, we know thatH1(λ, τ) = 0 has only negative real-part characteristic
roots when τ ∈ [0, τ1).

Summarizing the discussion above, we get the following conclusion.



8 Abstract and Applied Analysis

Theorem 3.4. If (H1) is satisfied, then the equilibrium E1 of system (3.2) is
(1) unstable when τ ∈ [0, τ2) (see Remark 3.1),
(2) stable, but not asymptotically stable when τ = τ2,
(3) asymptotically stable when τ ∈ (τ2, τ1).

3.3. E = (x∗, y∗)

Finally, we analyze the stability of positive equilibrium E of system (3.2). The linearizing
equation of system (3.2) at E is

ẋ(t) = be−d1τx(t − τ) −
[
d2 +

a1y
∗

(1 + cx∗)2
+ 2βx∗

]
x(t) − a1x

∗

1 + cx∗y(t),

ẏ(t) =
a2y

∗

(1 + cx∗)2
x(t) +

(
a2x

∗

1 + cx∗ − d2

)
y(t),

(3.16)

hence, the characteristic equation takes the form

D(λ, τ) = λ2 + p(τ)λ + q(τ) + r(τ)λe−λτ = 0, (3.17)

where

p(τ) = d2 +
a1y

∗

(1 + cx∗)2
+ 2βx∗,

q(τ) =
a1dy

∗

(1 + cx∗)2
,

r(τ) = −d2 − βx∗ − a1y
∗

1 + cx∗ .

(3.18)

Note that these are dependent on time delay τ since y∗ includes τ . In order to apply
the geometric criterion of Beretta and Kuang [1], we rewrite D(λ, τ) = 0 into

D(λ, τ) = P(λ, τ) +Q(λ, τ)e−λτ = 0, (3.19)

where

P(λ, τ) = λ2 + p(τ)λ + q(τ),

Q(λ, τ) = r(τ)λ.
(3.20)

For convenience, let f(τ) = βa2 − c((be−d1τ − d2)(a2 − cd) − βd), τ ∈ [0, τ2), then f(τ)
is strictly monotone increasing function in τ . If f(0) > 0, hence, f(τ) > 0 for all τ ∈ [0, τ2).
Otherwise, that is, if f(0) < 0, since f(τ2) = βa2 > 0, there is a unique τ3 ∈ (0, τ2) such that
f(τ3) = 0.
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Lemma 3.5. (1) If (H2) and (H3): βa2 − c[(b − d2)(a2 − cd) − βd] > 0 hold, then q(τ) > 0 and
p(τ) + r(τ) > 0 for all τ ∈ [0, τ2).

(2) If (H2) and (H4): βa2−c[(b−d2)(a2−cd)−βd] < 0 hold, then q(τ) > 0 for all τ ∈ [0, τ2),
p(τ) + r(τ) < 0 when τ ∈ [0, τ3) and p(τ) + r(τ) > 0 when τ ∈ (τ3, τ2).

Proof. Obviously, q(τ) > 0. From (3.18), we have

p(τ) + r(τ) = βx∗ − ca1y
∗x∗

(1 + cx∗)2

=
x∗

(1 + cx∗)2
[
β(1 + cx∗)2 − ca1y

∗
]

=
x∗

(1 + cx∗)(a2 − cd)

[
βa2 − c

((
be−d1τ − d2

)
(a2 − cd) − βd

)]
.

(3.21)

(1) If f(0) > 0, then f(τ) > 0 for all τ ∈ [0, τ2); hence, p(τ) + r(τ) > 0 for all τ ∈ [0, τ2).

(2) If f(0) < 0, then f(τ) < 0 when τ ∈ [0, τ3) and f(τ) > 0 when τ ∈ (τ3, τ2); hence, (2)
is true. The proof is complete.

Step 1. When τ = 0, (3.17) becomes

D(λ, 0) = λ2 +
(
p(0) + r(0)

)
λ + q(0) = 0, (3.22)

by Routh-Hurwitz Criterion we know thatD(λ, 0) = 0 has only negative real-part eigenvalue
if (H3) holds and has positive real-part eigenvalue if (H4) holds. Hence, we obtain the
following theorem.

Theorem 3.6. (1) If (H2) and (H3) are satisfied, then the equilibrium E of system (3.2) is
asymptotically stable when τ = 0.

(2) If (H2) and (H4) are satisfied, then the equilibrium E of system (3.2) is unstable when
τ = 0.

Step 2. Suppose D(ωi, τ) = 0 for some τ ∈ [0, τ2) and ω > 0, we get

sinωτ =

(
ω2 − q

)
ωr

,

cosωτ =
−p
r
.

(3.23)

Hence,

F(ω, τ) = |P(ωi, τ)|2 − |Q(ωi, τ)|2

= ω4 +A(τ)ω2 + B(τ)

= 0,

(3.24)
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where

A(τ) = p2 − 2q − r2, B(τ) = q2. (3.25)

Now, we take hypotheses (H3) or (H4) into account, respectively.

Case 1 (βa2 − c[(b − d2)(a2 − cd) − βd] > 0). In this case, since

�(τ) = A(τ)2 − 4B(τ)

=
(
p2 − 2q − r2

)2 − 4q2

=
(
p2 − 4q − r2

)(
p − r

)(
p + r

)
,

B(τ) = q2(τ) > 0, p − r > 0, p + r > 0.

(3.26)

Thus, if A(τ) ≥ 0, then (3.24) has no positive real root, and if A(τ) < 0, then �(τ) < 0 and
(3.24) has no real root, that is, the stability of equilibrium E cannot change for all τ ∈ [0, τ2).
Summarizing the discussion above, we obtain the following theorem.

Theorem 3.7. Assume that (H2) and (H3) are satisfied, then the equilibrium E of system (3.2) is
asymptotically stable for all τ ∈ [0, τ2).

Case 2 (βa2 − c[(b − d2)(a2 − cd) − βd] < 0). In this case, when τ ∈ (τ3, τ2), by the similar
analysis we also obtain that the stability of equilibrium E cannot change for all τ ∈ (τ3, τ2).
Let τ0 = τ3+ε, where ε is a positive constant; we consider the following characteristic equation
with delay-independent coefficients:

D(λ, τ) = λ2 + p(τ0)λ + q(τ0) + r(τ0)λe−λτ = 0, (3.27)

where p(τ0) + r(τ0) > 0 and q(τ0) > 0. By Theorem 3.4.1 [2, page 66] we know that (3.27)
has only negative real-part eigenvalues, then the equilibrium E is asymptotically stable for
all τ ∈ (τ3, τ2).

When τ ∈ [0, τ3), since p(τ) + r(τ) < 0, hence, A(τ) < 0, B(τ) > 0, and �(τ) > 0; we
easily know that (3.24) has two positive real roots ω+(τ) and ω−(τ), where

ω±(τ) =

√
−A(τ) ±

√
A2(τ) − 4B(τ)
2

. (3.28)

For τ ∈ [0, τ3), let θ(τ) ∈ (0, 2π) be defined by

sin θ±(τ) =

(
ω2

± − q
)

rω±
,

cos θ±(τ) =
−p
r
,

(3.29)
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where, jointly with (3.23), we define the following maps:

S±
n(τ) = τ − θ±(τ) + 2nπ

ω±(τ)
, n ∈ N. (3.30)

Obviously, sin θ+(τ) = (ω2
+−q)/rω+ < 0, sin θ−(τ) = (ω2

−−q)/(rω−) > 0, and cos θ±(τ) =
−p/r > 0, which imply

θ+(τ) = 2π − arccos
−p
r
,

θ−(τ) = arccos
−p
r
.

(3.31)

Furthermore, we note that S−
0 (0) < 0 and limτ → τ3S

−
0 (τ) = τ3 > 0 (because of

limτ → τ3θ−(τ) = 0); thus, equation S−
0 (τ) = 0 has at least one root in [0, τ3); let τ∗ = min{τ : τ ∈

[0, τ3), S−
0 (τ) = 0}, then

δ(τ∗) := sign

{
dReλ
dτ

∣∣∣∣
λ=ω−(τ∗)i

}
= − sign

{
dS−

0 (τ)
dτ

∣∣∣∣∣
τ=τ∗

}
< 0, (3.32)

that is, the pair of simple conjugate pure imaginary roots crosses the imaginary axis from left
to right. Summarizing the discussion above, we obtain the following result.

Theorem 3.8. Assume that (H2) and (H4) are satisfied; if equation S+
0 (0) = 0 has no root in [0, τ∗),

then the equilibrium E of system (3.2) is unstable for all τ ∈ [0, τ∗) and becomes asymptotically stable
for τ staying in some right neighborhood of τ∗; hence, system (3.2) undergoes Hopf bifurcation when
τ = τ∗. The equilibrium E of system (3.2) is asymptotically stable for τ ∈ (τ3, τ2).

4. Global Stability

In this section, we discuss the global stability of boundary equilibria. In some of the subse-
quent analysis, we will need the following result.

Lemma 4.1 (see [16]). Consider the following equation:

ẋ(t) = ax(t − τ) − bx(t) − cx2(t) (4.1)

(a, b, c, τ > 0, x(t) > 0 for −τ ≤ t ≤ 0), then one has the following.

(i) If a > b, then limt→∞x(t) = (a − b)/c.

(ii) If a < b, then limt→∞x(t) = 0.

Theorem 4.2. Assume that be−d1τ < d2, then the equilibrium E0 of system (3.2) is globally asymp-
totically stable.
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Proof. We know that if be−d1τ < d2, then E0 is locally asymptotically stable. Now we show

lim
t→∞

(
x, y

)
= (0, 0). (4.2)

From the first equation of system (3.2), we get

ẋ(t) ≤ be−d1τx(t − τ) − d2x(t) − βx2(t). (4.3)

By Lemma 4.1 and comparing principle, we obtain

lim
t→∞

x = 0, (4.4)

that is, for the ε > 0, there exists a T1 > 0 such that

0 < x(t) < ε, t > T1, (4.5)

which jointly with the second equation of system (3.2) leads to

ẏ(t) < (εa2 − d)y(t). (4.6)

Since the arbitrariness of ε > 0, we have

lim
t→∞

y = 0. (4.7)

The proof is complete.

Theorem 4.3. Assume that (H1) is satisfied, then the equilibrium E1 of system (3.2) is globally
asymptotically stable for τ ∈ (τ2, τ1).

Proof. We need to show attractivity. From the first equation of system (3.2), we get

ẋ(t) ≤ be−d1τx(t − τ) − d2x(t) − βx2(t). (4.8)

By Lemma 4.1 and comparing principle, we obtain

lim sup
t→∞

x(t) ≤ be−d1τ − d2

β
= x1, (4.9)

that is, for the ε > 0, there exists a T1 > 0 such that

0 < x(t) < x1 + ε, for t > T1, (4.10)
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which jointly with the second equation of system (3.2) leads to

ẏ(t) <
[

a2(x1 + ε)
1 + c(x1 + ε)

− d

]
y(t). (4.11)

On the other hand, for τ ∈ (τ2, τ1), we have

a2x1

1 + cx1
− d =

(a2 − cd)x1 − d

1 + cx1
< 0. (4.12)

Thus, for ε > 0 is small enough, there is

a2(x1 + ε)
1 + c(x1 + ε)

− d < 0, (4.13)

which leads to

lim
t→∞

y(t) = 0, (4.14)

that is, for the ε > 0, there exists a T2 > T1 such that

0 < y(t) < ε, for t > T2, (4.15)

hence, we have

ẋ(t) ≥ be−d1τx(t − τ) − (d2 + ε)x(t) − βx2(t), (4.16)

by hypothesis (H1), Lemma 4.1, and the arbitrariness of ε > 0, there is

lim inf
t→∞

x(t) ≥ be−d1τ − d2

β
= x1. (4.17)

The proof is complete.

5. Numerical Simulation

In this section, we present some numerical simulations of system (3.2) to illustrate our
theoretical analysis.
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Figure 1: The equilibrium E0 is globally stable when τ = 2.5.

Example 5.1. Let b = a2 = 0.8, d = a1 = 0.5, d1 = c = 1, d2 = 0.1, and β = 0.2, and we consider
the following system:

ẋ(t) = 0.8e−0.5τx(t − τ) − 0.1x(t) − 0.2x2(t) − 0.5x(t)y(t)
1 + x(t)

,

ẏ(t) =
0.8x(t)y(t)
1 + x(t)

− 0.5y(t).

(5.1)

By calculating, we have that τ1 =̇ 2.0794, τ2 =̇ 0.6131, and hypotheses (H2) and (H3) hold. By
the discussion above, we obtain following corollary.

Corollary 5.2. For system (5.1), when τ ∈ [0, 0.6131), E is asymptotically stable, E1 is globally
stable when τ ∈ (0.6131, 2.0794), and E0 is globally stable when τ ∈ (2.0794,+∞).

First, we take τ = 2.5 and initial value is that

x(t) = y(t) = 1.8, t ∈ [−τ, 0]. (5.2)

Figure 1 illustrates that prey and predator converge asymptotically to zero, when τ =
1 and initial value is that x(t) = y(t) = 5, t ∈ [−τ, 0].

Figure 2 illustrates that prey and predator converge asymptotically to E1, where
x1 =̇ 0.9715.

Finally, we take τ = 0.001; system (5.1) has positive equilibrium E =̇ (1.6667, 1.9513).
Figure 3 shows that the positive solutions converge asymptotically to the steady-state

E.
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Figure 3: The equilibrium E is asymptotically stable when τ = 0.001.

Example 5.3. In order to illustrate Theorem 3.8, we choose a set of parameters as b = 0.8, d =
0.2, a1 = 0.5, a2 = 3, d1 = 0.05, c = 5, d2 = 0.1, and β = 1, then system (3.2) reduces to

ẋ(t) = 0.8e−0.05τx(t − τ) − 0.1x(t) − x2(t) − 0.5x(t)y(t)
1 + 5x(t)

,

ẏ(t) =
3x(t)y(t)
1 + 5x(t)

− 0.2y(t).

(5.3)
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By calculating, we have that τ2 =̇ 27.7259, τ3 =̇ 9.4001, and hypotheses (H2) and (H4) hold.
Figure 4 shows that equation S+

0 (τ) = 0 has no root and equation S−
0 (τ) = 0 has a

unique root τ∗, where τ∗ =̇ 2.9104, which leads to the following corollary.

Corollary 5.4. The equilibrium E of system (5.3) is unstable for all τ ∈ [0, τ∗) and becomes
asymptotically stable for τ staying in some right neighborhood of τ∗; hence, system (5.3) undergoes
Hopf bifurcation when τ = τ∗.

By Corollary 5.4, we know that the positive equilibrium is unstable and positive
solutions are oscillatory when τ = 2.9 < τ∗, the bifurcating periodic solutions exist at least
for the value of τ slightly larger than the critical value τ∗, the computer simulation is given
in Figure 5. We continue to choose τ = 3 > τ∗, by Corollary 5.4 we know that the positive
equilibrium becomes asymptotically stable, and the computer simulation is depicted in
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Figure 6. In Figures 7 and 8, we plot the relationship between delay τ and ultimate amplitudes
of x(t) and y(t), which indicate the fact that the positive equilibrium E is from instability to
stability as τ increases.

6. Discussion

In this paper, a model which describes the Holling type predator-prey system with stage
structure for prey is proposed. Sufficient conditions which ensure the stability of equilibria
and the existence of Hopf bifurcation are obtained. Numerical results show the feasibility of
our results.
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By the analysis, we find the system (1.4) has complex dynamics behavior. Our results
indicate that the stability switches of the positive equilibrium may occur as time delay
τ increases and delay τ can stabilize system (1.4). Under condition (H4), the positive
equilibrium is stable only if delay τ is larger, consequently, y∗ becomes smaller, that is,
predator coexists with prey in lower population densities (with respect to delay τ), which
is different from [22]. In [22], predator coexists with prey only if the population densities
of prey are larger and those of predator are lower (with respect to delay τ). Moreover, Liu
and Zhang [6] investigated system (1.2) when functional response is Beddington-DeAngelis
type, by monotone dynamic theories, they obtained that the positive equilibrium is globally
asymptotically stable provided that k2 (describing the magnitude of interference among
predators) is more than a positive constant; that is, their results cannot directly apply to study
system (1.4). Furthermore, they did not consider d2, the death rate of mature prey population,
which play an important role on stability of the equilibria and existence of Hopf bifurcation.
Hypothesis (H3)means that d2 > d0

2, where d0
2 = b − (β(a2 + cd)/c(a2 − cd)), and Hypothesis

(H4) means that d2 < d0
2. Hence, from Theorem 3.7 and Theorem 3.8, we know that d2 can

also stabilize system (1.4).
There are still many interesting and challenging mathematical questions that need to

be studied for system (1.4). For example, we do not discuss the global stability of positive
equilibrium. We will leave this for future work.
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