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Let F be a family of meromorphic functions defined inD, let ψ(��/≡ 0), a0, a1, ..., ak−1 be holomorphic
functions in D, and let k be a positive integer. Suppose that, for every function f ∈ F, f /= 0,
P(f) = f (k) + ak−1f (k−1) + · · · + a1f ′ + a0f /= 0 and, for every pair functions (f, g) ∈ F, P(f), P(g)
share ψ, then F is normal in D.

1. Introduction and Main Results

Let C be complex plane. Let D be a domain in C. Let F be a family meromorphic functions
defined in the domain D. F is said to be normal in D, in the sense of Montel, if for any sequ-
ence {fn} ⊂ F, there exists a subsequence {fnj} such that fnj converges spherically locally
uniformly in D, to a meromorphic function or ∞.

Let f(z) and g(z) be two meromorphic functions, let a be a finite complex number. If
f(z) − a and g(z) − a have the same zeros, then we say they share a or share a IM (ignoring
multiplicity) (see [1–3]).

Definition 1.1. Let ai(z), (i = 1, 2, . . . , q − 1), bj(z), (j = 1, 2, . . . , n) be analytic in D, let
n0, n1, . . . , nk be nonnegative integers, set

P(ω) = ωq + aq−1(z)ωq−1 + · · · + a1(z)ω,
M

(
f, f ′, . . . , f (k)) = fn0

(
f ′)n1 · · · (f (k))nk ,

γM = n0 + n1 + · · · + nk,
ΓM = n0 + 2n1 + · · · + (k + 1)nk,

(1.1)
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where M(f, f ′, . . . , f (k)) is called a differential monomial of f , γM the degree of M(f, f ′, . . . ,
f (k)), and ΓM the weight ofM(f, f ′, . . . , f (k)).

From Definition 1.1, we give Definition 1.2.

Definition 1.2. LetMj(f, f ′, . . . , f (k)), (j = 1, 2, . . . , n) be differential monomials of f . Set

H
(
f, f ′, . . . , f (k)

)
= b1(z)M1

(
f, f ′, . . . , f (k)

)
+ · · · + bn(z)Mn

(
f, f ′, . . . , f (k)

)
,

γH = max
{
γM1 , γM2 , . . . , γMn

}
,

ΓH = max{ΓM1 ,ΓM2 , . . . ,ΓMn},

(1.2)

where H(f, f ′, . . . , f (k)) is called the differential polynomial of f , γH the degree of H(f,
f ′, . . . , f (k)), and ΓH the weight ofH(f, f ′, . . . , f (k)),

Γ
γ

∣∣∣∣
H

= max
{
ΓM1

γM1

,
ΓM2

γM2

, . . . ,
ΓMn

γMn

}
,

G
(
f
)
= P

(
f (k)

)
+H

(
f, f ′, . . . , f (k)

)
.

(1.3)

In 1979, Gu [4] proved the following result.

Theorem A. Let F be a family of meromorphic functions defined inD, let k be a positive integer, and
let a be a nonzero constant. If, for each function f ∈ F, f /= 0, f (k) /=a in D, then F is normal in D.

Yang [5] and Schwick [6] proved that Theorem A still holds if a is replaced by a holo-
morphic function ψ(/≡ 0) in Theorem A.

Xu [7] improved Theorem A by the ideas of shared values and obtained the following
result.

Theorem B. Let F be a family of meromorphic functions defined in D, let ψ(/≡ 0) be a holomorphic
functions and with only simple zeros in D, and let k be a positive integer. Suppose that, for every
function f ∈ F, f has all multiple poles and f /= 0. If, for every pair of functions f and g, f (k) and g(k)

share ψ in D, then F is normal in D.

Recently, Xu [7] did not know whether the condition ψ has only simple zero in D and
f has all multiple poles are necessary or not in Theorem B.

In 2007, Fang and Chang considered the case a = 0 in Theorem A. In this note, Fang
and Chang [8] proved the following result.

Theorem C. Let F be a family of meromorphic functions defined inD, and let k be a positive integer,
and let b be a nonzero complex number. If, for each f ∈ F, f /= 0, f (k) /= 0 and the zeros of f (k) − b have
multiplicity at least (k + 2)/k, then F is normal in D.

Remark 1.3. The number (k + 2)/k is sharp, as is shown by the examples in [8].
In 2009, Xia and Xu [9] replaced the constant 1 by a function ψ(z)/≡ 0 in Theorem C.

They obtained the following result.
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Theorem D. Let F be a family of meromorphic functions defined in D, let ψ(/≡ 0), a0, a1, . . . , ak−1
be holomorphic functions inD, and let k be a positive integer. Suppose that, for every function f ∈ F,
f /= 0, f (k) +ak−1f (k−1) + · · ·+a1f ′+a0f /= 0 and all zeros of f (k) +ak−1f (k−1) + · · ·+a1f ′+a0f −ψ(z)
have multiplicity at least (k + 2)/k. If, for k = 1, ψ has only zeros with multiplicities at most 2 and,
for k ≥ 2, ψ has only simple zeros, then F is normal in D.

It is natural to ask whether Theorem D can be improved by the ideas of shared values.
In this paper, we investigate the problem and obtain the following results.

Theorem 1.4. Let F be a family of meromorphic functions defined in D, let ψ(/≡ 0), a0, a1, . . . , ak−1
be holomorphic functions inD, and let k be a positive integer. Suppose that, for every function f ∈ F,
f /= 0, P(f) = f (k) + ak−1f (k−1) + · · · + a1f ′ + a0f /= 0 and, for every pair functions (f, g) ∈ F, P(f)
and P(g) share ψ, then F is normal in D.

By Theorem 1.4, we immediately deduce.

Corollary 1.5. Let F be a family of meromorphic functions defined inD, let ψ(/≡ 0), a0, a1, , . . . , ak−1
be holomorphic functions in D, and k be a positive integer. Suppose that, for every function f ∈ F,
f /= 0, f (k) /= 0 and for every pair functions (f, g) ∈ F, f (k) and g(k) share ψ, then F is normal in D.

Remark 1.6. By the ideas of sharing values, Theorem 1.4 and Corollary 1.5 yield the number
(k + 2)/k can be omitted.

Remark 1.7. Obviously, Corollary 1.5 omitted the conditions ψ with only simple zeros, and, for
every function f ∈ F, f has all multiple poles in Theorem D. But the condition for every func-
tion f ∈ F, f (k) /= 0 is additional. Hence, Corollary 1.5 improves Theorem B in some sense.

The condition ψ /≡ 0 in Theorem 1.4 is necessary. For example, we consider the follow-
ing families.

Example 1.8. F = {fm(z) = emz, m = 1, 2, . . .}, obviously, any f ∈ F satisfies f /= 0, f (k) /= 0. For
distinct positive integersm, l, f (k)

m , and f (k)
l

share 0 IM.However, the familiesF are not normal
at z = 0.

Remark 1.9. Some ideas of this paper are based on [7, 9, 10].

2. Preliminary Lemmas

In order to prove our theorems, we need the following lemmas.
The well-known Zalcman’s lemma is a very important tool in the study of normal

families. It has also undergone various extensions and improvements. The following is one
up-to-date local version, which is due to Pang and Zaclman [11].

Lemma 2.1 (see [11, 12]). Let F be a family of meromorphic functions in the unit disc Δ with the
property that, for each f ∈ F, all zeros are of multiplicity at least k. Suppose that there exists a number
A ≥ 1 such that |f (k)(z)| ≤ Awhenever f ∈ F and f = 0. IfF is not normal inΔ, then, for 0 ≤ α ≤ k,
there exist

(1) a number r ∈ (0, 1);

(2) a sequence of complex numbers zn, |zn| < r;
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(3) a sequence of functions fn ∈ F;
(4) a sequence of positive numbers ρn → 0+;

such that gn(ξ) = ρ−αn fn(zn + ρnξ) converge locally uniformly (with respect to the spherical metric) to
a nonconstant meromorphic function g(ξ) on C, and, moreover, the zeros of g(ξ) are of multiplicity at
least k, g�(ξ) ≤ g�(0) = kA + 1. In particular, g has order at most 2.

Here, as usual, g�(ξ) = |g ′(ξ)|/(1 + |g(ξ)|2) is the spherical derivative.

Lemma 2.2 (see [1]). Let f(z) be a transcendental meromorphic function in C, let k(≥ 1) be a in-
teger, and let b be a nonzero finite value, then f or f (k) − b has infinite zeros.

Lemma 2.3 (see [7]). Let f(z) be a nonconstant rational function. Let k ≥ 1 be an integer, and let b
be a non-zero finite value. If f /= 0, then f (k)(z) − b has at least two distinct zeros in the plane.

Lemma 2.4. Let f(z) be a nonconstant rational function. Let k ≥ 1 be an integer, and let l be a posi-
tive integer. If f /= 0, f (k) /= 0, then f (k)(z) − zl has at least two distinct zeros in the plane.

Proof. Since f /= 0 and f (k) /= 0, then f is a nonpolynomial rational function and has the form

f(z) =
A

(z − z1)m1(z − z2)m2 · · · (z − zt)mt
, (2.1)

where A/= 0 is a constant, andm1, m2, . . . , mt are positive integers. Setm = m1 +m2 + · · · +mt.
Then,

f ′(z) =
−A(

mzt−1 + bt−2zt−2 + · · · + b0
)

(z − z1)m1+1(z − z2)m2+1 · · · (z − zt)mt+1
, (2.2)

where bt−2, . . . , b0 are constants. For k ≥ 2, by mathematical induction, we have

f (k)(z) =
Bzkt−k + ckt−k−1zkt−k−1 + · · · + c0

(z − z1)m1+k(z − z2)m2+k · · · (z − zt)mt+k
, (2.3)

where B = (−1)km(m+1)(m+2) · · · (m+k−1)A/= 0, ckt−k−1, . . . , c0 are constants. Since f (k) /= 0,
we deduce that t = 1, and thus

f(z) =
A

(z − z1)m1
, (2.4)

f (k)(z) =
B

(z − z1)m1+k
. (2.5)

Case 1 (if f (k) − zl has exactly one zero z0). From (2.5), we set

f (k)(z) − zl = B

(z − z1)m1+k
− zl = B′(z − z0)m1+k+l

(z − z1)m1+k
. (2.6)

Obviously, B′ is a nonzero constant and l ≥ 1.
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From (2.6), we obtain

f (k+l+1)(z) =
(z − z0)m1+k−1P1(z)

(z − z1)m1+k+l+1
, (2.7)

where P1(z)/≡ 0. By (2.4), we deduce

f (k+l+1)(z) =
A′

(z − z1)m1+k+1+1
, (2.8)

where A′ is nonzero constant.
Comparing (2.7) and (2.8), we obtain that degA′ = 0 ≥ m1 + k − 1 is impossible.

Case 2 (if f (k)(z) − zl /= 0). By (2.5), clearly Case 2 is impossible.
Lemma 2.4 is proved.

Lemma 2.5 (see [7]). Let F be a family of meromorphic functions defined in D, let k be a positive
integer, and let ψ(/= 0) be a holomorphic function in D. If, for any f ∈ F satisfying f /= 0 and if
f (k), g(k) share ψ IM for every pair of functions f, g ∈ F, then F is normal in D.

In this paper, by the same method of [7], we consider the differential polynomial in
Lemma 2.5 and prove a more general result.

Lemma 2.6. Let F be a family of meromorphic functions defined in D, let k be a positive integer, and
let ψ(/= 0) be a holomorphic function in D. If, for any f ∈ F satisfying f /= 0 and if G(f), G(g) share
ψ IM for every pair of functions f, g ∈ F, whereG(f) is a differential polynomial of f as the definition
1 satisfying q ≥ γH , and Γ/γ |H < k + 1, then F is normal in D, where q, Γ/γ |H are as in Definitions
1.1 and 1.2.

Proof. Wemay assume thatD = Δ = {|z| < 1}. Suppose thatF is not normal inD. Without loss
of generality, we assume that F is not normal at z0 = 0. Then, by Lemma 2.1, there exists a
number r ∈ (0, 1); a sequence of complex numbers zj , zj → 0 (j → ∞); a sequence of
functions fj ∈ F; a sequence of positive numbers ρj → 0+ such that gj(ξ) = ρ−kj fj(zj +
ρjξ) converges uniformly with respect to the spherical metric to a nonconstant meromorphic
functions g(ξ) in C. Moreover, g(ξ) is of order at most 2. Hurwitz’s theorem implies that
g(ξ)/= 0.

We have

G
(
fj
)(
zj + ρjζ

)
= P

(
f
(k)
j

(
zj + ρjζ

))
+H

(
fj , f

′
j , . . . , f

(k)
j

)(
zj + ρjζ

)
,

H
(
fj , f

′
j , . . . , f

(k)
j

)(
zj + ρjζ

)
=

n∑

i=1

bi
(
zj + ρjζ

)
ρ
(k+1)γMi

−ΓMi

j Mi

(
gj , g

′
j , . . . , g

(k)
j

)
(ζ).

(2.9)
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Considering bi(z) is analytic on D(i = 1, 2, . . . , n), we have

∣
∣bi

(
zj + ρjζ

)∣∣ ≤M
(
1 + r
2

, bi(z)
)
<∞, (i = 1, 2, . . . , n) (2.10)

for sufficiently large j.
Hence, we deduce from Γ/γ |H < k + 1 that

n∑

i=1

bi
(
zj + ρjζ

)
ρ
(k+1)γMi

−ΓMi

j Mi

(
gj , g

′
j , . . . , g

(k)
j

)
(ζ) (2.11)

converges uniformly to 0 on every compact subset of C which contains no poles of g(ξ).
Thus, we have

G
(
fj
)(
zj + ρjζ

) −→ P
(
g(k)

)
(ζ),

G
(
fj
)(
zj + ρjζ

) − ψ(zj + ρjζ
) −→ P

(
g(k)

)
(ζ) − ψ(z0)

(2.12)

on every compact subset of C which contains no poles of g(ζ).
Next, we will prove that G(fj)(ζ) − ψ(z0) has just a unique zero. By way of contradic-

tion, let ζ0 and ζ∗0 be two distinct solutions ofG(fj)(ζ)−ψ(z0), and choose δ(> 0) small enough
such that D(ζ0, δ) ∩ D(ζ∗0, δ) = ∅ where D(ζ0, δ) = {ζ : |ζ − ζ0| < δ} and D(ζ∗0, δ) = {ζ :
|ζ− ζ∗0| < δ}. By Hurwitz’s theorem, there exist points ζj ∈ D(ζ0, δ), ζ∗j ∈ D(ζ∗0, δ) such that, for
sufficiently large j,

G
(
fj
)(
zj + ρjζj

) − ψ(z0) = 0,

G
(
fj
)(
zj + ρjζ∗j

)
− ψ(z0) = 0.

(2.13)

By the hypothesis that for each pair of functions f and g in F, G(f) and G(g) share
ψ(z0) in D, we know that, for any positive integerm,

G
(
fm

)(
zj + ρjζj

) − ψ(z0) = 0,

G
(
fm

)(
zj + ρjζ∗j

)
− ψ(z0) = 0.

(2.14)

Fixm, take j → ∞, and note zj + ρjζj → 0, zj + ρjζ∗j → 0, then

G
(
fm

)
(0) − ψ(z0) = 0. (2.15)

Since the zeros ofG(fm)(0)−ψ(z0) = 0 have no accumulation point, so zj+ρjζj = 0, zj+ρjζ∗j = 0.
Hence,

ζj = −zj
ρj
, ζ∗j = −zj

ρj
. (2.16)
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This contradicts with ζj ∈ D(ζ0, δ), ζ∗j ∈ D(ζ∗0, δ), and D(ζ0, δ) ∩D(ζ∗0, δ) = ∅. So G(fj) − ψ(z0)
has just a unique zero. By Hurwitz’s theorem, we know P(g(k))(ζ) − ψ(z0) has just a unique
zero.

By Lemmas 2.2 and 2.3, we know g(k)(ζ) − ψ(z0) has at least two distinct zeros. From
the definition of P(w), we deduce that P(g(k)(ζ)) − ψ(z0) has more than two distinct zeros, a
contradiction.

So F is normal in D. Lemma 2.6 is proved.

By Lemma 2.6, we immediately deduce the following lemma.

Lemma 2.7. Let F be a family of meromorphic functions defined in D, let ψ(/= 0), a0, a1, . . . , ak−1 be
holomorphic functions in D, and let k be a positive integer. Suppose that, for every function f ∈ F,
f /= 0, f (k)+ak−1f (k−1)+· · ·+a1f ′+a0f /= 0 and, for every pair functions (f, g) ∈ F, f (k)+ak−1f (k−1)+
· · · + a1f ′ + a0f , g(k) + ak−1g(k−1) + · · · + a1g ′ + a0g share ψ, then F is normal in D.

Lemma 2.8 (see [1]). Let f(z) be a meromorphic function. Let k be a positive integer. If f(z)/= 0,
then f (k)(z)/= 1, then f is a constant.

Lemma 2.9 (see [13, 14]). Let f(z) be a transcendental meromorphic function in C, and let P(/≡ 0)
be a polynomial. Let k be a positive integer. If all zeros (except at most finite zeros) of f(z) have the
multiplicity at least 3, then f (k)(z) − P(z) has infinite zeros.

3. Proof of Theorem 1.4

Proof. Since normality is a local property, without loss of generality, we may assumeD = Δ =
{z : |z| < 1}, and

ψ(z) = zlϕ(z) (z ∈ Δ), (3.1)

where l is a positive integer, ϕ(0) = 1, ϕ(z)/= 0 on Δ′ = {z : 0 < |z| < 1}. By Lemma 2.6, we
only need to prove that F is normal at z = 0.

If f ∈ F, P(f)(0)/=ψ(0), then there exists δ > 0 such that P(f)(z)/=ψ(z) on Δδ. By
condition of Theorem, for every g ∈ F, we know P(g)(z)/=ψ(z) on Δδ. By theorem D, F is
normal on Δδ, so F is normal on z = 0.

Now, we consider P(f)(0) = ψ(0). Suppose P(f)(z)/≡ψ(z) on the neighborhood |z| < δ
(where δ is a small positive number) (otherwise, P(f)(z) ≡ ψ(z) on the neighborhood |z| < δ,
by condition of theorem, for every g ∈ F, we also obtain P(g)(z) ≡ ψ(z). So P(g)(z)/=ψ(z)+1.
By Theorem D, F is normal at z = 0. So Theorem 1.4 is proved), there exists δ > 0 such that
P(f)(z)/=ψ(z) on (z ∈ Δ′

δ
). So, for every g ∈ F, we obtain

P
(
g
)
(z)/=ψ(z)

(
z ∈ Δ′

δ

)
. (3.2)

By Theorem D, F is normal on Δ′.
Next, we will proveF is normal at z = 0. Suppose, on the contrary, thatF is not normal

at z = 0 ∈ Δ, then there exists a sequence functions (we also denoteF) that has no any normal
subsequence on z = 0.
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Consider the family I = {g(z) = (f(z)/ψ(z)) : f ∈ F, z ∈ Δ}. Since f /= 0 for f ∈ F, we
have that g(0) = ∞ for each g ∈ I.

We first prove that I is normal in Δ. Suppose, on the contrary, that I is not normal at
z0 ∈ Δ. By Lemma 2.1, there exist a sequence of functions gn ∈ I, a sequence of complex
numbers zn → z0, and a sequence of positive numbers ρn → 0, such that

Gn(ξ) =
gn

(
zn + ρnξ

)

ρkn
−→ G(ξ) (3.3)

converges spherically uniformly on compact subsets of C where G(ξ) is a nonconstant mero-
morphic function on C, and G(ξ)/= 0.

We distinguish two cases.

Case 1 (zn/ρn → ∞). By a simple calculation, for 0 ≤ i ≤ k, we have

g
(i)
n (z) =

f
(i)
n (z)
ψ(z)

−
i∑

j=1

C
j

i g
(i−j)
n (z)

ψ(j)(z)
ψ(z)

=
f
(i)
n (z)
ψ(z)

−
i∑

j=1

[

C
j

i g
(i−j)
n (z)

j∑

t=0

Ajt
1
zj−t

ϕ(t)(z)
ϕ(z)

]

,

(3.4)

where Ajt = l(l − 1) · · · (l − j + t + 1)Ct
j if l < j, for t = 0, 1, . . . , j − 1 and Ajj = 1.

Thus, from (3.4), we have

ρk−in G
(i)
n (ξ) = g(i)

n

(
zn + ρnξ

)

=
f
(i)
n

(
zn + ρnξ

)

ψ
(
zn + ρnξ

) −
i∑

j=1

[

C
j

i g
(i−j)
n

(
zn + ρnξ

) j∑

t=0

Ajt
1

(
zn + ρnξ

)j−t
ϕ(t)(zn + ρnξ

)

ϕ
(
zn + ρnξ

)

]

=
f
(i)
n

(
zn + ρnξ

)

ψ
(
zn + ρnξ

) −
i∑

j=1

[

C
j

i

g
(i−j)
n

ρ
j
n

(
zn + ρnξ

) j∑

t=0

Ajt
1

(
zn + ρnξ

)j−t
ρtnϕ

(t)(zn + ρnξ
)

ϕ
(
zn + ρnξ

)

]

.

(3.5)

On the other hand, we have

lim
n→∞

1
(
zn/ρn

)
+ ξ

= 0,

lim
n→∞

ρtnϕ
(t)(zn + ρnξ

)

ϕ
(
zn + ρnξ

) = 0,

(3.6)

for t ≥ 1. Noting that g(i−j)
n (zn + ρnξ)/ρ

j
n is locally bounded on C minus the set of poles of

G(ξ) since gn(zn + ρnξ)/ρkn → G(ξ). Therefore, on every subset of C which contains no poles
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of G(ξ), we have

f
(k)
n

(
zn + ρnξ

)

ψ
(
zn + ρnξ

) −→ G(k)(ξ),

f
(i)
n

(
zn + ρnξ

)

ψ
(
zn + ρnξ

) −→ 0,

(3.7)

for i = 0, 1, . . . , k − 1, and thus

f
(k)
n

(
zn + ρnξ

)
+ Σk−1

i=0 ai
(
zn + ρnξ

)
f
(i)
n

(
zn + ρnξ

)

ψ
(
zn + ρnξ

) −→ G(k)(ξ),

f
(k)
n

(
zn + ρnξ

)
+ Σk−1

i=0 ai
(
zn + ρnξ

)
f
(i)
n

(
zn + ρnξ

) − ψ(zn + ρnξ
)

ψ
(
zn + ρnξ

) −→ G(k)(ξ) − 1,

(3.8)

since a0, . . . , ak−1 are analytic in D.
By G(ξ)/= 0, we know G(k)(ξ)/≡ 1. In fact, if G(k)(ξ0) = 1, by Hurwitz’s theorem, then

exists ξn → ξ0, for n sufficiently large,

P
(
f
)(
zn + ρnξn

)
= ψ

(
zn + ρnξn

)
. (3.9)

By the condition of theorem, for every positive numberm, we obtain P(fm)(zn+ρnξn) = ψ(zn+
ρnξn). We know zn + ρnξn → z0 ∈ Δδ, and, for sufficiently large n, zn + ρnξn ∈ Δδ. However,
zn + ρnξn /= 0 (otherwise, zn + ρnξn = 0, so ξn = −(zn/ρn) → ∞, a contradiction), so for suf-
ficiently large n, zn + ρnξn ∈ Δ′

δ. This contradicts with (3.2).
So G(ξ)/= 0 and G(k)(ξ)/= 1, by Lemma 2.8, we obtain G is a constant, a contradiction.

Case 2. zn/ρn → α is a finite complex number. Then,

gn
(
ρnξ

)

ρkn
=
gn

(
zn + ρn

(
ξ − (

zn/ρn
)))

ρkn
= Gn

(
ξ − zn

ρn

)
−→ G(ξ − α) = G(ξ). (3.10)

Obviously, G(ξ)/= 0, and ξ = 0 is a pole of G with order at least l.
Set

Hn(ξ) =
fn
(
ρnξ

)

ρk+ln

. (3.11)

Then,

Hn(ξ) =
ψ
(
ρnξ

)

ρln

fn
(
ρnξ

)

ρknψ
(
ρnξ

) =
ψ
(
ρnξ

)

ρln

gn
(
ρnξ

)

ρkn
. (3.12)
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Noting that ψ(ρnξ)/ρln → ξl, thus

Hn(ξ) −→ ξlG(ξ) = H(ξ), (3.13)

uniformly on compact subsets of C. Since G has a pole of order at least at ξ = 0, we have
H(0)/= 0, so thatH(ξ)/= 0.

From (3.11), we get

H
(i)
n =

f
(i)
n

(
ρnξ

)

ρk+l−in

−→ H(i)(ξ), (3.14)

spherically uniformly on compact subsets of C minus the set of poles of G(ξ). As the above,
on every compact subset of C minus the set of poles of G(ξ), we have

f
(k)
n

(
ρnξ

)
+ Σk−1

i=0 ai
(
ρnξ

)
f
(i)
n

(
ρnξ

)

ρln
−→ H(k)(ξ), (3.15)

f
(k)
n

(
ρnξ

)
+ Σk−1

i=0 ai
(
ρnξ

)
f
(i)
n

(
ρnξ

) − ψ(ρnξ
)

ρln
−→ H(k)(ξ) − ξl, (3.16)

locally uniformly on C.

By the assumption of Theorem and (3.16), Hurwitz’s theorem impliesH(k)(ξ)/= 0.
Next, we proof that if ξ ∈ C/{0}, thenH(k)(ξ)/= ξl.
First, H(k)(ξ)/≡ ξl, otherwise H(k)(ξ) ≡ ξl, which contradicts with H(ξ)/= 0. If there

exists a ξ0 /= 0 such that H(k)(ξ0) = ξl0, by Hurwitz’s theorem and (3.16), there exists ξn → ξ0

such that f (k)
n (ρnξn) + Σk−1

i=0 ai(ρnξn)f
(i)
n (ρnξn) = ψ(ρnξn). By the assumption of Theorem 1.4,

for every positive m such that P(fm)(ρnξn) = ψ(ρnξn). However, for n sufficiently large,
ρnξn ∈ Δ′

δ, all of these contradict with (3.2). So if ξ ∈ C/{0}, thenH(k)(ξ)/= ξl.
NotingH(ξ)/= 0, By Lemma 2.9, we knowH must be a rational function. IfH is not a

constant, By Lemma 2.4, we knowH(k)(ξ) − ξl has at least two distinct zeros, a contradiction.
SoH must be a nonzero constant, also contradicts withH(k)(ξ)/= 0. Now, we have proved the
I is normal on Δδ.

It remains to show that F is normal at z = 0. Since I is normal in Δ, then the family I

is equicontinuous on Δ with respect to the spherical distance. On the other hand, g(0) = ∞
for each g ∈ I, so there exists δ > 0 such that |g(z)| ≥ 1 for all g ∈ I and each z ∈ Δδ =
{z : |z| < δ}. Suppose that F is not normal at z = 0. Since F is normal in 0 < |z| < 1, the
family F1 = {1/f : f ∈ I} is normal in Δ = {z : 0 < |z| < 1}, but it is not normal at z = 0.
Then, there exists a sequence {1/fn} ⊂ F1 which converges locally uniformly in Δ′, but not
in Δ. Noting that fn /= 0 in Δ, 1/fn is holomorphic in Δ for each n. The maximum modulus
principle implies that 1/fn → ∞ in Δ′. Thus, fn → 0 converges locally uniformly in Δ′, and
hence so does {gn} ⊂ I, where gn = fn/ϕ. But |gn(z)| ≥ 1 for each z ∈ Δδ, a contradiction.
This finally completes the proof of Theorem 1.4.
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