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Order-preserving and convergent results of delay functional differential equations without
quasimonotone condition are established under type-K exponential ordering. As an application,
the model of delayed Hopfield-type neural networks with a type-K monotone interconnection
matrix is considered, and the attractor result is obtained.

1. Introduction

Since monotone methods have been initiated by Kamke [1] and Miiler [2], and developed
further by Krasnoselskii [3, 4], Matano [5], and Smith [6], the theory and application of
monotone dynamics have become increasingly important (see [7-18]).

It is well known that the quasimonotone condition is very important in studying
the asymptotic behaviors of dynamical systems. If this condition is satisfied, the solution
semiflows will admit order-preserving property. There are many interesting results, for
example, [6, 8-12, 14-17] for competitive (cooperative) or type-K competitive (cooperative)
systems and [6, 7, 13] for delayed systems. In particular, for the scalar delay differential
equations of the form

x'(t) = g(x(t), x(t - 1)), (1.1)

if the quasimonotone condition (0g(x,y))/dy > 0 holds, then (1.1) generates an eventually
strongly monotone semiflow on the space C([-r, 0], R), which is one of sufficient conditions
for obtaining convergent results. In other words, the right hand side of (1.1) must be strictly
increasing in the delayed argument. This is a severe restriction, and so the quasimonotone
conditions are not always satisfied in applications. Recently, many researchers have tried
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to relax the quasimonotone condition by introducing a new cone or partial ordering, for
example, the exponential ordering [6, 18, 19]. In particular, Smith [6] and Wu and Zhao [18]
considered a new cone parameterized by a nonnegative constant, which is applicable to a
single equation. Replacing the previous constant by a quasipositive matrix, the exponential
ordering is generalized to some delay differential systems by Smith [6] and Y. Wang
and Y. Wang [19]. However, the above results are not suitable to the type-K systems
(see [6] for its definition). A typical example is a Hopfield-type neural network model
with a type-K monotone interconnection matrix, which implies that the interaction among
neurons is not only excitatory but also inhibitory. For this purpose, we introduce a type-K
exponential ordering and establish order-preserving and convergent results under the weak
quasimonotone condition (WQM) (see Section 2) and then apply the result to a network
model with a type-K monotone interconnection matrix.

This paper is arranged as follows. In next section, the type-K exponential ordering
parameterized by a type-K monotone matrix is introduced, and convergent result is
established. In Section 3, we apply our results to a delayed Hopfield-type neural network.

2. Type-K Exponential Ordering

In this section, we establish a new cone and introduce some order-preserving and convergent
results.

Let (X;, X)), i€ N ={1,2,...,n}, be ordered Banach spaces with IntX} # . For x;, y; €
Xi, wewrite x;<x,y; if yi—x; € X[; xi<x,yi if yi—x; € X\ {0}; xi<x,yiif yi—x; € IntX]. Fork €
N,wedenoteI ={1,2,...,kx}and ] = N\I= {x+1,...,n}. Thus, we can define the product
space X = [T:=/X; which generates two cones X* = [T X; and K = [TEF X x T8, (-X7)
with nonempty interiors IntX* = [T/ IntX; and IntK = [T=FIntX;’ x [T7,, (-IntX;). The
ordering relation on X* and K is defined in the following way:

XSXy — xiSXiyi/ Vie Nr
x<xy &= x<y, xi<xy;, forsomeie€ N, thatis, x<xy, x#y,
XLxy &= xi<Lx,yi, VieEN,
(2.1)
x<kxy &= xi<x,yi, Viel, Xi>x,Yi, Vi€],
x<gy & x<xy, xi<x,yi, forsomeiel or x;>xy; forsomeie€ ],
XKKY &= Xi<x, Vi, Viel, Xi>x, i, Vi e ]
A semiflow on X is a continuous mapping @: X x R, — X, (x,t) — ®(x,t), which

satisfies (i) @y = id and (ii) @; - D, = Dy for £, s € R,. Here, ®;(x) = D(x,t) for x € X and
t > 0. The orbit of x is denoted by O(x):

O(x) = {Dy(x) : t > 0}. (2.2)

An equilibrium point is a point x for which ®;(x) = x for all + > 0. Let E be the set of all
equilibrium points for @. The omega limit set w(x) of x is defined in the usual way. A point
x € X is called a quasiconvergent point if w(x) C E. The set of all such points is denoted by Q.
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A point x € X is called a convergent point if w(x) consists of a single point of E. The set of all
convergent points is denoted by C.
The semiflow @ is said to be type-K monotone provided

@ (x)<kD:(y) whenever x<gy Vt>0. (2.3)

@ is called type-K strongly order preserving (for short type-K SOP), if it is type-K monotone,
and whenever x<gy, there exist open subsets U, V of X with x € U, y € V and fy > 0, such
that

O (U) <D (V) Vit (2.4)

The semiflow @ is said to be strongly type-K monotone on X if @ is type-K monotone, and
whenever x<xy and t > 0, then ®;(x)<x®;(y). We say that @ is eventually strongly type-
K monotone if it is type-K monotone, and whenever x<gy, there exists t; > 0 such that
@y, (x)<<x Dy, (). Clearly, strongly type-K monotonicity implies eventually strongly type-K
monotonicity.

An n x n matrix M is said to be type-K monotone if it has the following manner:

(= 5)
M=( _ _), (2.5)
-C D

where A = (aij)kxk satisfies (a;;) > 0if i #j, similarly for the (n — k) x (n - k) matrix D and
B>0,C>0.
In this paper, the following lemma is necessary.

Lemma 2.1. If M is a type-K monotone matrix, then eM* remains type-K monotone with diagonal
entries being strictly positive for all t > 0.

Proof. The product of two type-K monotone matrices remains type-K monotone; the rest is
obvious and we omit it here. O

Let 7 > 0 be fixed and let C := C([-1, 0], X). The ordering relations on C are understood
to hold pointwise. Consider the family of sets parameterized by type-K monotone matrix M
given by

Ry={d= (91,92, dn) € C: $(5)2K0, s € [-1,01$(1)2xeM ™ p(s), 02t 25> —r}.
(2.6)

It is easy to see that Ky is a closed cone in C and generates a partial ordering on C which
is written by >js. Assume that ¢ € C is differentiable on (-r,0), a similar argument to [18,
lemma 2.1] implies that ¢>5/0 if and only if ¢(-r)>x0 and d¢(s)/ds — M$(s)>k0 for all
s € (-r,0).
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Consider the abstract functional differential equation
x'(t) = f(xr), (2.7)

where f : D — X is continuous and satisfies a local Lipschitz condition on each compact
subset of D and D is an open subset of C. By the standard equation theory, the solution
x(t,¢) of (2.7) can be continued to the maximal interval of existence [0,0p). Moreover, if
oy > 1, then x(t, §) is a classical solution of (2.7) for t € (r,0y). In this section, for simplicity,
we assume that, for each ¢ € D, (2.7) admits a solution x(t, ¢) defined on [0, oo). Therefore,
(2.7) generates a semiflow on C by @;(¢) = x;(¢), where x;(¢)(s) = x(t + s,¢) for t > 0 and
-r<s<0.

In the following, we will seek a sufficient condition for the solution of (2.7) to preserve
the ordering >.

(WQM) Whenever ¢, ¢ € D, ¢>p1¢, then

f() = f($)2xM(g(0) - $(0)). (2.8)

Theorem 2.2. Suppose that (WQM) holds. If ¢>pm¢, then x(¢)>mx(P) for all t > 0.

Proof. Let 1 € IntK. For any ¢ > 0, define f.(¢) = f(P) + en for ¢ € D, and let x;(¢) be a
unique solution of the following equation:

x'(t) = fe(xy), t20,

(2.9)
x(s) =¢(s), -r<s<0.
Let y°(t) = x°(t, ¢) — x(t, $) and define
S={te[0,0):y;>m0}. (2.10)

Since ¢>p¢, S is closed and nonempty. We first prove the following two claims.

Claim 1. If ty € S, there exists 6y > 0 such that [t, £y + 6p] C S.
According to the integral expression of (2.9) we have

yE(t) = My (s) + f M (x5 (¢)) = f (x:(9)) = M(x*(7,¢) = x(7,$)) + en] dr.
(2.11)

Since ty € S and (WQM) hold, we have
[ () = f(xi(@)) = M(x°(t, ) = x(t,§)) + €nli=t, 2k en>«O. (2.12)
By the characteristic of a cone, there is 6y > 0 such that

fxi (@) = f(xe(9)) - M(x(t,¢) = x(t,§)) +en=k0, Vi € [to, to + Eo]- (2.13)
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By Lemma 2.1, we have

yE()2xeMIY(s), Vi <s<t<to+ 6y, (2.14)

which, together with the definition of K M, implies that
x; (¢)2mxi(P), Yt € [to, to + bl (2.15)

Claim 2. Let S; = {t: [0,¢] € S}. Then sup S; = oo.

If #* = sup S1 < oo, then there is a sequence {t,} C S; C Ssuch thatt, — t*asn — oo.
From the closeness of S we have t* € S. By Claim 1, [t*,t* + 6*] C S for some 6* > 0, which
contradicts the definition of +*. Therefore, sup S; = oo, which implies S = [0, o0).

Since f. — f uniformly on bounded subset of D as e — 0%, then
lim xf () = x(p), V0. (2.16)

Letting e — 0% in y; = x{(¢) — x:($)>m0, we have x;(¢) — x¢(¢)>p0, which implies that
xt(¢)2mxe (). O

By the definition of the semiflow @, it is easy to see from (WQM) that ®; is monotone
with respect to > in the sense that @;(¢)>51D;(¢) whenever ¢g>p¢ forall £ > 0.

As we all know the strongly order-preserving property is necessary for obtaining some
convergent results. However, it is easy to check that the cone K has empty interior on C; we
cannot, therefore, expect to show that the semiflow generated by (2.7) is eventually strongly
type-K monotone in C. Let ¢(-) € IntK and define

C, = {¢ € C : there exist y > 0 such that — yp<pPp<myyp},
. (2.17)
1911, = inf{y > 0+ ~yp<mdp<myy}.

It is easy to check that (Cy, [|¢|l,) is a Banach space, Ky = C, N K is a cone with nonempty
interior Int K1 (see [20]), and i : C, — C is continuous. Using the smoothing property of
the semiflow ® on C* and fundamental theory of abstract functional differential equations,
we deduce that forallt > r, &C c CNC,, @; : C — CnNC, is continuous, and ®;(¢ -
¢) € IntKy for any ¢, ¢ € C with ¢>p¢p. Thus, from Theorem 2.2, type-K strongly order-
preserving property can be obtained.

Theorem 2.3. Assume that (WQM) holds. If g>pn@, then xi(¢5)>>pxi(P) in Ky forall t > 1.

In order to obtain the main result of this paper, which says that the generic solution
converges to equilibrium, the corresponding compactness assumption will be required.

(Al) f maps bounded subset of D to bounded subset of R". Moreover, for each compact
subset A of D, there exists a closed and bounded subset B = B(A) of D such that
x¢(¢) € B for each ¢ € A and all large t.
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Theorem 2.4. Assume that (WQM) and (A1) hold. Then the set of convergent points in D contains
an open and dense subset. If E consists of a single point, it attracts all solutions of (2.7). If the initial
value xp>g0(xg<k0) and E consists of two points or more, we conclude that all solutions converge to
one of these.

Proof By Theorem 2.3, the semiflow is eventually strongly monotone in K. Let e =
1,...,1,-1,...,-1) € K, where 1 denotes a constant mapping defined on C; that is, 1(s) =1
for all s € [ ] Obviously, &>x0. For any ¢ € D, either the sequence of points ¢ + (1/n)é
or ¢ —(1/ n)E is eventually contained in D and approaches ¢¢ as n — oo, and, hence, each
point of D can be approximated either from above or from below in D with respect to >u.
The assumption (A1) implies the compactness; that is, O(x) has compact closure in X for each
x € X (see [6]). Therefore, from [6, Theorem 1.4.3], we deduce that the set of quasiconvergent
points contains an open and dense subset of D. From the proof of [6, Theorem 6.3.1], we
know that the set E is totally ordered by >;. Reference [6, Remark 1.4.2] implies that the set
of convergent points contains an open and dense subset of D. The last two assertions can be
obtained from [6, Theorems 2.3.1 and 2.3.2]. O

Remark 2.5. The above theorem implies that there exists an equilibrium attracting all solutions
with initial values in the cone K. If E consists of a single element, the equilibrium attracts all
solutions with initial values in D.

3. Delayed Hopfield-Type Neural Networks

In this section, we will apply our main result to the following system of delayed differential
equations:

x;,(t) :—aixi(t) +Zai]-f]-(x]-(t—rj)) +I;, i=1,2,...,n, (3])
j=1

where a; > 0 and r; > 0 are constant, i,j = 1,...,n. The interconnection matrix (a;;),, is

type-K monotone with the elements in the diagonal being nonnegative. In this situation,
the interaction among neurons is not only excitatory but also inhibitory. The external input
functions I; are constants or periodic. The activation functions f = (f1,...,fx) : D — R,
where D is an open subset of X = C([-r,0],R") with r = max{r;|j € N}, satisfy (Al) and
following property.

(A2) There exist constants L; such that |f;(x) - fi(y)| < Ljlx —y|forj=1,...,n

First, we consider the case that the external input functions I; are constants.

Theorem 3.1. Equation (3.1) has an equilibrium which attracts all its solutions coming from the
initial value ¢>x0 with ¢(0) being bounded.

Proof. From [21, Theorem 1], we deduce that (3.1) admits at least an equilibrium; that is, the
equilibrium points set E is nonempty.
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For ¢ € X, we define
Fi($) = -aii(0) + > aijfi($; (=17)) + I (3.2)
=

Choosing M = diag{—u,...,—u} with y > 0, and denoting L = maxi<j<,L;j, @ = maxig; j<n|a;j|
and f = maxi<j<pa;j. Since ¢(0) is bounded, for ¢, ¢ € D with ¢g>p¢, there exist m > 0 and
m > 0 with m > m such that

m < g;i(0) - ¢(0) <m, Viel,

(3.3)
-m < ([f]'(O) - gb]'(O) <-m, Vie].
From (A2) and the definition of K M, if g>p ¢, then
Fi(¢) = Fi(¢) + pu(gi(0) - $:(0))
= (u—a:) (:(0) - ¢:(0)) + Zlﬂii (fi(gi (=) = fi (i (-71)))
i
k
> (= ai) (i(0) = $i(0)) = D aiLi(yj (=) = §; (=77))
=1
— IL A —p.) — A —.
j:kZHa] i (i (=1j) = $i(-17)) (3.4)
k
> (i = ai) (¢(0) = $1(0)) = > ai;Lie"" (5(0) ~ $;(0))
=1
= > aijLie" (5;(0) - $;(0))
j=k+1
> (,u - ﬂg - naLe"rg>m,
for all i € I. By a similar argument we have
Fiy) = @) + (i) = 4:0) < (= po ~naLe ™) (-m) 35

foralli € J. Let H = pm/m and let G = naLm/m, and define g(u) = p— H - Ge!". If r = 0,
we have g(u) > 0for u > H+ G. If r > 0 and Ge""r < 1/e, we deduce that g(u) reaches
its positive maximum value at u = H + (1/r) In(1/Ge"""r) > 0. Thus, there exists a positive
constant y such that (WQM) holds; the conclusion can be obtained by Remark 2.5. O
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For the case of the external input functions I; being periodic functions, we have follow-
ing result.

Theorem 3.2. For any periodic external input function I(t) = (I1(t),...,L.(t)), Li(t + w) = L;(t),
i=1,...,n, (3.1) admits a unique periodic solution x*(t) and all other solutions which come from the
initial value ¢p>k 0 with ¢(0) being bounded converge to it ast — oo.

Proof. Let x(t) = x(t, ¢) be the solution of (3.1) for t > 0 with x(s) = ¢(s) for s € [-r,0]. From
the properties of the solution semiflow we have

x(t+w)=x(t+w, ) =x(t,x(w,P)). (3.6)

From the proof of Theorem 3.1, we know that there exists a type-K monotone matrix such
that (WQM) holds; Theorem 2.4 tells us that every orbit of (3.1) is convergent to a same
equilibrium, denoted by ¢*, and then,

Tim x (0, §) = . 67)
We have, therefore,
x(w, ") = (10, limx(no, ) ) = lim x(x(n0,9) = lim x((n+ oo, §) = ¢ (39
From (3.6) and (3.8) we deduce that
x(t+w, ") =x(t,x(w, §*)) = x(t, ¢"). (3.9)

Therefore, x(t,¢*) =: x*(t) is a unique periodic solution of (3.1). Using the conclusion of
Theorem 2.4 again, we have

tlim x(t, ) = tlim x(t,x(t,¢)) = tlim x(t,¢%). (3.10)
Since x*(t) is a periodic solution, the proof is complete. O

Remark 3.3. Neural networks have important applications, such as to content-addressable
memory [22], shortest path problem [23], and sorting problem [24]. Generally, the
monotonicity is always assumed. Here, we relax the monotone condition, and hence neural
networks have more extensive applications.
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