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We consider the existence of the periodic solutions in the neighbourhood of equilibria for C∞

equivariant Hamiltonian vector fields. If the equivariant symmetry S acts antisymplectically and
S2 = I, we prove that generically purely imaginary eigenvalues are doubly degenerate and
the equilibrium is contained in a local two-dimensional flow-invariant manifold, consisting of a
one-parameter family of symmetric periodic solutions and two two-dimensional flow-invariant
manifolds each containing a one-parameter family of nonsymmetric periodic solutions. The result
is a version of Liapunov Center theorem for a class of equivariant Hamiltonian systems.

1. Introduction

We first give some definitions for our problem. A 2n × 2n matrix T is called (anti)symplectic
if TTJT = ±J . Consider a C∞ vector field f : O ⊂ RN → RN and the system

d

dt
x = f(x). (1.1)

Let S be a diffeomorphism of RN into itself. If Sf = fS, we call that the system (1.1) is
S-equivariant or the vector field f is S-equivariant. Denote by I the identity matrix. In this
paper, S satisfies S2 = I. When the system (1.1) is S-equivariant, if x(t) is a solution, then Sx(t)
is also a solution. An orbit x(t) is called symmetric if it is S-invariant; that is, Sx(t) = x(t).

Problems. Consider a system ẋ = Ax+g(x), x ∈ Rn withA being an n×nmatrix and g = O(x2)
a C∞ vector function. Suppose that the system has a nondegenerate integral. Suppose that A
has a pair of purely imaginary eigenvalues ±i and no other eigenvalues of the form ±ki,
k ∈ Z. That is, the eigenvalues ±i are nonresonant with the other ones. Then, the well-known
Liapunov Center theorem tells us that there exists a one-parameter family of periodic orbits
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emanating from the equilibrium point with the period being close to 2π as they approach to
the equilibrium. We call such families the Liapunov Center families.

This result can be used easily to Hamiltonian systems and obtain existence of peri-
odic solutions. Later, many mathematicians were dedicated to study periodic solutions of
Hamiltonian systems and tried to generalize the result. Gordon [1] obtained an infinite num-
ber of periodic solutions in arbitrarily small neighborhoods of the origin for Hamiltonian sys-
tems with convex potential. Weinstein [2] obtained the Liapunov Center families with no ei-
genvalue assumptions when the equilibrium point is a nondegenerate minimum. In [3],
Moser proved that the integral manifold contains at least one periodic solution whose period
is close to that of a periodic solution of the linearized system near the equilibrium point. In
[4], Weinstein proved that a Hamiltonian system possesses at least one periodic solution on
each energy surface, provided that this energy surface is compact, convex, and contains no
stationary point of the vector field.

Bifurcation theory describes how the dynamics of systems change as parameters var-
ied. The study of the Hamiltonian Hopf bifurcation has a long history. The Hamiltonian-
Hopf bifurcation involves the loss of linear stability of a fixed point by the collision of two
pairs of imaginary eigenvalues of the linearized flow and their subsequent departure off the
imaginary axis. van der Meer [5] studied this bifurcation and classified the periodic solutions
that are spawned by this resonance. Using Z2 singularity theory with a distinguished param-
eter developed in [6], Bridges [7] obtained the periodic solutions in a Hamiltonian-Hopf bi-
furcation.

Moreover, reversible systems have been studied for many years. Devaney [8] first
proved a Liapunov Center theorem for reversible vectors fields. Vanderbauwhede [9] and
Sevryuk [10] also studied reversible vectors fields. In [11], Golubitsky et al. studied families
of periodic solutions near generic elliptic equilibria for reversible equivariant systems.
In [12, 13], Montaldi et al. considered families of periodic solutions near generic elliptic
equilibria for reversible equivariant Hamiltonian systems that are both Hamiltonian and
reversible at the same time. Since Lamb and Roberts [14] obtained the group theoretical
classification of linear reversible equivariant systems, there has been an increasing interest
for reversible equivariant systems. Later, Hoveijn et al. [15] obtained the linear normal form
and unfolding theory of reversible equivariant linear systems.

In [16], Buzzi and Lamb obtained a Liapunov Center theorem for purely reversible
Hamiltonian vector fields that are both Hamiltonian and reversible at the same time. They
obtained the existence of periodic solutions in the neighbourhood of elliptic equilibria
when the reversing symmetry R acts symplectically or antisymplectically. Previously, the
symmetric property of periodic solutions is not considered, and the existence of additional
periodic solutions is not ruled out. But these problems were considered in [16]. The results
in [16] are as follows. If R acts antisymplectically, generically purely imaginary eigenvalues
are isolated, and the equilibrium is contained in a local two-dimensional invariant manifold
containing a one-parameter family of symmetric periodic solutions. If R acts symplectically,
generically purely imaginary eigenvalues are doubly degenerate, and the equilibrium is
contained in two two-dimensional invariant manifolds, each containing a one-parameter
family of nonsymmetric periodic solutions, and a three-dimensional invariant manifold
containing a two-parameter family of symmetric periodic solutions. In [17], Sternberg
theorem for equivariant Hamiltonian vector fields was considered.

Motivated by [16], in this paper, we consider a Liapunov Center theorem for equi-
variant Hamiltonian vector fields that are both Hamiltonian and equivariant at the same time.
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Here, we assume that the equivariant symmetry S acts antisymplectically and S2 = I. Now,
we also consider the symmetric property of periodic solutions. This property was not studied
for Hamiltonian vector fields without the other structure previously.

2. Main Results

Theorem 2.1. Consider an equilibrium 0 of a C∞ equivariant Hamiltonian vector field f , with the
equivariant symmetry S acting antisymplectically and S2 = I. Assume that the Jacobian matrix
Df(0) has two pairs of purely imaginary eigenvalues ±i and no other eigenvalues of the form ±ki,
k ∈ Z. Then, the equilibrium is contained in a two-dimensional flow-invariant surface that consists
of a one-parameter family of symmetric periodic solutions whose period tends to 2π as they approach
the equilibrium. Moreover, the equilibrium is also contained in two smooth two-dimensional flow-
invariant manifolds, each containing a one-parameter family of nonsymmetric periodic solutions whose
period tends to 2π as they approach the equilibrium. Furthermore, there are no other periodic solutions
with period close to 2π in the neighbourhood of 0.

Remark 2.2. Here, the existence and the symmetric property of periodic solutions near the
equilibrium point are all considered. The main idea is similar to [16].

3. Linear Equivariant Hamiltonian Vector Field with Purely
Imaginary Eigenvalues

We now consider the persistent occurrence of purely imaginary eigenvalues in equivariant
Hamiltonian vector fields.

Let A0 be a linear Hamiltonian vector field. Then, it follows that A0J = −JAT
0 . If A0 is

S-equivariant, we have A0S = SA0. If S is (anti)symplectic, we get SJ = ±JS.
Since we are interested in (partially) elliptic equilibria, we assume that A0 has a pair

of purely imaginary eigenvalues λ and −λ. Moreover, if the eigenvector e1 of A0 has λ, then
e1 is an eigenvector for λ.

Since A0 is both Hamiltonian and S-equivariant, this implies that if the eigenvector e
of A0 has the eigenvalue λ, then Se is also an eigenvector for the eigenvalue λ.

Hoveijn et al. [15] considered the linear normal form theory which is based on
the construction of minimal 〈J, S〉-invariant subspaces. By [15], we are only interested in
minimal invariant subspaces on which A0 is semisimple; that is, A0 is diagonalizable over C.
Here, the type of minimal invariant subspace depends on whether S acts symplectically or
antisymplectically.

Lemma 3.1. Consider a linear S-equivariant Hamiltonian vector field A0 with Sacting (anti)sym-
plectically and S2 = I. Let V be a minimal (A0, J, S)-invariant subspace on which A0 has purely im-
aginary eigenvalues. Then A0|V , J |V and S|V have the following normal forms.

(1) If S acts symplectically, it follows that dimV = 2, and

S|V =

(
1 0

0 1

)
, J |V =

(
0 −1
1 0

)
, A0|V =

(
0 −1
1 0

)
. (3.1)
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(2) If S acts antisymplectically, it follows that dimV = 4 and

S|V =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎟⎟⎠, J |V =

⎛
⎜⎜⎜⎜⎜⎝

0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎠, A0|V =

⎛
⎜⎜⎜⎜⎜⎝

0 −1 0 0

1 0 0 0

0 0 0 −1
0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠. (3.2)

Proof. Let W be a 2-dimensional symplectic subspace on which A0 has purely imaginary
eigenvalues. By standard Hamiltonian theory and multiplication of time by a scalar, A0 and
J can take the same normal form on W . If the equivariant symmetry S acts symplectically,
we have SA0 = A0S and SJ = JS. Let e1 and e1 be the eigenvectors of A0. By SA0 = A0S, a
minimal invariant subspace is obtained by choosing Se1 = e1. Since J = A0 on W , we have
SJ = JS onW .

If S acts antisymplectically, the dimension of the minimal invariant subspace is not
two. A 2-dimensional subspace W is defined as above. Assume that S(W) = W . If S(W) =
W , by (SA0)|W = (A0S)|W , it follows that (SJ)|W = (JS)|W . This is converse that S acts
antisymplectically. So, we have S(W) = W ′ /=W and a minimal invariant subspace is given
by V = W ⊕W ′. So, dimV = 4. Moreover, we get J |W ′ = (S−1JS)|W = −(S−1SJ)|W = −J |W
and A0|W ′ = (S−1A0S)|W = (S−1SA0)|W = A0|W . Since A0|W = J |W , it follows that J |W ′ =
−A0|W ′ .

Remark 3.2. Now, we give the examples for the system (1.1) whether S acts symplectically
or antisymplectically, where J and S here are defined as J |V and S|V in Lemma 3.1. If S acts
symplectically, the system (1.1) can be written as

(
ẋ1

ẏ1

)
=

(
0 −1
1 0

)(
Hx1

Hy1

)
=

⎛
⎝−y1 − 3y2

1

x1 + 3x2
1

⎞
⎠ = f(x), (3.3)

where the Hamiltonian function is H(x1, y1) = (1/2)(x2
1 + y

2
1) + x

3
1 + y

3
1, f satisfies fS = Sf ,

and A0 = df(0) is calculated the same as A0|V in Lemma 3.1. If S acts antisymplectically, the
system (1.1) can be written as

⎛
⎜⎜⎜⎜⎜⎝

ẋ1

ẏ1

ẏ2

ẋ2

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

Hx1

Hy1

Hy2

Hx2

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−y1 − x1y2
x1 + y1y2 − x2y2

−x2 − x1y2
y2 − x1y1 + x1x2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= f(x), (3.4)

where the Hamiltonian function isH(x1, y1, y2, x2) = (1/2)(x2
1+y

2
1)−(1/2)(x2

2+y
2
2)+x1y1y2−

x1x2y2, f satisfies fS = Sf , and A0 = df(0) is calculated the same as A0|V in Lemma 3.1.



Abstract and Applied Analysis 5

Remark 3.3. When S acts antisymplectically, under the base (e1, e2, Se1, Se2), we obtain S, J
and A0 have the forms of S|V , J |V and A0|V in Lemma 3.1, respectively. However, when S
acts antisymplectically, under the base (e1, Se2, e2, Se1), we have

S|V =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎞
⎟⎟⎟⎟⎟⎠, J |V =

⎛
⎜⎜⎜⎜⎜⎝

0 0 −1 0

0 0 0 −1
1 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎟⎟⎠, A0|V =

⎛
⎜⎜⎜⎜⎜⎝

0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎠. (3.5)

In this case, J |V is the standard form. However, for convenience, we use the forms of
Lemma 3.1 in this paper.

4. Liapunov-Schmidt Reduction

In this paper, when S acts antisymplectically or symplectically, by Lemma 3.1,A0 has a single
pair or double pairs of purely imaginary eigenvalues ±i. Moreover, these purely imaginary
eigenvalues of A0 are nonresonant; that is, A0 has no other eigenvalues of the form ±ki with
k ∈ Z. This condition is clearly generic (codimension zero). We want to find the families of
periodic solutions in the neighbourhood of the equilibrium point.

In this section, we introduce the main technique which is a Liapunov-Schmidt
reduction. The Liapunov-Schmidt reduction here is similar to the one in [16, 18, 19].

Assume that a C∞ vector field f : O ⊂ RN → RN has an equivariant symmetry group
G, which implies the existence of representations ρ : G → O(N) such that fρ(γ) = ρ(γ)f , for
all γ ∈ G. Define F : C1

2π × R → C0
2π by

F(u, τ) = (1 + τ)
du

ds
− f(u), (4.1)

whereC1
2π is the space ofC1 maps u : S1 → RN andC0

2π is the space ofC0 maps v : S1 → RN .
The map F is C∞ by the “Ω-lemma,” that is, in Section 2.4 of [20]. Clearly, the solutions of
F(u, τ) = 0 correspond to 2π/(1 + τ)-periodic solutions of (1.1).

Now, define an action T : G̃ × C0
2π → C0

2π or in C1
2π by(

Tgu
)
(t) = ρ

(
γ
)
(u(t + θ)), (4.2)

where g = γθ is an element of G̃, G̃ = G × S1, γ ∈ G and θ ∈ S1.

By the G-equivariance of f , we have that F is G̃-equivariant

F
(
Tgu, τ

)
= TgF(u, τ), ∀g = γθ ∈ G̃. (4.3)

Assume that f(0) = 0. The derivative of F at u = 0 is L, where

Lv = dF(0, 0) · v = v′ −A0v, (4.4)

with A0 = Df(0). Moreover, kerL = span {Re(eisv0), Im(eisv0)} = {Re(zeisv0) | z ∈ C},
where A0v0 = iv0.
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By (4.3), L is also G̃-equivariant such that LTg = TgL. Then, Tg preserves kerL and
RangeL.

Below, we will obtain that (kerL)⊥ and (Range L)⊥ are also Tg-invariant. We have

C1
2π = kerL ⊕ (kerL)⊥, C0

2π = Range L ⊕ (Range L)⊥. (4.5)

Here, the orthogonal complement is taken in C0
2π and C1

2π by

[u, v] =
∫
G̃

〈
Tgu, Tgv

〉
dμ, (4.6)

where 〈u, v〉 =
∫2π
0 [u(t)]tv(t)dt and μ is a normalized Haar measure for G̃. Note that

[Tgu, Tgv] = [u, v] for all g ∈ G̃. So, (kerL)⊥ and (Range L)⊥ are Tg-invariant.
By Range L and (Range L)⊥ are Tg-invariant, we can obtain that the projections

P : C0
2π −→ Range L, (I − P) : C0

2π −→ (Range L)⊥ (4.7)

commute with Tg . If u ∈ C0
2π , let u = v + w, where v ∈ (Range L)⊥ and w ∈ Range L. Then,

Tg(P(u)) = Tgw = P(Tgw) = P(Tgv + Tgw) = P(Tgu) and Tg((I − P)(u)) = Tgv = (I − P)Tgv =
(I − P)(Tgv + Tgw) = (I − P)(Tgu).

Next, define a C∞ map ω : kerL × R → (kerL)⊥ with ω(0, 0) = 0 by solving

PF(k +ω, τ) = 0, (4.8)

for ω = ω(k, τ) using the implicit function theorem.
Moreover, we can prove thatω commutes with Tg . Defineωg : kerL×R → (kerL)⊥ by

ωg(k, τ) = Tg−1ω(Tgk, τ). Note that Tgk ∈ kerL. We have PF(k +ωg(k, τ), τ) = PF(Tg−1(Tgk +
ω(Tgk, τ)), τ) = Tg−1PF(Tgk+ω(Tgk, τ), τ) = 0. Then,ωg is also the solution of (4.8). Moreover,
ωg(0, 0) = ω(0, 0) = 0. By uniqueness, we get ωg(k, τ) = ω(k, τ). So, ω commutes with Tg .
Then,

Tgω(k, τ) = ω
(
Tgk, τ

)
. (4.9)

Then, solutions of the equation F(u, τ) = 0 are given by u = k + ω(k, τ), where k is a
solution of the bifurcation equation

ϕ(k, τ) = (I − P)F(k +ω(k, τ), τ) = 0. (4.10)

Now, we will obtain that ϕ(k, τ) is also G̃-equivariant.

Lemma 4.1. If f is G-equivariant, then the bifurcation map ϕ is G̃-equivariant

ϕ
(
Tgk, τ

)
= Tgϕ(k, τ), ∀g ∈ G × S1. (4.11)

Proof. Since G̃-equivariance of I − P , F and ω(k, τ), it is easy to obtain this result.
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Lemma 4.1 indicates that how the symmetry enters the bifurcation equation ϕ. Below,
we will also consider the relation between the symmetry and the Hamiltonian function of ϕ.

Since the vector field f = XH is Hamiltonian, it follows that

ω(XH(u), v) = 〈dH(u), v〉, (4.12)

holds for all v ∈ R2n. Define the map

Φ : C1
2π × R × C0

2π −→
(
C1

2π

)∗
, (4.13)

by

Φ(u, τ, v) ·U =
∫2π

0

{
ω

(
v − (1 + τ)

du

ds
,U

)
+ dH(u) ·U

}
ds. (4.14)

Since the vector field f is Hamiltonian with the Hamiltonian function H, we have that the
implicit constraint Φ satisfies

Φ(u, τ, F(u, τ)) = 0. (4.15)

This condition is rephrased as saying that the map F, regarded as a (parameter-dependent)
vector field on C1

2π and is Hamiltonian with respect to the weak symplectic form

Ω(u, v) =
1
2π

∫2π

0
ω(u(s), v(s))ds, (4.16)

and with the Hamiltonian function

H(u, τ) =
1
2π

∫2π

0

{
1
2
ω

(
(1 + τ)

du

ds
, u

)
−H(u)

}
ds. (4.17)

If the actions of G are antisymplectic, we have

ω
(
γx, γy

)
= −ω(x, y). (4.18)

In this case, Ω is G̃ = G × S1 anti-invariant; that is,

Ω
(
gu, gv

)
= −Ω(u, v), g = γθ, γ ∈ G, θ ∈ S1, (4.19)

and the Hamiltonian function H satisfies

H(gu, τ) = −H(u, τ). (4.20)

By Theorem 6.2 in [18], it follows that if

kerL = kerL∗, (4.21)
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then the bifurcation map ϕ is also a Hamiltonian vector field with Hamiltonian h(k) = H(k +
ω(k)), and ϕ and the function h have the same invariance properties as the givenHamiltonian
H.

In this paper, kerL is finite dimensional and (4.21) holds. So, the bifurcation equation
ϕ is a Hamiltonian vector field with Hamiltonian h(k, τ) = H(k + ω(k), τ) and if the actions
of G are antisymplectic, then

h
(
gk, τ

)
= −h(k, τ). (4.22)

The corresponding symplectic form is the restriction of Ω to kerL. Moreover, in this paper,
we have G = Z2 and G̃ = Z2 × S1 ∼= O(2).

5. Proof of Theorem 2.1

In this section, we prove Theorem 2.1. Theorem 2.1 can be proved by Lemmas 5.1 and
5.3. By Lemma 5.1, the symmetric periodic solutions are obtained. The existence of the
nonsymmetric periodic solutions can be verified by Lemma 5.3.

Below, we consider the case that the equivariant symmetry S acts antisymplectically.
By Lemma 3.1, in this case, there are two pairs of purely imaginary eigenvalues. Without
loss of generality, S|V , J |V and A0|V take the (normal) forms of Lemma 3.1, where V is the
four-dimensional eigenspace of ±i for A0.

Note that dimkerL = 4 and (4.21) holds. By Theorem 6.2 in [18], the bifurcation
equation ϕ is also aHamiltonian vector field.We nowproceed to apply the Liapunov-Schmidt
reduction of Section 4.

Since kerL ∼= R4 ∼= C2, it follows that

R4 � (x1, y1, x2, y2) ∼= (x1 + iy1, x2 + iy2) = (z1, z2) ∈ C2. (5.1)

So, the bifurcation equation is denoted by

ϕ : C2 × R −→ C2. (5.2)

Since ϕ is Hamiltonian, let ϕ = 2J∇zhwith the Hamiltonian function

h : C2 × R −→ R, (5.3)

where J takes the (normal) form of Lemma 3.1. By (4.22), it follows that h is S1-invariant,
h ◦ θ = hwith θ ∈ S1 acting on C2 as

θ(z1, z2) =
(
e−iθz1, e−iθz2

)
, (5.4)

and h is S-anti-invariant, h ◦ S = −hwith

S(z1, z2) = (z2, z1). (5.5)

By S1-invariance, it follows that

h = h
(
|z1|2, |z2|2, z1z2, z2z1, τ

)
. (5.6)
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Then, by the S-anti-invariance, we have that

h =
(
|z1|2 − |z2|2

)
ψ
(
|z1|2 + |z2|2, |z1z2|2, z1z2, z2z1, τ

)
(5.7)

is equivalent to (∂nψ/∂(z1z2)
n)|z1z2=0 is real for all n, z1 and z2 which satisfy n ∈ Z and z1z2 =

0. If (∂nψ/∂(z1z2)
n)|z1z2=0 is not real for some n, z1 and z2 which satisfy n ∈ Z and z1z2 = 0,

by the S-anti-invariance, we have h = (|z1|2 − |z2|2)ψ(|z1|2 + |z2|2, |z1z2|2, τ). Thus, without
generality, since h is real, we obtain

h =
(
|z1|2 − |z2|2

)
ψ
(
|z1|2 + |z2|2, |z1z2|2, z1z2, z2z1, τ

)

=
(
|z1|2 − |z2|2

)(
ψ1
(
|z1|2 + |z2|2, |z1z2|2, τ

))

+ 2Re
(
z1z2ψ

2
(
|z1|2 + |z2|2, |z1z2|2, z1z2, τ

))
,

(5.8)

where ψ = ψ1 + 2 Re (z1z2ψ2).
We have that kerL is generated by

v1 = (sin s,− cos s, 0, 0)T , v2 = (cos s, sin s, 0, 0)T ,

v3 = (0, 0, sin s,− cos s)T , v4 = (0, 0, cos s, sin s)T .
(5.9)

Then, the symplectic form Ω for the reduced bifurcation equation satisfies

Ω(vn, vm) =
1
2π

∫2π

0
〈vn, Jvm〉ds, (5.10)

where J takes the (normal) form of Lemma 3.1. So,

Ω(k1, k2) = 〈k1, Jk2〉, (5.11)

for all k1, k2 ∈ kerL.
Using the similar calculation and by (4.17), it follows that the τ-dependence of the

lowest (quadratic) order of h has the form

h =
(
|z1|2 − |z2|2

)τ
2
+ l(z1, z2, τ). (5.12)

Using (5.8) and (5.12), we have ψ1(0, 0, τ) = τ/2.
We first give Lemma 5.1, which is used for finding the symmetric periodic orbits near

the equilibrium point.

5.1. Symmetric Periodic Solutions

Since h ◦ S = −h, then the symmetric periodic solutions of the bifurcation equation lie in the
level set h = 0. In fact, if h = 0, we get ϕ = 0. Then, by (4.9), the symmetric solutions lying
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in h = 0 correspond to symmetric 2π-periodic solutions for (4.1). Below, we prove there exist
the symmetric solutions for the equation h = 0.

Lemma 5.1. In the neighbourhood of the equilibrium (z1, z2, τ) = (0, 0, 0), there exist the symmetric
solutions for the equation h = 0.

Proof. Since S(z1, z2) = (z2, z1), the symmetric solutions lie in Fix(S) = {(z, z) ∈ C2}. Then,
the equation ϕ = 2J∇zh = 0 is equivalent to z = 0 or ψ(z, τ) = 0. By (5.8) and (5.12), we have
(∂ψ/∂τ)(0, 0) = 1/2/= 0. Using the implicit function theorem for ψ = 0, there exists a function
τ = τ(|z|2) for all sufficiently small |z| that corresponds to a family of symmetric periodic
solutions of the system (1.1)with period 2π/(1 + τ).

Remark 5.2. Apparently, the symmetric periodic solutions should be twoparameters. But since
the vector field f is the equivariant Hamiltonian vector field, then the symmetric periodic
solutions are in fact one-parameter.

Next, we study the nonsymmetric periodic solutions in the neighbourhood of the
equilibrium 0.

5.2. Nonsymmetric Periodic Solutions

Lemma 5.3. Except the symmetric Liapunov Center family described in Lemma 5.1, there are
two nonsymmetric Liapunov Center families of periodic solutions, each contained in a local two-
dimensional smooth manifold with the period of the periodic solutions converging to 2π as the solutions
tend to the equilibrium point.

Proof. The proof can be divided into three cases: z1 /= 0, z2 /= 0 and z1 /= z2, z1 = 0 and z2 /= 0,
and z1 /= 0 and z2 = 0.

z1 /= 0, z2 /= 0 and z1 /= z2: let I1 = |z1|2 − |z2|2. It follows that ϕ = 0 is equivalent to
∇zh = 0. By (5.8), ∇zh = 0 can be written as

(
z1

−z2

)
ψ + I1∇zψ = 0. (5.13)

By (5.8), and multiplying the first equation of (5.13) by z1 and the second equation of
(5.13) by z2, we have

|z1|2
(
ψ + I1

(
ψ1
1 + |z2|2ψ1

2 + 2 Re
[
z1z2

(
ψ2
1 + |z2|2ψ2

2

)]))
+ 2I1

(
z2z1

(
ψ2 + z1z2ψ2

3

))
= 0,

(5.14)

|z2|2
(
−ψ + I1

(
ψ1
1 + |z1|2ψ1

2 + 2 Re
[
z1z2

(
ψ2
1 + |z1|2ψ2

2

)]))
+ 2I1 Re

(
z1z2

(
ψ2 + z1z2ψ2

3

))
= 0,

(5.15)

where ψji is the partial derivative of ψ
j with respect to Xi, X1 = |z1|2 + |z2|2, X2 = |z1z2|2, and

X3 = z1z2.
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Now, we consider the real parts of (5.14) and (5.15). Subtracting the real part of (5.14)
from (5.15), we obtain

X1ψ + I21ψ
1
1 + 2I21 Re

(
z1z2ψ

2
1

)
= 0. (5.16)

So,

X1ψ + I21
∂ψ

∂X1
= 0. (5.17)

By (5.17), we have

ψ = ce−X
2
1/2I

2
1 , (5.18)

where c is a constant. Let us take (5.18) into h = I1ψ and verify ∇zh = 0. Then, the first
equation ∇z1h = 0 becomes

ce−X
2
1/2I

2
1z1 − I1ce−X2

1/2I
2
1 · 4X1z1I

2
1 − 4I1z1X2

1

4I41
= 0. (5.19)

If ψ /= 0, it follows that

1 =
I1X1 −X2

1

I21
. (5.20)

By (5.20), we get

|z1|4 + |z2|4 = −2|z2|4. (5.21)

But (5.21) does not hold in this case. Therefore, we find no small solutions of the bifurcation
equation for z1 /= 0, z2 /= 0 and z1 /= z2.

z1 = 0 and z2 /= 0: in this case, the equation ∇zh = 0 is equivalent to

z2
(
ψ1 + |z2|2ψ1

1

)
= 0 ⇐⇒ r

(
|z2|2, τ

)
= ψ1 + |z2|2ψ1

1 = 0. (5.22)

Moreover, (∂r/∂τ)|(|z2|2,τ)=(0,0) = 1/2. Using the implicit function theorem for (5.22), there
exists a function τ = τ(|z2|2) with τ(0) = 0 for all sufficiently small |z2|. Correspondingly,
we have a one-parameter family of nonsymmetric periodic solutions of the system (1.1)
contained in a local smooth two-dimensional invariant manifold.

z1 /= 0 and z2 = 0: similarly to the above case, for ϕ = 0, there exists a function τ =
τ(|z1|2) with τ(0) = 0 for all sufficiently small |z1|. Correspondingly, there is another one-
parameter family of nonsymmetric periodic solutions of the system (1.1) filling out a local
smooth two-dimensional invariant manifold. This family of nonsymmetric periodic solutions
are the S-image of the family with z1 = 0 and z2 /= 0.
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Remark 5.4. Wenow consider the case that S acts symplectically. In this case, purely imaginary
eigenvalues pairs typically arise isolated. Since S on the two-dimensional eigenspace V of ±i
for A0 is the identity matrix as in Lemma 3.1, then the symmetric property of the periodic
solutions is insignificant. However, we can prove the existence of a Liapunov Center family
using the fact that the flow is Hamiltonian [18, 21].
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