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65-516 Zielona Góra, Poland
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In the paper, a class of perturbed Volterra equations of convolution typewith three kernel functions
is considered. The kernel functions gα = tα−1/Γ(α), t > 0, α ∈ [1, 2], correspond to the class of
equations interpolating heat and wave equations. The results obtained generalize our previous
results from 2010.

1. Introduction

We study perturbed Volterra equations of the form

u(x, t) = u(x, 0) +
∫ t

0

[
gα(t − s) +

(
gα ∗ k

)
(t − s)

]
Δu(x, s)ds +

∫ t

0
b(t − s)u(x, s)ds, (1.1)

where x ∈ R
d, t > 0, gα(t) = tα−1/Γ(α), Γ is the gamma function, gα ∗ k denotes the

convolution, α ∈ [1, 2], b, k ∈ L1
loc(R+;R), and Δ is the Laplace operator.

The perturbation approach to Volterra equations of convolution type has been used
by many authors, see, for example, [1]. Such approach may be applied to more general, not
necessary convolution equations, too. Recently, perturbed Volterra equations, deterministic
and stochastic as well, have been studied for instance by Karczewska and Lizama [2].
The authors consider the class of equations with three kernel functions which satisfy some
scalar auxiliary equations. Such condition enables to construct the family of resolvent
operators admitted by the Volterra equations. In consequence, the resolvent approach to the
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considered Volterra equations can be used. Unfortunately, the resolvent approach proposed
by Karczewska and Lizama may be used to (1.1) for some particular kernel functions b, k
and gα, α ∈ (0, 1/2) for t > 1, only. Hence, in our case, the method proposed in [2] cannot be
applied for (1.1).

Motivation for the study of the fractional integro-differential equations comes
from several problems appearing in physics, biology, and/or engineering. There are
many phenomena well modeled by deterministic or stochastic fractional equations, see,
for example, [3–7]. Several results on stochastic Volterra equations, fractional as well,
particularly on the existence of strong solutions to those equations have been obtained by
one of us [8–14].

Equation (1.1) is an interesting example of using the so-called fractional calculus in the
theory of “classical” equations. Let us emphasize that (1.1) is a generalization of the equations
which interpolate the heat and wave equations [15, 16]. Two convolutions appearing in (1.1)
with the kernel functions b and k, respectively, represent some perturbation acting on the
Volterra equation of convolution type.

Fractional calculus is a generalization of ordinary differentiation and itegration to
arbitrary order [4, 17–19]. There is an increasing interest in applications of fractional calculus
inmany fields ofmathematics [20], mechanics [5, 21, 22], physics [23, 24], and even in biology
[6, 25]. A thorough and comprehensive survey of analytical and numerical methods used
in solving many problems with applications of fractional calculus is contained in a recent
monograph by Baleanu et al. [17].

Spectral methods belong to frequently used tools to obtain approximate solutions to
complicated problems like fluid dynamic equations, weather predictions, and many others
(see e.g., the monograph of Canuto et al. [26]). Recently, these methods have been used as a
tool for calculation of fractional derivatives and integrals [27] and to solve Volterra equations
with fractional time [28]. In general, spectral methods consist in representation of the solution
to the equation under consideration in a finite subspace whereas the exact solution belongs to
space of infinite dimension. The method presented in the present paper belongs to that class.

The paper is organized as follows. In Section 2, a general idea of Galerkin method to
integral equations is presented and approximation by the use of finite dimensional Hilbert
space is explained. Section 3 presents a system of linear equations obtained from (1.1)
by a discrete formulation enabling for numerical solutions. The detailed form of matrices
appearing in that approximation is presented for one dimensional case in Section 3.1 and
for two spatial dimension case in Section 3.2. The set of basis functions is represented
in Section 3.3 and numerical methods used to solve large-scale sparse linear systems are
discussed in Section 3.4, as well. Examples of numerical solutions to (1.1) are exhibited and
discussed in detail in Section 4, whereas error estimations for the precision of approximate
results are given in Section 5.

2. Galerkin Method

Let {φi : i = 1, 2, . . . ,∞} represent a set of orthonormal functions on the interval [0, t],
spanning a Hilbert space H.

Definition 2.1. Let f, g ∈ H. The number

〈
f(t), g(t)

〉
:=
∫ t

0
f(τ)g(τ)Θ(τ)dτ, (2.1)
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where Θ is a weight function, is called the scalar product of functions f, g on the interval [0, t].

Let us recall that two functions are orthonormal when

∀i,j
〈
φi(t), φj(t)

〉
= δij , (2.2)

where δij is the Kronecker delta.
We are looking for an approximate solution to (1.1) as an element of the subspaceHnφ ,

spanned on nφ first basic functions {φj : j = 1, 2, . . . , nφ}

unφ(x, t) =
nφ∑
j=1

cj(x)φj(t). (2.3)

For simplicity of notations, let us consider (1.1) in one spatial dimension only. Inserting (2.3)
into (1.1), one obtains

unφ(x, t) = u(x, 0) +
∫ t

0
[a(t − s) + (a ∗ k)(t − s)]Δunφ(x, s)ds

+
∫ t

0
b(t − s)unφ(x, s)ds + εnφ(x, t),

(2.4)

where function εnφ represents the approximation error function. From (2.3) and (2.4), one
gets

εnφ(x, t) =
nφ∑
j=1

cj(x)φj(t) −
∫ t

0
[a(t − s) + (a ∗ k)(t − s)]

nφ∑
j=1

d2

dx2
cj(x)φj(s)ds

−
∫ t

0
b(t − s)

nφ∑
j=1

cj(x)φj(s)ds − u(x, 0).

(2.5)

Definition 2.2. The Galerkin approximation of (1.1) is the function unφ ∈ Hnφ , such that εnφ ⊥
Hnφ , that is,

∀j=1,2,...,n
〈
εnφ(x, t), φj(t)

〉
= 0. (2.6)
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It follows from Definitions 2.2 and 2.1 and (2.5) that

0 =
∫ t

0

⎡
⎣ nφ∑

j=1

cj(x)φj(τ)

⎤
⎦φi(τ)Θ(τ)dτ −

∫ t

0
u(x, 0)φi(τ)Θ(τ)dτ

−
∫ t

0

⎡
⎣
∫ τ

0
[a(τ − s) + (a ∗ k)(τ − s)]

nφ∑
j=1

d2

dx2
cj(x)φj(s)ds

⎤
⎦φi(τ)Θ(τ)dτ

−
∫ t

0

⎡
⎣
∫ τ

0
b(τ − s)

nφ∑
j=1

cj(x)φj(s)ds

⎤
⎦φi(τ)Θ(τ)dτ for i = 1, 2, . . . , nφ.

(2.7)

Therefore

∫ t

0
u(x, 0)φi(τ)Θ(τ)dτ =

∫ t

0

⎡
⎣ nφ∑

j=1

cj(x)φj(τ)

⎤
⎦φi(τ)Θ(τ)dτ

−
∫ t

0

⎡
⎣
∫ τ

0
[a(τ − s) + (a ∗ k)(τ − s)]

nφ∑
j=1

d2

dx2
cj(x)φj(s)ds

⎤
⎦φi(τ)Θ(τ)dτ

−
∫ t

0

⎡
⎣
∫ τ

0
b(τ − s)

nφ∑
j=1

cj(x)φj(s)ds

⎤
⎦φi(τ)Θ(τ)dτ, i = 1, 2, . . . , nφ.

(2.8)

Using (2.2), (2.8) can be written in an abbreviated form

gi(x) = ci(x) −
nφ∑
j=1

aij
d2

dx2
cj(x) −

nφ∑
j=1

bijcj(x), (2.9)

where

gi(x) = u(x, 0)
∫ t

0
φi(τ)Θ(τ)dτ, (2.10)

aij =
∫ t

0

[∫ τ

0
[a(τ − s) + (a ∗ k)(τ − s)]φj(s)ds

]
φi(τ)Θ(τ)dτ, (2.11)

bij =
∫ t

0

[∫ τ

0
b(τ − s)φj(s)ds

]
φi(τ)Θ(τ)dτ. (2.12)

In general aij /=aji.
The solution of the set of nφ coupled differential equations (2.9) for coefficients

cj(x), j = 1, 2, . . . , nφ provides Galerkin approximation (2.3) to (1.1).
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3. Discretization

Equations can be solved using discretization in a space variable. In one-dimesional case, let
us introduce a grid of points (x1, x2, . . . , xnh), where xl − xl−1 = h. The grid approximation of
a second derivative of a function f : R → R is given by

f ′′(x) ≈ f(x − h) − 2f(x) + f(x + h)
h2

+O
(
h3
)
. (3.1)

Then the set of equations (2.9) takes the following form:

gi(xl) = ci(xl) +
1
h2

nφ∑
j=1

aij

[−cj(xl−1) + 2cj(xl) − cj(xl+1)
] −

nφ∑
j=1

bijcj(xl)

= ci(xl) +
1
h2

nφ∑
j=1

[
−aijcj(xl−1) +

(
2aij − h2bij

)
cj(xl) − aijcj(xl+1)

]
,

(3.2)

where i = 1, 2, . . . , nφ and l = 1, 2, . . . , nh.
In two-dimensional case, with the grid (x1, x2, . . . , xnh) × (y1, y2, . . . , ynh), where xl −

xl−1 = ym − ym−1 = h for l,m = 2, 3, . . . , nh, the set of equations (2.9) takes the form

gi
(
xl, ym

)
= ci

(
xl, ym

)
+

1
h2

nφ∑
j=1

aij

[−cj(xl−1, ym

) − cj
(
xl, ym−1

)

+4cj
(
xl, ym

) − cj
(
xl+1, ym

) − cj
(
xl, ym+1

)]

−
nφ∑
j=1

bijcj
(
xl, ym

)

= ci
(
xl, ym

)
+

1
h2

nφ∑
j=1

[
− aijcj

(
xl−1, ym

) − aijcj
(
xl, ym−1

)

+
(
4aij − h2bij

)
cj
(
xl, ym

) − aijcj
(
xl+1, ym

) − aijcj
(
xl, ym+1

)]
.

(3.3)

Both sets of linear equations (3.2) and (3.3) can be written in a matrix form

g = Ac, (3.4)
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where vectors g, c and matrix A have block forms

g =

⎛
⎜⎜⎜⎜⎝

G1

G2
...

Gnφ

⎞
⎟⎟⎟⎟⎠, c =

⎛
⎜⎜⎜⎜⎝

C1

C2
...

Cnφ

⎞
⎟⎟⎟⎟⎠, A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

[A11] · · ·
[
A1nφ

]

[A21] · · ·
[
A2nφ

]
...

. . .
...[

Anφ1

]
· · ·

[
Anφnφ

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (3.5)

Detailed structure of blocks occurring in (3.5) is given below.

3.1. One-Dimensional Case

Blocks Gi and Gi are nφ-dimensional column vectors. For the sake of space, we present their
transpositions

GT
i =

(
gi(x1), gi(x2), . . . , gi(xnh)

)
,

CT
i = (ci(x1), ci(x2), . . . , ci(xnh)).

(3.6)

Blocks [Aij] have the form

[
Aij

]
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

μij ηij 0 · · · 0 θij
ηij μij ηij · · · 0 0
0 ηij μij · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · μij ηij
θij 0 0 · · · ηij μij

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

nh×nh

, (3.7)

where μij = δij + (2/h2)aij − bij , ηij = −(1/h2)aij , whereas

θij =

{
ηij for periodic boundary conditions,
0 for closed boundary conditions.

(3.8)

Vectors g and c are nφnh-dimensional, whereas the matrix A has dimension nφnh ×
nφnh. The matrix A is a sparse one. The number of nonzero elements of the matrix A is
at most n2

φ(3nh − 2) (with closed boundary conditions) or 3n2
φnh (with periodic boundary

conditions).
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3.2. Two-Dimensional Case

In two-dimensional case, nφn
2
h
-dimensional vectors GT

i and CT
i read as

GT
i =

(
gi
(
x1, y1

)
, gj
(
x1, y2

)
, . . . , gi

(
x1, ynh

)
, gi
(
x2, y1

)
, gi
(
x2, y2

)
, . . . , gi

(
xnh , ynh

))
,

CT
i =

(
ci
(
x1, y1

)
, ci
(
x1, y2

)
, . . . , ci

(
x1, ynh

)
, ci
(
x2, y1

)
, ci
(
x2, y2

)
, . . . , ci

(
xnh , ynh

))
.

(3.9)

Blocks [Aij] have the form of embedded blocks

[
Aij

]
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(αij) (βij) (0) · · · (0) (0) (γij)
(βij) (αij) (βij) · · · (0) (0) (0)
(0) (βij) (αij) · · · (0) (0) (0)
...

...
...

. . .
...

...
...

(0) (0) (0) · · · (αij) (βij) (0)
(0) (0) (0) · · · (βij) (αij) (βij)
(γij) (0) (0) · · · (0) (βij) (αij)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

nh×nh

, (3.10)

where each term (·) is an embedded block of the size nh × nh. In particular

(
γij
)
=

{(
βij
)

for periodic boundary conditions,
(0) for closed boundary conditions,

(3.11)

block (0) is a matrix nh × nh with all null elements, block (αij) is again a sparse matrix of the
form

(
αij

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

μij ηij 0 · · · 0 θij
ηij μij ηij · · · 0 0
0 ηij μij · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · μij ηij
θij 0 0 · · · ηij μij

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

nh×nh

, (3.12)

where μij = δij + (4/h2)aij − bij , ηij = −(1/h2)aij ,

θij =

{
ηij for periodic boundary conditions,
0 for closed boundary conditions

(3.13)
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and block (βij) is diagonal

(
βij
)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
h2

aij 0 0 · · · 0 0 0

0
−1
h2

aij 0 · · · 0 0 0

0 0
−1
h2

aij · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −1
h2

aij 0 0

0 0 0 · · · 0
−1
h2

aij 0

0 0 0 · · · 0 0
−1
h2

aij

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

nh×nh

. (3.14)

The matrix A is the sparse matrix of nφn
2
h
× nφn

2
h
elements. However, only at most n2

φ
(5nh −

4)nh (with closed boundary conditions) or 5n2
φn

2
h (with periodic boundary conditions) elem-

ents are nonzero.

3.3. Basis Functions

The basis functions {φj : j = 1, 2, 3, . . .} have to be orthogonal on the interval [0, t]with respect
to a weight function Θ. We use the set of Legendre polynomials Pl which are solutions of the
Legendre differential equation

d

dx

[(
1 − x2

) d

dx
Pl(x)

]
+ l(l + 1)Pl(x) = 0 (3.15)

for l = 0, 1, 2, . . .. The Legendre polynomials are orthogonal on the interval [−1, 1] with the
weight function Θ ≡ 1

∫1

−1
Pl(x)Pm(x)dx =

2
2l + 1

δlm. (3.16)

Taking the basis function in the form

P̃l(x) =

√
2j − 1

t
Pl−1

(
2x
t

− 1
)
, l = 1, 2, 3, . . . , (3.17)

ensures that the functions Pl(x) fulfill the orthonormality relations (2.2) on the interval [0, t].
Therfeore they can be used as a basis in the Galerkin method. In principle, any set of functions
orthonormal on the interval [0, t] can be used. For our purposes, however, the Lagrange
polynomials appeared more efficient in practical applications than for instance Chebyshev
polynomials.
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3.4. Methods for Solving Large Linear Systems

ThematricesA, both in one- and two-dimensional case, are sparsematrices. In order to obtain
a reasonable approximation of the solution to (1.1), their sizes have to be large. Those facts
suggest an application of iterative methods for solving the linear systems (3.4).

In general, the matrix A is nonsymmetric. We have tested on our examples two
iterative methods developed for solving large-scale linear systems of non-symmetric
matrices. One of those metods is so called BiCGSTAB (BiConjugate Gradient Stabilized
method) [29, 30]. The other one is the GMRES (General Minimal Residual method) [29, 31].
In both methods, a suitable preconditioning is necessary.

For cases discused in the paper, the GMRES method appeared to be more efficient.
Usually, after a proper choice of auxiliary parameters of calculations, the GMRES was
requiring less number of iterations and converging faster than the BiCGSTAB method.

4. Examples of Numerical Solutions

In this section, several examples of approximate numerical solutions to (1.1) are presented.
The function

u(x, 0) =
1

1 + exp((|x| − r1)/r2)
, (4.1)

where |x| =
√∑d

i=1 x
2
i and d is the space dimension has been taken as the initial condition.

Such function, which is substantially different than zero only in a finite region, may represent
a distribution of the temperature in a rod (or plane) heated locally or a distribution of gas (or
liquid) particles which may diffuse in a nonhomogeneous medium. The values of constants
r1 = 3 and r2 = 0.3 in (4.1)were chosen for a clear graphical presentation of the results.

4.1. One-Dimensional Case

For presentation of approximate numerical results we chose an interval x ∈ [−10, 10] with
nh = 201 equidistant grid points. The Hilbert space Hnφ was spanned on the basis of nφ = 20
functions described in Section 3.3.

In our previous study [28], we have shown that when α increases from α = 1 to α =
2 the solution of unperturbed evolution governed by (1.1) with k = b = 0 changes from
pure heat (diffusive) behaviour to pure wave motion. Below we present results for fractional
cases α = 1.5 (an intermediate case) pointing out the effects of perturbations. For the sake of
space, we show a few examples only, explaining the general influences of perturbations on
the character of solutions.

Figure 1 illustrates the effect of perturbation in the form k(t) = c·cos(t), where c ∈ [0, 1]
represents an intensity of the perturbation, whereas the function b ≡ 0. It is clearly seen
that this perturbation, periodic in time variable, produces a wavy formations in space with
amlitudes strongly depending on the intensity of perturbation. Results obtained with the
opposite sign of the perturbation term, c → −c, (not presented here for the sake of space),
show that such perturbation decreases diffusive behaviour of the system and enforces a
wavelike evolution.
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Figure 1: Numerical solution to (1.1) for α = 1.5, t ∈ [0, 5], k(t) = c · cos(t), b ≡ 0.

The effect of the perturbation of the form b = c · e−t, when k ≡ 0, is presented in
Figure 2. As in the former case c ∈ [0, 1] represents the intensity of perturbation. It is clear
that the perturbation in such form generally increases the amplitude of the solution. The
change of sign of the perturbation, c → −c, produces the opposite effect, the amplitude of
u(x, t) decreases, like in the case of dumping.

4.2. Two-Dimensional Case

In this subsection, we show some results obtained for two-dimensional case. The calculations
have been performed on the grid of nh×nh points, where nh = 101, x, y ∈ [−5, 5], with nφ = 20
basic functions spanning the Hilbert space Hnφ .

Figures 3, 4, and 5 illustrate several examples of the numerical solutions to (1.1) for
α = 1.5 and different perturbation functions k and b.

The case k ≡ b ≡ 0, corresponds to the unperturbed equation. Its solution, as seen
from Figure 3, evolves in the wave manner with a significant influence of diffusion due to
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Figure 2: Numerical solution to (1.1) for α = 1.5, t ∈ [0, 5], k ≡ 0, b(t) = c · e−t.

fractional value of α = 1.5, between the pure diffusion case (α = 1) and the pure wave case
(α = 2). For more examples of unperturbed evolution of solutions to (1.1) in two-dimensional
case, see [28].

Results obtained for two-dimensional cases with nonzero perturbations generally
exhibit the properties similar to those in one-dimensional case. Again, like in the one-
dimensional case, the presence of perturbation in the form of k(t) = cos(t) results in an
increase of awave frequency (see, e.g., Figure 4). In other words the perturbation of such form
produces additional wavy behaviour of the solution. The change of sign of the perturbation
term changes the phase of that behaviour.

The presence of perturbation term with b /= 0 influences mainly the amplitude of the
solution. Comparing Figure 5 to Figure 4, one notices that the amplitude increases with b =
e−t. Perturbation with the opposite sign b(t) = −e−t results in decrease of amplitude, like in
the case of dumping.
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Figure 3: Numerical solution to (1.1) for α = 1.5, t ∈ [0, 3.5], k ≡ 0, b ≡ 0. Closed boundary conditions.

5. Precision of Numerical Results

A comparison between the analytic and numerical solutions to (1.1) is possible only for one-
dimensional case when there is no perturbation and α = 1 or α = 2. Despite the existence of
the analytic solutions for this case for an arbitrary α ∈ [1, 2], given (for d = 1 case) in terms of
Mittag-Leffler functions [15, 16], their computation is not practical.
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Figure 4: Numerical solution to (1.1) for α = 1.5, t ∈ [0, 3.5], k(t) = cos(t), b ≡ 0. Periodic boundary
conditions.

For non-perturbed case, we defined in [28] an error estimate as the maximum of
the absolute value of the difference between the exact analytical solution and approximate
numerical one

Δunφ,nh(t) = max
∣∣∣uanal

nφ,nh
(xi, t) − unum

nφ,nh
(xi, t)

∣∣∣nh

i=1
, (5.1)
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Figure 5: Numerical solution to (1.1) for α = 1.5, t ∈ [0, 3.5], k(t) = cos(t), b(t) = e−t. Periodic boundary
conditions.

where maximum is taken over all grid points xi. For d = 1 and α = 1 and 2, nφ > 20, nh > 100,
t ≤ 6 the error estimate Δunφ,nh(t)was always less than 10−5.

When we consider presented method for obtaining numerical solution to fractional
perturbed Volterra equation (1.1), there are three levels of numerical errors.
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The first level corresponds to the error of Galerkin approximation (2.3)which depends
on basic functions number nφ. In a special case, when k ≡ 0, b ≡ 0 and Δ operator is replaced
by identity operator, we can estimate the approximation error using the following result from
[27].

Remark 5.1 (see [27, Remark 5.2]). If unφ(x, t) (see (2.3)) is the Legendre-Gauss-Lobatto
interpolation of u(x, t), u ∈ Hr(I), I = [0, t], t > 0, then

∥∥∥u − unφ

∥∥∥
L∞(I)

≤ Cn3/4−r
φ ‖u‖Hr(I), r ∈ N, (5.2)

where C is a positive constant (see [26]). Therefore, we can get the following error bounds:

∥∥∥∥∥
∫ t

0
gα(t − s)(u(x, s) − unφ(x, s))ds

∥∥∥∥∥
L∞(I)

≤ Cn3/4−r
φ ‖u‖Hr(I), α > 0, r ≥ 1. (5.3)

Also at the first level, the integrals (2.11) and (2.12) are calculated. In our method,
we use a Gauss-Legendre quadrature for numerical integration. The exact error of such
quadrature can be found, for example, in Theorem 7.3.5 in [32].

The second level is the Laplacian discretization (Section 3). In this case, the numerical
error can be estimated by O(h3), where h is the spatial grid step.

The last one is is the residual error of GMRES method for solving large linear systems.
In our computations, the residual error threshold was set to 10−9, which was small enough to
obtain reliable solution.

The joint error estimate from all three levels is not obvious.Moreover, in the considered
perturbed case, the analytic solution to (1.1) is not known. Therefore, in order to estimate the
accuracy of numerical solutions, we proceed in the followingmanner which is also applicable
for two- and higher-dimensional cases.

When we are not able to confront the numerical solutions with analytic ones, we can
investigate how does approximate solution change with increasing numbers of grid points
and increasing number of basic functions. One can expect that increasing number of grid
points and increasing number of basic functions should result in a better approximation
of the true (unknown) solution. Taking appropriate sequences of those numbers and
estimating the largest differences between consecutive solutions, one can show convergence
of approximation errors. To do it let us define the following quantities.

Let Δφunφ,nh(t) denote the maximum difference between two solutions obtained for
the same t and the same grid (defined by nh) but with different numbers of basic functions
nφ and nφ−2.

Δφunφ,nh(t) := max
i

∣∣∣unφ,nh(xi, t) − unφ−2,nh(xi, t)
∣∣∣. (5.4)

Then let Δhunφ,nh(t) denote the maximum difference between two solutions obtained
for the same t and the same Hilbert space (the same nφ) but with different numbers of grid
points (in one direction) nh and nh−10

Δhunφ,nh(t) := max
i

∣∣∣unφ,nh(xi, t) − ũnφ,nh−10(xi, t)
∣∣∣ , (5.5)
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Figure 6: Error estimate (5.4) for one-dimensional case, for t = 1.8, nh = 121, α = 1, 5, k(t) = cos(t), and
b(t) = e−t. Periodic boundary conditions.

where ũnφ,nh−10(xi, t) means the value in the node of bigger size obtained from values
calculated for grid of smaller size by cubic-spline interpolation.

In two-dimensional cases, the appropriate error estimates read

Δφunφ,nh(t) := max
i,j

∣∣∣unφ,nh

(
xi, yj , t

) − unφ−2,nh

(
xi, yj , t

)∣∣∣, (5.6)

Δhunφ,nh(t) := max
i,j

∣∣∣unφ,nh

(
xi, yj , t

) − ũnφ,nh−10
(
xi, yj , t

)∣∣∣. (5.7)

Figures 6, 7, and 8 present some examples of the dependence of the above defined error
estimates on the numbers of grid points and the size of the basis. Presented examples contain
both one- and two-dimensional cases and two cases of boundary conditions.

The general conclusions of that investigation are the following. In all cases the error
estimates decrease fast with increasing number of grid points or with increasing size of the
basis. That decrease is in log plots seen as close to a straight line, that is, error estimates
decrease almost exponentially. Then taking large enough grid and large enough set of basic
functions, one can obtain, in principle, an error less then arbitrary small number. In practice
increasing the sizes of basis and grid produces a sharp increase of numerical operations
causing accumultion of rounding errors. That property can be compensated by increasing the
precision of representation of real numbers (using double or quadruple precision) and so on.
All those actions require higher and higher computer power to obtain results in a reasonable
computing time.

Our estimates show, however, that a reasonable approximations can be obtained with
relatively low values of nφ and nh.
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Figure 7: Error estimate (5.5) for one-dimensional case, for t = 1.8, nφ = 20, α = 1, 5, k(t) = cos(t), and
b(t) = e−t. Closed boundary conditions.
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Figure 8: Error estimate (5.6) for two-dimensional case, for t = 1.8, nh = 101, α = 1, 5, k(t) = cos(t), and
b(t) = e−t. Closed boundary conditions.
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