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The purpose of this paper is to examine oscillatory properties of the third-order neutral delay
differential equation [a(t)(b(t)(x(t) + p(t)x(c(t)))")'] + q(t)x(7(t)) = 0. Some oscillatory and

asymptotic criteria are presented. These criteria improve and complement those results in the
literature. Moreover, some examples are given to illustrate the main results.

1. Introduction

This paper is concerned with the oscillation and asymptotic behavior of the third-order neu-
tral differential equation

[a(t) (bt (x(t) + p)x(0(®))') | +aq(t)x(z(t) =0. (E)

We always assume that

(H1) a(t),b(t), p(t),q(t) € C([to, 0)), a(t) > 0,b(t) > 0,4(t) >0,
(H2) 7(t),0(t) € C([tg,0)),T(t) <t,o(t) < t,lim;_ o T(t) = lims_, o, 0(F) = 0.

We set z(t) = x(t) + p(t)x(o(t)). By a solution of (E), we mean a nontrivial function
x(t) € C([Tx, )), Tx > to, which has the properties z(t) € C}([Ty, o)), b(t)z'(t) € C'([Ty, 0)),
a(t)(b(t)Z'(t)) € CY([T, o)) and satisfies (E) on [Ty, o). We consider only those solutions
x(t) of (E) which satisfy sup{|x(t)| : t > T} > 0 for all T > T,. We assume that (E) possesses
such a solution. A solution of (E) is called oscillatory if it has arbitrarily large zeros on [T, oo);
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otherwise, it is called nonoscillatory. Equation (E) is said to be almost oscillatory if all its solu-
tions are oscillatory or convergent to zero asymptotically.

Recently, great attention has been devoted to the oscillation of differential equations;

see, for example, the papers [1-30]. Hartman and Wintner [9], Hanan [10], and Erbe [8] stud-
ied a particular case of (E), namely, the third-order differential equation

x"(t) + q(t)x(t) = 0. (1.1)

Equation (E) with p(t) = 0 plays an important role in the study of the oscillation of third-order
trinomial delay differential equation

x"(t) + p(H)x'(t) + g(H)x(7(t)) =0, (1.2)

see [6, 12, 27]. Baculikovéd and DZurina [21, 22], Candan and Dahiya [25], Grace et al. [28],
and Saker and DZzurina [30] examined the oscillation behavior of (E) with p(t) = 0. It seems
that there are few results on the oscillation of (E) with a neutral term. Baculikovd and DZzurina
[23, 24] and Thandapani and Li [17] investigated the oscillation of (E) under the assumption

<1
b(t) =1, I ——dt=c0, d'(t)>0. 1.3

: » a) 0 (139
Graef et al. [13] and Candan and Dahiya [26] considered the oscillation of

[a(t) (b(8) (x(t) + prac(t - a))’)'] +q)x(t-1) =0, 0<p <l (E1)

In this paper, we shall further the investigation of the oscillations of (E) and (E1). Three

cases:
f: %dt = oo, J:o %dt = oo, (1.4)
J: %dt < oo, f: %dt = oo, (1.5)
J:O %dt < oo, : %dt < oo, (1.6)

are studied.

In the following, all functional inequalities considered in this paper are assumed to
hold eventually, that is, they are satisfied for all f large enough. Without loss of generality, we
can deal only with the positive solutions of (E).

2. Main Results

In this section, we will give the main results.
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Theorem 2.1. Assume that (1.4) holds, 0 < p(t) < p1 < 1. If for some function p € C*([ty, o),
(0,00)), for all sufficiently large t| > to and for t3 > t, > t;, one has

t— o0 t3

" " ([°(1/a(u))du/b(v) )do 1(a))2
lim sup <P(S)q(s)(1P(T(S))) l J;,(1/a(u)du ) ‘a(slgzs(f)) o=
131

(2.1)

J:O % J‘:" ﬁ J:ﬁ q(s)dsdudv = oo, (2.2)

then (E) is almost oscillatory.

Proof. Assume that x is a positive solution of (E). Based on the condition (1.4), there exist two
possible cases:

(1) z(t) > 0,2'(t) >0, (b(1)Z'(H)) >0, [alt)(b(H)Z (H)] <0,
(2) z(t) > 0,2'(t) <0, (b(1)Z'(£)) > 0, [a(t) (b(t)Z'(£))'] <O for t > 1, t; is large enough.
Assume that case (1) holds. We define the function w by

aB)b®Z'(®) (2.3)

(U(t) = P(t) b(t)Z,(t) 4 =M

Then, w(t) > 0 for t > t;. Using z'(t) > 0, we have

x(t) > (1~ p(t))=(0). e4)
Since
t ! ! t
b= > [ TEDZE S ez w) | s @5)
we have that
< b2 ) 0 (2.6)
J;,(1/a(s))ds

Thus, we get

B Eobs)2(s)  J(1/a(w)du
z(t) = z(t) + » 1/ a(u)dn (e ds

. (2.7)
b)) (t ), (1/a())du

T (/a@)du e b(s)

S,
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for t > t, > t;. Differentiating (2.3), we obtain

RN CIGICOEIC) S RN GIC O EIGVCIEIG e

b(t)z' (1) (b(t)z' (1)

a(t)(b()Z' (1)’
b(t)z'(t)

w(t) =p'(t)

It follows from (E), (2.3), and (2.4) that

W) < 200 - pa) (1 - pr(®))

a 2r(t) @) 29)

() p(ha()’

that is,

p'(t) z(z(t)  b(z(t)Z'(z(t) W)
w'(t) < —xw(t) - p(t)q(t) (1 p(T(t)))b(T(t))z’(T(t)) b(H)z' (f) p(t)a(t)'

0 (2.10)

which follows from (2.6) and (2.7) that

() (L (1/a(u))du/b(s))ds F(t>(1/a(u))du )
ftfl(t)(l/a(u))du ftl(l/a(u))du p(t)a(t)

W (1) < %w(t)—p(t)q(t)(1—p<r<t>>)

PO ([r/a@)du/b(s))ds 2

_ P ~
o0 @ POIOA PO === pha(l)’
@2.11)
Hence, we have
T(t) [ s
(1/a(u)du/b(s))d (02
0 < 01— plr(y) e AV a(p)

Ji, 1/ a(u))du 4p(®)

Integrating the last inequality from t3(> t) to t, we get

T(s) v
J,,(1/a(u))du/b(v) )do N2
f (p(s)q(s)(l p(r() = <tf5(1/a(u))du ) -“(Slfﬁs(f)) >ds<W<t3>, (2.13)
ty

which contradicts (2.1).
Assume that case (2) holds. Using the similar proof of [23, Lemma 2], we can get
lim; _, o, x(t) = 0 due to condition (2.2). This completes the proof. O
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Theorem 2.2. Assume that (1.5) holds, 0 < p(t) < p1 < 1. Further, assume that for some function
p € CY([ty, ), (0,0)), for all sufficiently large t, > to and for t3 > t > t1, one has (2.1) and (2.2).

If

li 5 1- " do ! ds = 214
lrtrlscgp (s)q(s)(1 - p(z(s))) . b0 B®)a®) s =00, (2.14)
where
® q
6(t) = J; @ds, (215)

then (E) is almost oscillatory.

Proof. Assume that x is a positive solution of (E). Based on the condition (1.5), there exist
three possible cases (1), (2) (as those of Theorem 2.1), and

(3) z(t) >0, Z'(t) >0, (b(HZ' (1)) <0, [a(t)(b()Z'(t))'] <0, fort > t;,t is large enough.

Assume that case (1) and case (2) hold, respectively. We can obtain the conclusion of
Theorem 2.2 by applying the proof of Theorem 2.1.

Assume that case (3) holds. From [a(t)(b(t)z’(t))']' <0, a(t)(b(t)z'(t))" is decreasing.
Thus, we get

a(s)(b(s)Z'(s)) <a(t)(b(t)Z (1), s>t>t. (2.16)
Dividing the above inequality by a(s) and integrating it from t to I, we obtain

1
b()Z' (1) <b(t)Z'(t) + a(t) (b(t)Z (1))’ ft %. (2.17)

Letting I — oo, we have

0 <b(H)Z (t) + a(t) (b(HZ (1)) L %, (2.18)
that is,
© ds a(t)(b(t)Z'(t)
-J, 2 b <t 21
Define function ¢ by

aB) M) o, (2.20)

¢(t) = bz - 2h



6 Abstract and Applied Analysis

Then, ¢(t) < 0 for t > t;. Hence, by (2.19) and (2.20), we get

-6(t)p(t) < 1.

Differentiating (2.20), we obtain

(@a®EOZ X)) al®)GO)(1) bHZ(1)"

A TOEI0) (b(H)2 (1)

Using z'(t) > 0, we have (2.4). From (E) and (2.4), we have

2(() _a®) GO 1) (bHZ )"

¢ <=0 =pEO) g5 (b))’

In view of (3), we see that

tds
z(t) > b(t) , %z (t).

=B\
[i@ds/b(s)) )~

2(e() | J79(ds/b(s))
2B) 7 [l (ds/b(s))

Hence,

which implies that

By (2.20) and (2.23), (2.24), and (2.26), we obtain

T(t) 2
Pt <—qt)(1-p(r(1))) J‘t % _ %.

Multiplying the last inequality by 6(¢) and integrating it from £, (> t;) to t, we have

™) do t $?(s)6(s) ds

t
(D)0 (1)~ P(t2)6(t2) + t25(5)q(8)(1—P(T(S))) , st+ A

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

190 o<,

(2.28)
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which follows that

t 7(s) do 1
ft2<5(s)q(s)(1—p(r(s))) b 45(S)a(s)>dss1+¢<t2>6<t2> (2.29)

due to (2.21), which contradicts (2.14). This completes the proof. O

Theorem 2.3. Assume that (1.6) holds, 0 < p(t) < p1 < 1. Further, assume that for some function
p € Cl([to, ), (0, 00)), for all sufficiently large t; > to and for t3 > t, > t1, one has (2.1), (2.2), and
(2.14). If

L %J‘t ﬁj‘t 1(s)q(s)é(r(s))dsdudv = oo, (2.30)
where
L Lo(r (1)) (1
1) = 1-pe@n T >0, k= | s, (231)

then (E) is almost oscillatory.

Proof. Assume that x is a positive solution of (E). Based on the condition (1.6), there exist
four possible cases (1), (2), and (3) (as those of Theorem 2.2), and

(4) z(t) >0, Z(t) <0, (b(H)Z' (1)) <0, [a(t)(b(t)2'(t))'] <0, fort > t;, t is large enough.

Assume that case (1), case (2), and case (3) hold, respectively. We can obtain the con-
clusion of Theorem 2.3 by using the proof of Theorem 2.2.
Assume that case (4) holds. Since (b(t)Z'(t))' < 0, we get

SORE = Y’ (232)
which implies that
z(t) 2 =§(H)b(1)2'(t) > Li(t) (2.33)

for some constant L > 0. By (2.33), we obtain

(%) > 0. (2.34)

Using (2.34), we see that

x(0) =20 - pOx(0) > (0 - pW=0®) > (1-p T )zt @39)
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From (E), (2.33), and (2.35), we have

$(o(T(t))
[ 6@z 0] + L (1-pre) TEI e <o (236)
Integrating the last inequality from t; to t, we get
Y ! §(o(7(s)))
ae00) +L| q0(1-peE) T ir@ds<o. )
Integrating again, we have
, f ) t(0(7(5))
b(t)z'(t) + L L ) L q(s) <1 P(T(S))—é(T(s)) >§(T(s))ds du <0. (2.38)
Integrating again, we obtain
L §(o(7(s)))
z(t) > . b(v) . a(u) . q(s)(l p(1(8)) 757 2(1(s)) )@(T(s))ds dudov +z(t), (2.39)
which contradicts (2.30). This completes the proof. O

Theorem 2.4. Assume that (1.6) holds, 0 < p(t) < p1 < 1. Further, assume that for some function
p € C([ty, ), (0, 0)), for all sufficiently large t; > to and for t3 > to > t1, one has (2.1), (2.2) and
(2.14). If

L b(lv) t a(lu) q(s)dsdudv = (2.40)

then (E) is almost oscillatory.

Proof. Assume that x is a positive solution of (E). Based on the condition (1.6), there exist
four possible cases (1), (2), (3), and (4) (as those of Theorem 2.3).

Assume that case (1), case (2), and case (3) hold, respectively. We can obtain the con-
clusion of Theorem 2.4 by using the proof of Theorem 2.2.

Assume that case (4) holds. Then, lim; ., z(t) = [ > 0(l is finite). Assume that [ > 0.
Then, from the proof of [23, Lemma 2], we see that there exists a constant k > 0 such that

x(t) > kl. (2.41)

The rest of the proof is similar to that of Theorem 2.3 and hence is omitted. O
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3. Examples
In this section, we will present some examples to illustrate the main results.

Example 3.1. Consider the third-order neutral delay differential equation

!

<t<x(t) + p1x<£>>"> + tizx(t) =0, A>0,t>1, (3.1)

where p; € [0,1).

Let p(t) = t. It follows from Theorem 2.1 that every solution x of (3.1) is either oscill-
atory or lim;_, o, x(t) =0, if L > 1/(4k(1 — p1)) for some k € (1/4,1).

Note that (3.1) is almost oscillatory, if A > 2/(1 — p1) due to [23, Corollary 3].

Example 3.2. Consider the third-order neutral delay differential equation

<%< 1/2<x(t) + %x(t —Jz'))l>,>/ + (# + gt‘5/2>x<t— 7%) =0, (3.2)

t>1.

Let p(t) = 1. It follows from Theorem 2.1 that every solution x of (3.2) is almost oscil-
latory. One such solution is x(t) = sint.

Example 3.3. Consider the third-order neutral delay differential equation

!

<t4/3 (x(t) + ppc(%))") + ts%x(t) =0, A>0,t>1, (3.3)

where p; € [0,1).

Let p(t) = 1. It follows from Theorem 2.2 that every solution x of (3.3) is either oscil-
latory or lim;_, o, x(t) = 0,if A > 1/(36k(1 — p1)) for some k € (1/4,1).

Note that [22, Theorem 1] cannot be applied to (3.3) when p; = 0.

Example 3.4. Consider the third-order neutral delay differential equation

<t2 (tz <x(t) + %x(%))l),) +AMPx() =0, A>0,t>1. (3.4)

Let p(t) = 1. It follows from Theorem 2.3 that every solution x of (3.4) is either oscil-
latory or lim;_, o, x(t) = 0,if A > 0.
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4, Remarks

Remark 4.1. In [3], Agarwal et al. established a well-known result; see [4, Lemma 6.1]. Using
[4, Lemma 6.1] and defining the function w as in Theorem 2.1 with p(t) = 1, we can replace
condition (2.1) with

o(t) (;;1 a /a(u))du/b(s))ds

(1))’ 1- & =0 (4.1)
(a(y'®) +4qO(1-pr®)) 7 (1 aa) y(t)
that is oscillatory. Similarly, we can replace condition (2.14) by
) ™ ds
(aOy ®) +aB A -pr®)) | = 55yt =0 (4.2)
t

that is oscillatory.
Remark 4.2. The results for (E) can be extended to the nonlinear differential equations.

Remark 4.3. 1t is interesting to find a method to study (E) for the case when

* 1 * 1
Ito ?t)dt = 0o, . Wdt < oo. (43)

Remark 4.4. 1t is interesting to find other methods to present some sufficient conditions which
guarantee that every solution of (E) is oscillatory.
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