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Travel time estimation in urban arterials is challenging compared to freeways and multilane
highways. This becomes more complex under Indian conditions due to the additional issues
related to heterogeneity, lack of lane discipline, and difficulties in data availability. The fact that
most of the urban arterials in India do not employ automatic detectors demands the need for
an effective, yet less data intensive way of estimating travel time. An attempt has been made in
this direction to estimate total travel time in an urban road stretch using the location based flow
data and sparse travel time data obtained using GPS equipped probe vehicles. Three approaches
are presented and compared in this study: (1) a combination of input-output analysis for mid-
blocks and Highway Capacity Manual (HCM) based delay calculation at signals named as base
method, (2) data fusion approachwhich employs Kalman filtering technique (nonhybridmethod),
and (3) a hybrid data fusion HCM (hybrid DF-HCM) method. Data collected from a stretch of
roadway in Chennai, India was used for the corroboration. Simulated data were also used for
further validation. The results showed that when data quality is assured (simulated data) the base
method performs better. However, in real field situations, hybrid DF-HCM method outperformed
the other methods.

1. Introduction

Characterization of traffic systems is complex in nature due to the dynamic interaction
between the system components, namely, the vehicles, road, and the road users. The
uncertainties associated with human behavior makes the system more complex making
modeling of the system a challenging task. Estimation and prediction of various parameters
associated with this system is also difficult due to the associated uncertainties. The usual
parameters used for characterizing the system include flow, speed, density, and travel time.
The present study is dealing with the estimation of one of these parameters, namely, travel
time. To obtain travel time information of all vehicles in a stream by direct measurement
is both time consuming and costly, and it is impractical to collect this information from
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all the road stretches in a network. Travel time in urban roads experience high short-term
variability and hence cannot be measured using point detection. Being a spatial parameter,
direct measurement of it needs either vehicle tracking devices or vehicle reidentification
feature. However, majority of the vehicle tracking or reidentification techniques available
such as automatic vehicle locators (AVL) and automatic vehicle identifiers (AVI) require
participation, which limits the sample size. This underlines the need to estimate travel
time from other easily measurable location based parameters such as flow and speed and
has been an important research topic for many years. However, majority of researches on
travel time estimation and prediction were reported for freeways, where traffic flow is not
much affected by external factors such as traffic signals and conflicting movements. Travel
time estimation and prediction is more complex and challenging on an urban network due
to the influence of signals, presence of opposing movements, mid-link sources and sinks,
and random fluctuations in travel demand. The situation is grave for Indian conditions
because of the additional complexities related to heterogeneity, lack of lane discipline, and
nonavailability of a reliable historic data base. Hence, methods which are cost effective and
less demanding in terms of data base need to be explored.

Travel time, being a spatial parameter, is difficult to be measured directly from field.
Most of the direct travel time measurement techniques such as test car methods or vehicle
re-identification are expensive, immature, or involve privacy concerns and hence majority of
the studies depend on indirect methods for travel time estimation. Most of the indirect travel
time estimation and forecasting methods can be grouped under extrapolation techniques [1],
regression models [2, 3], pattern recognition techniques [4], time series analysis [5], use of
filtering techniques [6, 7], neural networks [8], methods based on traffic flow theory [9–14],
data fusion techniques [15], and combination of above methods [16–19].

Many of the above methods require a good data base and may not be feasible for
locations where automated data collection is not yet functional. Under such conditions,
methods which demand less amount of data are required. Indian traffic characterised by its
heterogeneity and lack of lane discipline poses additional challenges in terms of automated
data collection. Most of the existing location based sensors are lane based and will fail
under less or no lane disciplined traffic. Thus, accurate measurement of all the traffic
parameters automatically is still a difficult task under Indian traffic conditions. Preliminary
developments in this area are showing some promise in terms of traffic counts and hence
the present study assumes that traffic count is the only location based data available. On the
other hand, spatial data collection using GPS is a proven technology and is applicable under
Indian conditions too. However, due to less participation, data from only a sample of the
entire population, mainly from public transit, can be obtained using this technology. Thus,
there is a need to have multiple sensors to characterise the entire traffic stream.

The present study develops a methodology for estimating stream travel time for an
urban arterial using flow data obtained from location based sensors and GPS data obtained
from limited number of probe vehicles. This approach known as data fusion (DF) is not
explored under Indian traffic conditions. To improve the estimation accuracy, a hybrid DF-
HCM method using data fusion for mid-block sections and HCM approach for the delay
calculation at intersection is attempted. To compare the performance, a base method which
employs input-output analysis for mid-blocks and HCM for intersection is also carried out.
The usefulness of analysing separately the delay at signals is tested by comparing with
the total travel time till intersection being estimated by using the nonhybrid method which
employs data fusion alone for the whole stretch. A brief literature review on these approaches
is given below.



Journal of Applied Mathematics 3

Data fusion is a broad area of research in which data from several sensors are
combined to provide comprehensive and accurate information [20]. The advantages of
using data fusion include increased confidence, reduced ambiguity, improved detection,
increased robustness, enhanced spatial and temporal coverage, and decreased costs [20–22].
The basic idea of data fusion is to estimate parameters by using more than one measurement
from different sources or sensors. This may be due to lack of availability of enough data
from a single source or to capture the advantages of different data sources. Some specific
applications of data fusion in the field of transportation engineering are discussed below.

Kwon et al. [23] proposed a linear regression model for travel time prediction by
combining both loop detector and probe vehicle data. They showed that linear regression
on current flow, occupancy measurements, departure time, and day of week is beneficial for
short-term travel time prediction while historical method is better for long-term travel time
prediction. Zhang and Rice [24] used a linear model with varying coefficients to predict the
travel time on freeways using loop detector and probe vehicle data. The coefficients vary as
smooth functions of departure time. The coefficients have to be estimated offline and stored
and after that themodel can be used real-time. El-Faouzi et al. [25] put forward amodel based
on the Dempster-Shafer theory. They used travel time from loop detector and toll collection
data to estimate travel time. The model required the likelihood that the data sources are
giving the correct data. El-Faouzi [22] carried out a similar work using Bayesian method
using travel time data from loop detector and probe vehicle to estimate travel time. The
results showed that the travel time estimate using data fusion approach was better than the
estimate obtained if the data sources were used individually. Chu et al. [21] used simulated
loop detector and probe vehicle data to estimate travel time using a model based approach
with Kalman filtering technique. Ivan [26] used the ANN technique to detect traffic incidents
on signalized arterials using simulated travel time data from loop detector and probe vehicle
data.

Another simple analytical model that uses readily available count data from upstream
and downstream ends of a link for the estimation of travel time is the cumulative counts
(input-output) method [9, 10, 12–14, 27]. However, a major drawback of the input-output
method is its dependency on the accuracy of flow counts for travel time estimation [9–
13, 27, 28]. Some of the other reported approaches include traffic flow theory based
[11, 29, 30]. It can be seen from the above literature review that majority of the models
discussed above are limited to freeways, and it may not be feasible to apply them directly on
urban networks without further calibration due to differences in behaviour of traffic on the
freeway and urban facilities. Moreover, the models developed for freeways generally provide
average travel time for the link as a whole, which may not be a true representation in case
of links with intersections, turning movements, and so forth. Thus, for better performance,
intersection delays may have to be dealt separately. The present study analyse the validity
of this assumption by comparing the accuracy of the estimated travel time with and without
considering the intersection separately.

The first and one of the most popular methods for intersection delay estimation was
developed by Webster [31] from a combination of theoretical and numerical simulation
approaches that became the basis for all subsequent delay models. Modifications to the above
model under varying traffic conditions were reported by Miller [32] and Newell [33]. The
delay model suggested in Highway Capacity Manual usually known as HCMmodel [34] is a
modified Webster’s model incorporating the effect of progression and platooning. Attempts
to overcome the assumption of steady-state condition by using time-dependent functions
are reported in [35]. Other reported studies include deterministic queueing method [28, 36],
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modified input-output technique [18], shock-wave theory based models [37, 38], and the use
of Markov Chain processes [39, 40].

Overall, it can be seen that most of the reported studies on travel time and delay
estimation used data collected from homogeneous and lane-disciplined traffic, either directly
from the field or indirectly through simulation models. The traffic conditions existing in India
is complex and different with its heterogeneity and lack of lane discipline. There are only
limited studies [7, 41, 42] which addressed heterogeneous traffic characteristics. None of
those studies estimated the stream travel time in an urban arterial taking signals into account.
Also, lack of automated data collection methods in India makes it difficult to explore many
of the statistical, time series, and machine learning techniques which are data driven since
a good data base is required for applying such techniques. Thus, the application of a new
approach for urban arterial travel time estimation with less data requirement is an area that
will be of interest for countries like India and requires additional research and is discussed in
this study.

The present study compares the performance of three different travel time estimation
methodologies, which uses flow data as the main input. The estimation methodologies
include two hybrid methods namely base method and data fusion-HCM and a non-hybrid
method. The study stretch consists of a midblock and an intersection. The total travel time
of the stretch is considered as the sum of travel time in the midblock section, without being
influenced by the intersections, and the travel time at intersection, taking into account the
delays at signals. Mid-block travel time is estimated using two approaches, namely, input-
output analysis and data fusion approach. Input-output analysis is a popular approach and
utilizes the cumulative count at entry and exit to find the travel time of vehicles within
the section. HCM method is the most popular approach for estimating delay at signalized
intersections. The method of applying input-output analysis for the midblock and HCM
method for the intersection to obtain the total travel time of vehicles in the study stretch
can be considered as a base approach and is entitled as base method. The other approach
presents a data fusion method for mid-block travel time estimation and HCM analysis for the
intersection area and will be called as hybrid DF-HCM method. The data fusion approach
utilizes the location based flow data and the sparse travel time data obtained from probe
vehicles for estimating the travel time of the stream. The total travel time of the stretch is
then obtained by summing up the mid-block travel time and delay incurred at the bounding
intersection. The necessity for analyzing the intersections separately was validated using a
non-hybrid approach, where the total travel time is estimated using data fusion alone for
the whole stretch without separating into mid-block and intersection area. In this approach,
the total travel time is directly estimated using the data fusion approach without separately
analysing the delay at intersection. The data till intersection stop line is used in this case
for the data fusion approach assuming that the delay is implicitly captured by the flow
and travel time data till stop line. A comparison of these three methodologies is carried
out to understand the best method for travel time estimation under heterogeneous traffic
conditions. This is one of the first study under Indian conditions that have applied data
fusion techniques as well as hybrid technique for the estimation of travel time. The study
has illustrated an efficient method to estimate the stream travel time in urban arterials with
limited GPS data and location based flow data. The results of the study stressed the necessity
of analyzing the intersections separately for more reliable estimates of travel time in urban
roads.
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2. Data Collection

Under Indian traffic conditions, a ready-to-use data archive is not available and hence the
study relied upon field data collected manually and simulated data using VISSIM simulation
package for corroborating the estimation methods.

2.1. Field Data

The test bed selected for the present study is a six-lane busy arterial road, namely, Rajiv
Gandhi Salai in Chennai, India. Traffic in one direction only was considered for the present
study. Data requirements based on the selected methodology included flow data from three
locations as shown in Figure 1. The distance between location 1 and location 2, which is before
the influence of intersection, is 1.72 km and between location 2 and intersection (location 3)
is 0.1 km, making the total section under consideration to be of 1.82 km.

Two pedestrian over bridges were identified to mount the cameras for covering
location 1 and 2. The intersection area covering the stop line at location 3 was recorded
using a camera mounted on a convenient luminaire support. To ensure that the three-video
recordings could be synchronized during replay in the lab, the time clocks in all the three
cameras were set to a common time at the start of the data collection. Data were collected
over three days for a total of six hours for the complete analysis and another two days for a
total of three and a half hours from the mid-block alone for comparing input-output method
with data fusion approach.

The required location based data, namely, the flow was collected using videographic
technique. Initial snap shots of the traffic inside the study stretch were taken from elevated
points to get the initial count of vehicles in the section required for input-output analysis.
Photographs taken from entry and exit points along with additional photographs taken
from in-between elevated points were required to capture the whole length of the section.
Classified flow data at the three-data collection points were extracted manually for two-
wheeler, three-wheeler, and four-wheeler categories from the videos in a temporal resolution
of one minute. The required flow data were extracted manually due to lack of automated
procedures. Travel time data required for validation was also extracted manually from videos
by reidentifying vehicles at various locations.

The limited travel time data required for the data fusion model were collected using
test vehicles equipped with GPS units. The test vehicles comprised of two cars, two three-
wheelers, and two two-wheelers which provided travel time data. These vehicles were
travelling back and forth between entry and exit points continuously during the data
collection period. Moreover, GPS data were available from route number 5C of the public
transport bus passing through the stretch. The GPS raw data included time, latitude, and
longitude at every five seconds interval. From this, travel time data were extracted using the
software package ArcGIS [43].

Due to the lack of automated video data extraction, all the above field data collection
and extraction were carried out manually, which was laborious and time consuming. The
data collection procedure required lot of coordination for collecting the video simultaneously
from three different locations, along with initial snapshots, and GPS data from all different
types of vehicles. An error in video recording even in one location makes the entire data
not useful for analysis. Due to these difficulties, it was decided to simulate the field traffic
conditions using collected field data, and carry out further analysis using the data generated
using the calibrated simulated network. The details of the simulation are detailed below.
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Figure 1: Schematic representation of the study corridor.

2.2. Simulated Data

VISSIM 5.3 from the PTV vision [44] was used in the present study to simulate the traffic
conditions for testing the accuracy of the travel time estimation model under varying traffic
conditions. A road stretch similar to the field test bed was created in VISSIM using a
satellite image. For realistic representation of field conditions, data on intersection geometry,
signal timing and phasing, vehicle types, traffic composition, vehicle input, proportion
of turning traffic, and speed distribution were entered from field. Less lane disciplined,
traffic movement was achieved by placing the vehicles anywhere on the lane, by setting
the option for over-taking through left and right side of vehicle and allowing a diamond-
shaped queuing at the intersection. To account for the nonstandard vehicles types, static,
and dynamic characteristics of most of the regular vehicle types in terms of length, width,
acceleration, and deceleration, and speed ranges were defined based on field values.

Signal timing and phase change data from the field were used in the simulation with
a total cycle time of 145 s, red time of 98 s, green time 45 s, and amber time 2 s. Classified
flow data for two-wheeler, three-wheeler, and four-wheeler categories extracted manually
for the three locations is used for calibration and validation of the simulation. Five-minute
aggregated flow and composition at location 1 were used as dynamic inputs for calibration.
Data generated at the other two locations were compared with the field values for validation.

During calibration, several parameters in VISSIMwere adjusted to match the field sce-
nario. Simulations were performedwith different random seeds with an average of five to ten
values for each influencing parameter. Parameters were calibrated such that the error in flow,
density, and travel time/speed was reduced. The errors were quantified in terms of mean
absolute percentage error and were comparable with other similar studies in VISSIM [45, 46].

3. Methodology

3.1. Estimation Schemes

As mentioned already, in this study, the total travel time is estimated using a hybrid DF-
HCM method making use of data fusion approach for the mid-block and HCM approach
for intersection. A comparison is carried out using the base method employing input-
output analysis which uses a simple deductive principle of cumulative counts (input-
output method) for estimating the link travel time and HCM analysis for the intersection
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area. The total travel time of the stretch is then estimated as the sum of mid-block and
intersection travel time. Also, the need for analysing intersection delay separately is verified
by comparingwith a direct estimation of travel time till intersection using non-hybridmethod
which employs data fusion approach alone for the whole section. The basic approach of the
above methods, namely, model based approach using data fusion, input-output method, and
HCM approach are discussed below.

3.2. Data Fusion Method

This section details the methodology adopted for fusing both Eulerian video data and
Lagrangian GPS data for estimating the travel time. The methodology was motivated from
the study of Chu et al. [21]. The estimation scheme is based on the conservation equation and
the fundamental traffic flow equation given in (3.1), and (3.2), respectively:

∂q

∂x
+
∂k

∂t
= 0, (3.1)

q = kV, (3.2)

where q is the flow in PCU/hour, k is the density in PCU/km, and V is the space mean speed
in km/hour, with x being the distance and t being the time.

By discretising (3.1), the density at time t can be represented as

k(t) = k(t − 1) +
Δt × {qentry(t − 1, t) − qexit(t − 1, t)

}

Δx
, (3.3)

where qentry(t− 1, t) and qexit(t− 1, t) are, respectively, the flow in PCU/h at the entry and exit
points during the time interval (t−1) to t.Δt is the data aggregation interval (1 minute in this
study).

A filtering technique is used to estimate the density by assuming a value for the initial
density, k(0). Then the average travel time taken by the vehicles to reach the exit point from
the entry is given by

tt(t) =
Δx

V (t)
=

Δx × k(t)
q(t − 1, t)

, (3.4)

where tt(t) is the travel time at time t, q(t − 1, t) is the flow along the section during (t−1) to t
which is given by

q =

⎧
⎪⎪⎨

⎪⎪⎩

qentry, if
(
qexit − qentry

)
> qcritical

qexit, if
(
qentry − qexit

)
> qcritical

qentry + qexit

2
, if

∣∣qentry − qexit
∣∣ < qcritical.

(3.5)

Average of the flows at entry and exit points is used under normal conditions,
when the flows at both ends are comparable without any shock-wave propagation. When
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the flows at the entry and exit are not comparable, minimum of the two was adopted to
capture the density variation within the stretch. In the present study, qcritical was selected as
20 PCU/minute.

In the above formulation, since the initial density in the section, k(0) is unknown, there
is a need for a parameter estimation scheme. The use of techniques such as Kalman Filtering
or High Gain Observer (HGO) based parameter identification are reported in literature for
similar applications [21, 47, 48]. In the present study, a Kalman filter based estimation scheme
is adopted.

The Kalman filter (KF) is a recursive algorithm [49] and is usually applicable to system
models which can be written in the state space representation. It is a model based tool for
estimation and prediction and incorporates the stochastic nature of parameters. The KF can
be of different types such as discrete Kalman filter, extended Kalman filter, and adaptive
Kalman filter. The selection of the filter depends on the nature of the governing equations. In
the present problem, as state equation (3.3) and the measurement equation (3.4) are linear,
the Discrete Kalman Filter (DKF) is used. The present study uses flow data from the video
and travel time from limited test vehicles to estimate average stream travel time. The state
variable used is traffic density and the travel time is the measurement variable. The state
(process) and measurement (observation) equations of DKF can be derived from (3.3) and
(3.4) and are given below.

State equation:

k(t) = k(t − 1) + u(t − 1, t) +w(t − 1), (3.6)

Measurement equation:

tt(t) = H(t) × k(t) + z(t), (3.7)

where u(t − 1, t) is the input which depends on the flow and is given by

u(t − 1, t) =
qentry(t − 1, t) − qexit(t − 1, t)

Δx
, (3.8)

H(t) is the transition matrix which converts the density to travel time and is given by

H(t) =
Δx

q(t − 1, t)
, (3.9)

and w(t−1) and z(t) are the process disturbance and the measurement noise, respectively.
These are assumed to be Gaussian with zero mean and variances Q and R, respectively.
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The Kalman filter algorithm is given by

k(t) = k̂(t − 1)+ + u(t − 1, t),

P(t) = P(t − 1)+ +Q,

G(t) = P(t)H(t)T
[
H(t)P(t)H(t)T + R

]−1
,

k̂(t)+ = k(t) +G(t)
[
tt(t) −H(t)k(t)

]
,

P(t)+ = P(t) −G(t)H(t)P(t),

(3.10)

where k(t) is the a priori estimate of density calculated using the measurements prior to
the instant t and P(t) is the a priori error covariance associated with k(t). k̂(t)+ and P(t)+

are the a posteriori density estimate and its covariance, respectively, after incorporating the
measurements till time t. G(t) is the Kalman gain which is used in the correction process.

The above steps are repeated at every time steps, and the correction step was carried
out only at the intervals when a measurement of GPS travel time is available.

3.3. Input-Output Method

The input-output (cumulative count) method as given by Nam and Drew [50] involves
constructing the cumulative vehicle counts (N) on the y-axis and time on the x-axis, as shown
in Figure 2.

The classical analytical procedure for travel time estimation considers cumulative flow
plots N(X1, t) and N(X2, t) at upstream entrance and downstream exit of the link. The total
travel time of vehicles during a given time interval, say between tn and tn−1, is then given
by the area between the two curves for that time period, represented by the shaded region
in Figure 2. The area can be calculated considering all vehicles that are entering, exiting,
or entering and exiting. In this study, all vehicles that are exiting in the time period are
considered, and the area is calculated accordingly. Corresponding analytical expression for
total travel time (area of trapezoid) is given by

T(tn) =
1
2
[(
tn−1 − t′′

)
+
(
tn − t′

)] ×m(tn), (3.11)

where, t′ = time of entry of the last vehicle that exits the link during tn−1 to tn, t′′ = time of
entry of the first vehicle that exits the link during the tn−1 to tn, m(tn) = the total number of
vehicles that exit the link during tn−1 to tn.

Under the first-in first-out condition m(tn) can be given as

m(tn) = Q(X2, tn) −Q(X2, tn−1), (3.12)

where, Q(X2, tn) = cumulative number of vehicles exiting at tn, Q(X2, tn−1) = cumulative
number of vehicles exiting at tn−1.
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Figure 2: Illustration of input output analysis.

Interpolating the values of t′ and t′′ and substituting them in (3.11), the total travel
time T(tn) can be calculated. The average travel time of vehicles exiting the link during the
given interval (TT) is then obtained by dividing the total travel time T(tn) by the number
of vehicles exiting the link for the same period as T(tn)/m(tn) where m(tn) is the number of
vehicles that exit during the interval.

3.4. HCM Delay Method

HCM delay method [34] is for estimating delay at an intersection over a given time period.
Using this method, the average delay per vehicle for a lane group can be calculated using
(3.13).

d =
(
d1 × fPF

)
+ d2 + d3,

d1 =
0.5 × C

[
1 − g/C

]2

1 − [min(1, X)
(
g/C

)] ,

d2 = 900 × T

⎡

⎣(X − 1) +

√

(X − 1)2 +
8kIX
cT

⎤

⎦,

fPF =
(1 − P)fp
1 − g/C

,

(3.13)

where, d = average overall delay per vehicle (seconds/vehicles); d1 = uniform delay (s/veh);
d2 = incremental or random delay (s/veh); d3 = residual demand delay or initial queue delay
(s/veh); PF = progression adjustment factor; X = volume to capacity ratio of the lane group;
C = traffic signal cycle time (seconds); c = capacity of the lane group (veh/h); g = effective
green time for the through lane group (seconds); T = duration of analysis period (hours);
k = incremental delay factor (0.50 for pre timed signals); I = upstream filtering/metering
adjustment factor (1.0 for an isolated intersection); P = proportion of vehicles arriving during
the green interval; fPF = progression adjustment factor.
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The above delay calculation of HCM requires flow values at location 3, free flow
running time between the location 2 and location 3, cycle timings, capacity of the lane group,
vehicle arrival type, and progression adjustment factor as input values. Out of these, the flow
values and cycle timings were directly obtained from the field. The capacity of the lane group
was calculated from the field using saturation flow rate and green cycle time ratio as given
by c = s × g/C [34]. A value of 3564 vehicles per hour was obtained as capacity value which
closely matched the value given in IRC: 106-1990 [51] for three-lane arterial road. Hence, the
standard value of 3600 vehicles per hour as per IRC: 106-1990 for three-lane arterial road was
taken for analysis. HCMExhibits 16-11 and 16-12 [34]were used to determine the arrival type
and progression adjustment factor for the known volume condition and vehicle distribution
over green time. The value corresponding to arrival type 4 and green cycle time ratio of 0.3
was chosen for the progression adjustment factor.

The additional free flow running time for the delay stretch (constant value for a
particular link) is added to the estimated delay to obtain the total travel time between the two
locations. The free flow running time is obtained by dividing the distance between locations
2 and 3, La,s by the free flow speed ffs of the stretch. Thus, the total travel time of the delay
stretch is obtained as

TT = d +
La,s

ffs
, (3.14)

where, TT is the total travel time of the delay stretch and d is the estimated delay value.
The total link travel time of 1.82 km stretch is then computed as the sum of mid-

block travel time (1.72 km) and the travel time in the delay stretch (0.1 km). Each of the
modules of base, hybrid DF-HCM, and non-hybrid method is corroborated using field data
and simulated data and is detailed in the section below.

4. Corroboration of the Estimation Scheme

In order to evaluate the performance of the above methods, the estimated mean link travel
times using these methods were plotted against the actual travel times using both field data
and simulated data. The actual travel time data required for the validation of the results while
using field data were obtained through GPS equipped test vehicles as well as by manually
re-identifying vehicles from videos. GPS data were collected using three cars, three auto
rickshaws, two motor bikes, and five buses as representative samples of each classification.
Throughout the data collection period, these GPS test vehicles, except the buses, were made
to travel along the study section repeatedly. Figures 3, 4, and 5 shows the plots of travel times
predicted by the three methods compared to the actual travel time from the field data and
simulated data. It can be seen that the hybrid DF-HCMmodel is able to capture the variations
in the actual travel time better than the other two methods.

The errors in travel time estimation in the above cases were quantified using mean
absolute percentage error (MAPE) and root mean squared error (RMSE). The mean absolute
percentage error is obtained using

MAPE =

(
1
N

N∑

k=1

|Nmeas(k) −Nest(k)|
Nmeas(k)

)

× 100%, (4.1)

where Nest(k) and Nmeas(k) are the estimated and the measured average travel time of the
study stretch during the kth interval of time withN being the total number of time intervals.
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Figure 3: Sample travel time results using field data.
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Figure 4: Travel time comparison for a 2 hrs simulated data.
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Figure 5: Sample plot for travel time comparison from 6:00 A.M–10:00 P.M simulated data.
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MAPE meets most of the criteria required for a summary measure such as measurement
validity, reliability, ease of interpretation, clarity of presentation, and support of statistical
evaluation. However, as noted by most researchers [52], the distribution of MAPE is often
asymmetrical or right skewed and undefined for zero values. Hence, a scale dependent
measure called root mean square error (RMSE) is also used which is often helpful when
different methods applied to the same set of data are compared. However, there is no absolute
criterion for a “good” value of any of the scale dependent measures as they are on the same
scale as the data [53]. The lesser the value of RMSE, the better is the forecast obtained. RMSE
expresses the expected value of the error and has the same unit as the data which makes the
size of a typical error visible. the root mean square error is given by

RMSE =

√√
√
√ 1

N

N∑

k=1

[Nmeas(k) −Nest(k)]
2, (4.2)

where Nest(k) and Nmeas(k) are the estimated and the measured average travel time of the
study stretch during the kth interval of time withN being the total number of time intervals.

The MAPE and RMSE values obtained are shown in Figures 6 and 7 and can be seen
that the errors are within acceptable ranges [52, 53]. According to Lewis’ scale of judgment of
forecasting accuracy [49], any forecast with a MAPE value of less than 10% can be considered
highly accurate, 11%–20% is good, 21%–50% is reasonable, and 51% or more is inaccurate.

It can be observed that in the case of field data, hybrid DF-HCM method performed
better than the other two methods. The results using simulated data show both base and
hybrid DF-HCMmethods performing comparably and both performing better than the non-
hybrid method. Thus, the results clearly show that analysing the delays at intersections
separately brings in more accuracy to travel time estimation. Also, it can be observed that
input-output method is too constrained by the flow data quality and can be used only
when the flow data accuracy is guaranteed such as from simulation. This is further checked
by comparing the performance of two more days of field data for mid-block section, and
the MAPE and RMSE is as shown in Table 1. It can be seen that in these cases, the data
fusion method outperformed the input-output method unlike the case of using data from
simulation confirming that with uncertainty in flow values as obtained from field, the data
fusion method outperforms the input-output approach.

Overall, it can be observed that the proposed data fusion method is a better candidate
for travel time estimation compared to input-output method in the mid-block sections. Input-
output method can be considered in cases where the accuracy of flow values is guaranteed.
Also, it can be clearly observed that, analysing the intersection delay separately brings in
more accuracy to the travel time estimation. This leads to the conclusion that intersection
delay needs to be analysed separately to determine the total travel time of urban arterials.
Thus, the proposed data fusion method can be used in mid-block sections along with HCM
method for delay estimation at intersections to determine the total travel time of urban
arterials.

5. Summary and Conclusions

The negative impacts of growth in vehicular population include congestion and delays,
and are much debated topics currently all over the world. India, with its rapid growth in
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economy and corresponding growth in vehicular population, is no exception to this. The
heterogeneous nature of traffic and lack of lane discipline makes these issues more complex.
Characterization and analysis of this type of traffic existing in developing countries demand
a different approach than what is followed in western countries with homogenous and lane
disciplined traffic. While dealing with urban arterials, there are additional challenges due to
the high variability in traffic characteristics. In countries such as India, another challenge is
in terms of data availability and hence less data intensive methods for travel time estimation
are to be employed.

The present study analysed the application of data fusion technique for travel time
estimation in an Indian urban arterial. The study attempted a hybrid DF-HCM method
and compared its performance with a base method and a non-hybrid data fusion model
to obtain the total travel time of the whole section. The performance of the models for
varying traffic flow conditions was tested using field and simulated data. The results showed
hybrid DF-HCM model as the best candidate for travel time estimation in urban arterials.
The non-hybrid method was found to have the highest error stressing the need for analysis
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Table 1: Performance of models in terms of MAPE and RMSE for mid-block.

Method/Date MAPE (%) RMSE (min)
Input-output Data fusion Input-output Data fusion

June 30 21.9 18.9 0.132 0.096
Sept 23 13.6 9.0 0.28 0.12

of the intersections separately for better performance. Among the hybrid models, data
fusion method gave promising results under field conditions. When the accuracy of flow
value was guaranteed, such as using simulated data, both the base and hybrid DF-HCM
methods showed comparable performance with a slightly better performance from the input-
output method. Hence, for real-time field implementations such as ATIS for urban arterials,
the hybrid approach using data fusion for mid-block sections along with separate delay
estimation at signalized intersections brings in the maximum accuracy of the predicted travel
time information showing its potential for any such real time ITS implementations.
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