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The Cauchy problem for a nonlinear generalized pseudoparabolic equation is investigated. The
well-posedness of local strong solutions for the problem is established in the Sobolev space
C([0, T);Hs(R))

⋂
C1([0, T);Hs−1(R)) with s > 3/2, while the existence of local weak solutions

is proved in the spaceHs(R)with 1 ≤ s ≤ 3/2. Further, under certain assumptions of the nonlinear
terms in the equation, it is shown that there exists a unique global strong solution to the problem
in the space C([0,∞);Hs(R))

⋂
C1([0,∞);Hs−1(R)) with s ≥ 2.

1. Introduction

Davis [1] investigated the pseudoparabolic equation

ut(t, x) =
∂

∂x
ϕ(ux) + αutxx, (1.1)

where the constant α ≥ 0, the function ϕ ∈ C2(−∞,∞), ϕ(0) = 0 and ϕ′(ξ) > 0, and the
subscripts x and t indicate partial derivatives. Equation (1.1) arises from the study of
shearing flows of incompressible simple fluids. The quantity ϕ(ux) + αutx is viewed as an
approximation to the stress functional during such a flow. Much attention has been given to
this approximation when the function ϕ is linear (see [2, 3]). The existence and uniqueness
of the global weak solution of the initial value problem for (1.1) were established in [1].
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Recently, Chen and Xue [4] investigated the Cauchy problem for the nonlinear gener-
alized pseudoparabolic equation

ut − αutxx − λuxx + γux + f(u)x =
∂

∂x
ϕ(ux) + g(u) − αg(u)xx, x ∈ R, t > 0, (1.2)

where u(t, x) is an unknown function, α > 0, λ ≥ 0, γ is a real number, f(s), ϕ(s), and g(s)
denote given nonlinear functions. The well-posedness of global strong solution in a Sobolev
space, the global classical solution and its asymptotic behavior are studied in [4] in which
several key assumptions are imposed on the functions ϕ(s) and g(s). In fact, various dynamic
properties for many special cases of (1.2) have been established in [5–7]. For example, when
ϕ(s) = g(s) = 0, (1.2) becomes the generalized regularized long wave Burger equation.

Motivated by the works in [1, 4], we study the problem

ut − αutxx =
∂

∂x
ϕ(ux) + βu2muxx, x ∈ R, t > 0,

u(0, x) = u0(x), x ∈ R,
(1.3)

where α > 0 and β ≥ 0, m is a nature number, ϕ(s) is a given function, and u0(x) is a given
initial value function. Here we should address that (1.2) does not include the first equation
of problem (1.3) due to the term βu2muxx. Letting β = 0, the first equation of problem (1.3)
reduces to (1.1).

The objectives of this work are threefold. The first objective is to establish the local
well-posedness of system (1.3) in the space C([0, T);Hs(R))

⋂
C1([0, T);Hs−1(R)) with s >

3/2. We should address that the Sobolev index s ≥ 2 is required to guarantee the local well-
posedness of (1.1) and (1.2) in the works of Davis [1] and Chen and Xue [4]. The second aim
is to study the existence of local weak solutions for system (1.3). The third aim is to discuss the
well-posedness of the global strong solution for problem (1.3). Under the assumptions of the
function ϕ(s) and the initial value u0(x) similar to those presented in [1, 4], problem (1.3) is
shown to have a unique global solution in the space C([0,∞);Hs(R))

⋂
C1([0,∞);Hs−1(R)).

The organization of this paper is as follows. The well-posedness of local strong solu-
tions for problem (1.3) is investigated in Section 2, and the existence of local weak solutions is
established in Section 3. Section 4 deals with the well-posedness of the global strong solution.

2. Local Well-Posedness

Let Lp = Lp(R) (1 ≤ p < +∞) be the space of all measurable functions h such that
‖h‖pLp =

∫
R |h(t, x)|pdx < ∞. We define L∞ = L∞(R) with the standard norm ‖h‖L∞ =

infm(e)=0 supx∈R\e|h(t, x)|. For any real number s,Hs = Hs(R) denotes the Sobolev space with
the norm defined by

‖h‖Hs =
(∫

R

(1 + |ξ|2)s|ĥ(t, ξ)|2dξ
)1/2

< ∞, (2.1)

where ĥ(t, ξ) =
∫
R e

−ixξh(t, x)dx.
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For T > 0 and nonnegative number s, C([0, T);Hs(R)) denotes the Frechet space of all
continuous Hs-valued functions on [0, T). We set Λ = (1 − ∂2x)

1/2. For simplicity, throughout
this paper, we let c denote any positive constants.

The local well-posedness theorem is stated as follows.

Theorem 2.1. Provided that s ≥ 3/2, u0 ∈ Hs(R), ϕ is a polynomial of order N with ϕ(0) = 0.
Then problem (1.3) admits a unique local solution:

u(t, x) ∈ C([0, T);Hs(R))
⋂

C1
(
[0, T);Hs−1(R)

)
. (2.2)

Proof. In fact, the first equation of problem (1.3) is equivalent to the equation

ut = Λ−2
(

∂

∂x
ϕ(ux) + βu2muxx

)

, (2.3)

which leads to

u = u0 +
∫ t

0
Λ−2

(
∂

∂x
ϕ(ux) + βu2muxx

)

dτ. (2.4)

Suppose that both u and v are in the closed ball BM0(0) of radius M0 > 1 about the zero
function in C([0, T];Hs(R)) and A is the operator in the right-hand side of (2.4), for fixed
t ∈ [0, T], we get

∥
∥
∥
∥
∥

∫ t

0
Λ−2

(
ϕ(ux)x + βu2muxx

)
dt −

∫ t

0
Λ−2

(
ϕ(vx)x + βv2mvxx

)
dt

∥
∥
∥
∥
∥
Hs

≤ T

(

sup
0≤t≤T

∥
∥ϕ(ux) − ϕ(vx)

∥
∥
Hs−1 + sup

0≤t≤T

∥
∥
∥u2muxx − v2mvxx

∥
∥
∥
Hs−2

)

.

(2.5)

The algebraic property of Hs0(R) with s0 > 1/2 (see [8–10]) and s > 3/2 derives that

∥
∥
∥u

j
x − v

j
x

∥
∥
∥
Hs−1

=
∥
∥
∥(ux − vx)

(
u
j−1
x + u

j−2
x vx + · · · + uxv

j−2
x + v

j−1
x

)∥
∥
∥
Hs−1

≤
∥
∥
∥ux − vx‖Hs−1‖

(
u
j−1
x + u

j−2
x vx + · · · + uxv

j−2
x + v

j−1
x

)∥
∥
∥
Hs−1

≤ c‖ux − vx‖Hs−1

j−1∑

i=0
‖ux‖j−1−iHs−1 ‖vx‖iHs−1 ≤ cM

j−1
0 ‖u − v‖Hs,

‖ϕ(ux) − ϕ(vx)‖Hs−1 ≤ c
N∑

j=0

‖(ux)j − (vx)j‖Hs−1 ≤ cMN−1
0 ‖u − v‖Hs.

(2.6)
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Using u2muxx = ∂x[u2mux] − 2mu2m−1(ux)
2 and v2mvxx = ∂x[v2mvx] − 2mv2m−1(vx)

2, we get

∥
∥
∥u2muxx − v2mvxx

∥
∥
∥
Hs−2

≤ ‖∂x
[
u2mux − v2mvx

]
‖Hs−2 + c‖u2m−1u2

x − v2m−1v2
x‖Hs−2

≤ c
∥
∥
∥
(
u2m − v2m

)
vx + u2m(ux − vx)

∥
∥
∥
Hs−1

+ c
∥
∥
∥u2m−1

(
u2
x − v2

x

)
+
(
u2m−1 − v2m−1

)
v2
x

∥
∥
∥
Hs−1

≤ c
(
‖
(
u2m − v2m

)
vx‖Hs−1 +

∥
∥
∥u2m(ux − vx)

∥
∥
∥
Hs−1

+
∥
∥
∥u2m−1

(
u2
x − v2

x

)∥
∥
∥
Hs−1

+
∥
∥
∥
(
u2m−1 − v2m−1

)
v2
x

∥
∥
∥
Hs−1

)

≤ cM2m
0 ‖u − v‖Hs,

(2.7)

in which s > 3/2 is used.
From (2.5)–(2.7), we obtain

‖Au −Av‖Hs ≤ ‖u − v‖Hs, (2.8)

where θ = max(cTMN−1
0 , cTM2m

0 ) and c is independent of T . Choosing T sufficiently small
such that θ < 1, we know thatA is a contractive mapping. Applying the above inequality and
(2.4) yields

‖Au‖Hs ≤ ‖u0‖Hs + θ‖u‖Hs. (2.9)

Choosing T sufficiently small such that θM0 + ‖u0‖Hs < M0, we know that A maps BM0(0)
to itself. It follows from the contractive mapping principle that the mapping A has a unique
fixed point u in BM0(0). This completes the proof of Theorem 2.1.

3. Existence of Local Weak Solutions

In this section, we assume that ϕ(η) = η2N+1 whereN is a nature number. In order to establish
the existence of local weak solution, we need the following lemmas.

Lemma 3.1 (see Kato and Ponce [8]). If r ≥ 0, thenHr
⋂
L∞ is an algebra. Moreover,

‖uv‖r ≤ c(‖u‖L∞‖v‖r + ‖u‖r‖v‖L∞), (3.1)

where c is a constant depending only on r.

Lemma 3.2 (see Kato and Ponce [8]). Let r > 0. If u ∈ Hr
⋂
W1,∞ and v ∈ Hr−1 ⋂L∞, then

‖[Λr , u]v‖L2 ≤ c
(
‖∂xu‖L∞‖Λr−1v‖L2 + ‖Λru‖L2‖v‖L∞

)
. (3.2)
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Lemma 3.3. Let s ≥ 3/2, ϕ(ux) = u2N+1
x , and the function u(t, x) is a solution of problem (1.3) and

the initial data u0(x) ∈ Hs. Then the following results hold.
For q ∈ (0, s − 1], there is a constant c such that

∫

R

(
Λq+1u

)2
dx ≤

∫

R

[(
Λq+1u0

)2
]

dx

+ c

∫ t

0
‖u‖2Hq+1

(
‖ux‖2NL∞ + ‖ux‖2L∞‖u‖2m−2

L∞

+‖ux‖L∞‖u‖2m−1
L∞ + ‖u‖2mL∞

)
dτ.

(3.3)

For q ∈ [0, s − 1], there is a constant c such that

‖ut‖Hq ≤ c‖u‖Hq+1

(
‖u‖2m−1

L∞ + ‖ux‖2N−1
L∞

)
. (3.4)

Proof. For q ∈ (0, s − 1], applying (Λqu)Λq to both sides of the first equation of system (1.3)
and integrating with respect to x by parts, we have the identity

1
2
d

dt

∫

R

[
(Λqu)2 + α(Λqux)

2
]
dx =

∫

R

(Λqu)Λq(ϕ(ux)x
)
dx + β

∫

R

ΛquΛq
[
u2muxx

]
dx. (3.5)

Wewill estimate the two terms on the right-hand side of (3.5), respectively. For the first term,
by using the Cauchy-Schwartz inequality and Lemmas 3.1 and 3.2, we have

∣
∣
∣
∣

∫

R

(Λqu)Λq(ϕ(ux)x
)
dx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

R

(Λqux)Λq(ϕ(ux)
)
dx

∣
∣
∣
∣

≤ c‖Λqux‖L2

∥
∥
∥Λq(ux)2N+1

∥
∥
∥
L2

≤ c‖u‖2Hq+1‖ux‖2NL∞ .

(3.6)

For the second term, we have

∫

R

ΛquΛq
[
u2muxx

]
dx =

∫

R

ΛquΛq
[(

u2mux

)

x
− 2mu2m−1u2

x

]
dx

=
∫

R

ΛquxΛq
(
u2mux

)
dx − 2m

∫

R

ΛquΛq
[
u2m−1u2

x

]
dx = K1 +K2.

(3.7)

For K1, applying Lemma 3.1 derives

|K1| ≤ c‖u‖2
Hq+1

(
‖u‖2mL∞ + ‖ux‖L∞‖u‖2m−1

L∞

)
. (3.8)
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For K2, we get

|K2| ≤ c‖u‖Hq‖u2m−1u2
x‖Hq

≤ c‖u‖Hq

(
‖u2m−1ux‖L∞‖ux‖Hq + ‖u2m−1ux‖Hq‖ux‖L∞

)

≤ c‖u‖2
Hq+1

(
‖ux‖L∞‖u‖2m−1

L∞ + ‖ux‖2L∞‖u‖2m−2
L∞

)
.

(3.9)

It follows from (3.5)–(3.9) that there exists a constant c such that

1
2
d

dt

∫

R

[
(Λqu)2 + (Λqux)

2
]
dx

≤ c‖u‖2
Hq+1

(
‖ux‖2NL∞ + ‖ux‖2L∞‖u‖2m−2

L∞ + ‖ux‖L∞‖u‖2m−1
L∞ + ‖u‖2mL∞

)
.

(3.10)

Integrating both sides of the above inequality with respect to t results in inequality (3.3).
To estimate the norm of ut, we apply the operator (1 − ∂2x)

−1 to both sides of the first
equation of system (1.3) to obtain the equation

ut = Λ−2
(

∂

∂x
ϕ(ux) + βu2muxx

)

. (3.11)

Applying (Λqut)Λq to both sides of (3.11) for q ∈ [0, s − 1] gives rise to

∫

R

(Λqut)
2dx =

∫

R

(Λqut)Λq−2
[
∂xϕ(ux) + u2muxx

]
dτ. (3.12)

For the right-hand of (3.12), we have

∣
∣
∣
∣

∫

R

(Λqut)
(
1 − ∂2x

)−1
Λq∂xϕ(ux)dx

∣
∣
∣
∣

≤ c‖ut‖Hq

(∫

R

(
1 + ξ2

)q−1[∫

R

[
û2N
x

(
ξ − η

)
ûx

(
η
)]
dη

]2
)1/2

≤ c‖ut‖Hq‖u‖H1‖u‖Hq+1‖ux‖2N−1
L∞ ,

∣
∣
∣
∣

∫

R

(Λqut)
(
1 − ∂2x

)−1
Λq∂x

(
u2mux

)
dx

∣
∣
∣
∣

≤ c‖ut‖Hq

(∫

R

(
1 + ξ2

)q−1[∫

R

[
û2m

(
ξ − η

)
ûx

(
η
)]
dη

]2
)1/2

≤ c‖ut‖Hq‖u‖H1‖u‖Hq+1‖u‖2m−1
L∞ ,

∣
∣
∣
∣

∫

R

(Λqut)
(
1 − ∂2x

)−1
Λq

(
u2m−1u2

x

)
dx

∣
∣
∣
∣

≤ c‖ut‖Hq

(∫

R

(
1 + ξ2

)q−1[∫

R

[
̂u2m−1ux

(
ξ − η

)
ûx

(
η
)]
dη

]2
)1/2

≤ c‖ut‖Hq‖u‖H1‖u‖Hq+1‖u‖2m−1
L∞ .

(3.13)



Abstract and Applied Analysis 7

Applying (3.13) into (3.12) yields the inequality

‖ut‖Hq ≤ c‖u‖H1‖u‖Hq+1

(
‖u‖2m−1

L∞ + ‖ux‖2N−1
L∞

)
(3.14)

for a constant c > 0. This completes the proof of Lemma 3.3.

Lemma 3.4. If u(t, x) is a solution of problem (1.3), α > 0, ϕ(η) = η2N+1, then

‖u‖L∞ ≤ c‖u‖H1(R) ≤ c‖u0‖H1(R), (3.15)

where c is a constant.

Proof. Multiplying both sides of the first equation of (1.3) by u(t, x) and integrating with
respect to x over R, we have

1
2
d

dt

∫

R

[
u(t, x)2 + αux(t, x)2

]
dx =

∫

R

ϕ(ux)xu(t, x)dx + β

∫

R

u2m+1uxxdx. (3.16)

Since

∫

R

ϕ(ux)xu(t, x)dx + β

∫

R

u2m+1uxxdx = −
∫

R

u2N+2
x dx − β(2m + 1)

∫

R

u2mu2
xdx < 0, (3.17)

we derive that

1
2
d

dt

∫

R

[
u(t, x)2 + αux(t, x)2

]
dx < 0, (3.18)

which results in

∫

R

[
u(t, x)2 + αux(t, x)2

]
<

∫

R

[
u(0, x)2 + αux(0, x)2

]
≤ c‖u0‖2H1 . (3.19)

From (3.19), we know that (3.15) holds. This completes the proof.

Defining

φ(x) =

{
e1/(x

2−1), |x| < 1,
0, |x| ≥ 1

(3.20)

and setting φε(x) = ε−1/4φ(ε−1/4x) with 0 < ε < 1/4 and uε0 = φε � u0, we know that uε0 ∈ C∞

for any u0 ∈ Hs(R) and s > 0.
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It follows from Theorem 2.1 that for each ε the Cauchy problem

ut − utxx =
∂

∂x
ϕ(ux) + βu2muxx,

u(0, x) = uε0(x), x ∈ R

(3.21)

has a unique solution uε(t, x) ∈ C∞([0, T);H∞).

Lemma 3.5. Under the assumptions of problem (3.21), the following estimates hold for any ε with
0 < ε < 1/4, u0 ∈ Hs(R) and s > 0 :

‖uε0x‖L∞ ≤ c1‖u0x‖L∞ ,

‖uε0‖Hq ≤ c1, if q ≤ s,
(3.22)

where c1 is a constant independent of ε.

Proof. Using the definition of uε0 and uε0x results in the conclusion of the lemma.

Lemma 3.6. Suppose that u0(x) ∈ Hs(R) with s ∈ [1, 3/2] such that ‖u0x‖L∞ < ∞. Let uε0 be
defined as in system (3.21) and let ϕ(η) = η2N+1. Then there exist two positive constants T and c,
independent of ε, such that the solution uε of problem (3.21) satisfies ‖uεx‖L∞ ≤ c for any t ∈ [0, T).

Proof. Using notation u = uε and differentiating both sides of the first equation of problem
(3.11)with respect to x give rise to

utx = −ϕ(ux) − βu2mux + Λ−2
[
ϕ(ux) + βu2mux − 2mβ

(
u2m−1ux

)

x

]
. (3.23)

Letting p > 0 be an integer and multiplying the above equation by (ux)
2p+1 and then

integrating the resulting equation with respect to x yield the equality

1
2p + 2

d

dt

∫

R

(ux)2p+2dx = −
∫

R

ϕ(ux)u
2p+1
x dx − β

∫

R

u2mu
2p+2
x dx +

∫

R

Ju
2p+1
x dx, (3.24)

where

J = Λ−2
[
ϕ(ux) + βu2mux − 2mβ

(
u2m−1ux

)

x

]
. (3.25)

Applying the Hölder’s inequality to (3.24) and noting Lemmas 3.4 and 3.5, we obtain

1
2p + 2

d

dt

∫

R

(ux)2p+2dx ≤ c‖ux‖2NL∞

∫

R

|ux|2p+2dx + c

∫

R

u
2p+2
x dx

+
(∫

R

|J |2p+2dx
)1/(2p+2)(

u
2p+2
x dx

)2(p+1)/2(p+2)
(3.26)
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or

d

dt

(∫

R

(ux)2(p+2)dx
)1/(2p+2)

≤ c‖ux‖2NL∞

(∫

R

u
2p+2
x dx

)1/(2p+2)

+ c

(∫

R

u
2p+2
x dx

)1/(2p+2)

+
(∫

R

|J |2p+2dx
)1/(2p+2)

.

(3.27)

Since ‖f‖Lp → ‖f‖L∞ as p → ∞ for any f ∈ L∞ ⋂
L2, integrating both sides of the

inequality (3.27) with respect to t and taking the limit as p → ∞ result in the estimate

‖ux‖L∞ ≤ ‖u0x‖L∞ +
∫ t

0
c
(
‖ux‖L∞ + ‖ux‖2N+1

L∞ + ‖J‖L∞
)
dτ. (3.28)

Using the algebra property of Hs0(R) with s0 > 1/2 yields (‖uε‖H1/2+ means that there exists
a sufficiently small δ > 0 such that ‖uε‖1/2+ = ‖uε‖H1/2+δ)

‖J‖L∞ ≤ c‖J‖H1/2+ ≤ c‖Λ−2
[
ϕ(ux) + βu2mux − 2mβ

(
u2m−1ux

)

x

]
‖H1/2+

≤ c
(
‖ϕ(ux)‖H0 + ‖u‖H1 + ‖u2m−1ux‖H0

)

≤ c
(
‖ux‖2N‖u‖H1 + ‖u‖H1 + ‖u‖2m−1

L∞ ‖u‖H1

)

≤ c
(
‖ux‖2N + 1

)
,

(3.29)

in which Lemmas 3.4 and 3.5 are used. From (3.28) and (3.29), one has

‖ux‖L∞ ≤ ‖u0x‖L∞ + c

∫ t

0

[
1 + ‖ux‖L∞ + ‖ux‖2NL∞ + ‖ux‖2N+1

L∞

]
dτ. (3.30)

From Lemma 3.5, it follows from the contraction mapping principle that there is a
T > 0 such that the equation

‖W‖L∞ = ‖u0x‖L∞ + c

∫ t

0

[
1 + ‖W‖L∞ + ‖W‖2NL∞ + ‖W‖2N+1

L∞

]
dτ (3.31)

has a unique solution W ∈ C[0, T]. Using the result presented on page 51 in [11] yields that
there are constants T > 0 and c > 0 independent of ε such that ‖ux‖L∞ ≤ ‖W(t)‖L∞ ≤ c for
arbitrary t ∈ [0, T], which leads to the conclusion of Lemma 3.6.

Using Lemmas 3.3–3.6, notation uε = u and Gronwall’s inequality result in the
inequalities

‖uε‖Hq ≤ CTe
CT ,

‖uεt‖Hr ≤ CTe
CT ,

(3.32)
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where q ∈ (0, s], r ∈ (0, s − 1] (1 ≤ s ≤ 3/2) and CT depends on T . It follows from
the Aubin’s compactness theorem that there is a subsequence of {uε}, denoted by {uεn},
such that {uεn} and their temporal derivatives {uεnt} are weakly convergent to a function
u(t, x) and its derivative ut in L2([0, T],Hs) and L2([0, T],Hs−1), respectively. Moreover,
for any real number R1 > 0, {uεn} is convergent to the function u strongly in the space
L2([0, T],Hq(−R1, R1)) and {uεnt} converges to ut strongly in the space L2([0, T],Hr(−R1, R1))
for r ∈ [0, s − 1]. Thus, we can prove the existence of a weak solution to (1.3).

Theorem 3.7. Suppose that u0(x) ∈ Hs with 1 ≤ s ≤ 3/2, ‖u0x‖L∞ < ∞ and ϕ(η) = η2N+1.
Then there exists a T > 0 such that (1.3) subject to initial value u0(x) has a weak solution u(t, x) ∈
L2([0, T],Hs) in the sense of distribution and ux ∈ L∞([0, T] × R).

Proof. From Lemma 3.6, we know that {uεnx} (εn → 0) is bounded in the space L∞. Thus, the
sequences {uεn}, {uεnx}, {u2

εnx}, and {u2N+1
εnx } are weakly convergent to u, ux, u2

x, and u2N+1
x in

L2[0, T],Hr(−R,R) for any r ∈ [0, s − 1), separately. Therefore, u satisfies the equation

∫T

0

∫

R

u
(
gt − gxxt

)
dx dt =

∫T

0

∫

R

[
u2N+1
x gx + βu2muxgx − 2mβu2m−1u2

xg
]
dx dt, (3.33)

with u(0, x) = u0(x) and g ∈ C∞
0 . Since X = L1([0, T] × R) is a separable Banach space

and {uεnx} is a bounded sequence in the dual space X∗ = L∞([0, T] × R) of X, there exists
a subsequence of {uεnx}, still denoted by {uεnx}, weakly star convergent to a function v in
L∞([0, T] × R). It derives from the weakly convergence of {uεnx} to ux in L2([0, T] × R) that
ux = v almost everywhere. Thus, we obtain ux ∈ L∞([0, T] × R).

4. Well-Posedness of Global Solutions

Lemma 4.1. If u(t, x) is a solution of problem (1.3), α > 0, ϕ(η) = η2N+1, then

‖ux‖L∞ ≤ A1/2, (4.1)

where

A =
∫

R

[
1 + α

α

(
u′
0(x)

)2 + (1 + α)
(
u′′
0(x)

)2
]

dx. (4.2)

Proof. Multiplying each side of the first equation of problem (1.3) by uxx and integrating over
[0, t] × R yields

∫ t

0

∫

R

(

u2
xxϕ

′(ux) + u2mu2
xx +

α

2
∂

∂t

(
u2
xx

))

dx dt =
∫ t

0

∫

R

utuxxdx dt. (4.3)

Integrating the right-hand side of the above identity by parts and using ux(±∞) = 0, we get

2
∫ t

0

∫

R

utuxxdxdt =
∫

R

[
u′
0(x)

]2
dx −

∫

R

u2
x(t, x)dx. (4.4)
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From (4.3), (4.4) and the assumption of this lemma, we have

α‖uxx‖2L2 + ‖ux‖L2 ≤
∫

R

[(
u′
0(x)

)2 + α
(
u′′
0(x)

)2
]
dx, (4.5)

from which we obtain (4.1).

Theorem 4.2. Suppose that s ≥ 2, u0 ∈ Hs(R), ϕ(ux) = u2N+1
x with positive integer N. Then

problem (1.3) has a unique global solution:

u(t, x) ∈ C([0,∞);Hs(R))
⋂

C1
(
[0,∞);Hs−1(R)

)
. (4.6)

Proof. Using the Gronwall inequality and Lemma 3.3 and choosing s = q + 1, we have

‖u‖Hs ≤ c‖u0‖Hse
∫ t
0(‖ux‖2NL∞+‖ux‖2L∞‖u‖2m−2

L∞ +‖ux‖L∞‖u‖2m−1
L∞ +‖u‖2m

L∞ )dτ . (4.7)

From Lemma 4.1, we have

‖ux‖ ≤ A1/2 =
(∫

R

[
1 + α

α

(
u′
0(x)

)2 + (1 + α)
(
u′′
0(x)

)2
]

dx

)1/2

≤ c‖u0‖H2(R). (4.8)

Using (4.7) and (4.8) derives

‖u‖Hs ≤ c‖u0‖Hsect, (4.9)

which completes the proof of Theorem 4.2.
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