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In previous works, a learning law with a dead zone function was developed for multilayer
differential neural networks. This scheme requires strictly a priori knowledge of an upper bound
for the unmodeled dynamics. In this paper, the learning law is modified in such a way that this
condition is relaxed. By this modification, the tuning process is simpler and the dead-zone function
is not required anymore. On the basis of this modification and by using a Lyapunov-like analysis,
a stronger result is here demonstrated: the exponential convergence of the identification error to a
bounded zone. Besides, a value for upper bound of such zone is provided. The workability of this
approach is tested by a simulation example.

1. Introduction

During the last four decades system identification has emerged as a powerful and effective
alternative to the first principles modeling [1–4]. By using the first approach, a satisfactory
mathematical model of a system can be obtained directly from an input and output
experimental data set [5]. Ideally no a priori knowledge of the system is necessary since
this is considered as a black box. Thus, the time employed to develop such model is
reduced significantly with respect to a first principles approach. For the linear case, system
identification is a problem well understood and enjoys well-established solutions [6].
However, the nonlinear case is much more challenging. Although some proposals have been
presented [7], the class of considered nonlinear systems can result very limited. Due to
their capability of handling a more general class of systems and due to advantages such as
the fact of not requiring linear in parameters and persistence of excitation assumptions [8],
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artificial neural networks (ANNs) have been extensively used in identification of nonlinear
systems [9–12]. Their success is based on their capability of providing arbitrarily good
approximations to any smooth function [13–15] as well as their massive parallelism and very
fast adaptability [16, 17].

An artificial neural network can be simply considered as a nonlinear generic
mathematical formula whose parameters are adjusted in order to represent the behavior of
a static or dynamic system [18]. These parameters are called weights. Generally speaking,
ANN can be classified as feedforward (static) ones, based on the back propagation technique
[19] or as recurrent (dynamic) ones [17]. In the first network type, system dynamics is
approximated by a static mapping. These networks have two major disadvantages: a slow
learning rate and a high sensitivity to training data. The second approach (recurrent ANN)
incorporates feedback into its structure. Due to this feature, recurrent neural networks can
overcome many problems associated with static ANN, such as global extrema search, and
consequently have better approximation properties. Depending on their structure, recurrent
neural networks can be classified as discrete-time ones or differential ones.

The first deep insight about the identification of dynamic systems based on neural
networks was provided by Narendra and Parthasarathy [20]. However, none-stability
analyses of their neuroidentifier were presented. Hunt et al. [21] called attention to
determine the convergence, stability and robustness of the algorithms based on neural
networks for identification and control. This issue was addressed by Polycarpou and Ioannou
[16], Rovithakis and Christodoulou [17], Kosmatopoulos et al. [22], and Yu and Poznyak
[23]. Given different structures of continuous-time neural networks, the stability of their
algorithms could be proven by using Lyapunov-like analysis. All aforementioned works
considered only the case of single-layer networks. However, as it is known, this kind of
networks does not necessarily satisfy the property of universal function approximation [24].
And although the activation functions of single-layer neural networks are selected as a basis
set in such a way that this property can be guaranteed, the approximation error can never be
made smaller than a lower bound [24]. This drawback can be overcome by using multilayer
neural networks. Due to this better capability of function approximation, the case multilayer
was considered in [25] for feedforward networks and for continuous time recurrent neural
networks for first time in [26] and subsequently in [27]. By using Lyapunov-like analysis and
a dead-zone function, boundedness for the identification error could be guaranteed in [26].
The following upper bound for the “average” identification error was reported,

lim sup
T →∞

1
T

∫T

0

[
1 − f̃0 + Υ

λmin
(
P−1/2Q0P−1/2)∥∥P 1/2Δt

∥∥
]
+

ΔT
t Q0Δtdt ≤ f̃0 + Υ, (1.1)

whereΔt is the identification error,Q0 is a positive definite matrix, f̃0 is a upper bound for the
modeling error, Υ is an upper bound for a deterministic disturbance, and [·]+ is a dead-zone
function defined as

[z]+ =

⎧⎨
⎩

z z ≥ 0,

0 z < 0.
(1.2)

Although, in [28], open-loop analysis based on the passivity method for a multilayer neural
networkwas carried out and certain simplifications were accomplished, themain result about
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the aforementioned identification error could not be modified. In [29], the application of
the multilayer scheme for control was explored. Since previous works [26–29] are based
on this “average” identification error, one could wonder about the real utility of this result.
Certainly, boundedness for this kind of error does not guarantee that Δt belongs to L2 or L∞.
Besides, none value for upper bound of identification error norm is provided. Likewise, none
information about the speed of the convergence process is presented. Another disadvantage
of this approach is that the upper bound for the modeling error f̃0 must be strictly known a
priori in order to implement the learning laws for the weight matrices. In order to avoid these
drawbacks, in this paper, we propose to modify the learning laws employed in [26] in such a
way that their implementation does not require anymore the knowledge of an upper bound
for the modeling error. Besides, on the basis of these new learning laws, a stronger result is
here guaranteed: the exponential convergence of the identification error norm to a bounded
zone. The workability of the scheme developed in this paper is tested by simulation.

2. Multilayer Neural Identifier

Consider that the nonlinear system to be identified can be represented by

ẋt = f(xt, ut, t) + ξt, (2.1)

where xt ∈ �n is the measurable state vector for t ∈ �+ := {t : t ≥ 0}, ut ∈ �q is the control
input, f : �n × �q × �+ → �n is an unknown nonlinear vector function which represents
the nominal dynamics of the system, and ξt ∈ �n represents a deterministic disturbance.
f(xt, ut, t) represents a very ample class of systems including affine and nonaffine-in-control
nonlinear systems. However, when the control input appears in a nonlinear fashion in the
system state equation (2.1), throughout this paper, such nonlinearity with respect to the input
is assumed known and represented by γ(·) : �q → �s.

Consider the following parallel structure of multilayer neural network

d

dt
x̂t = Ax̂t +W1,tσ(V1,tx̂t) +W2,tφ(V2,tx̂t)γ(ut), (2.2)

where x̂t ∈ �n is the state of the neural network, ut ∈ �q is the control input, A ∈ �n×n

is a Hurwitz matrix which can be specified by the designer, the matrices W1,t ∈ �n×m and
W2,t ∈ �n×r are the weights of output layers, the matrices V1,t ∈ �m×n and V2,t ∈ �r×n are the
weights of hidden layers, σ(·) is the activation vector-function with sigmoidal components,
that is, σ(·) := [σ1(·), . . . , σm(·)]T ,

σj(v) :=
aσj

1 + exp
(−∑m

i=1 cσj,ivi

) − dσj , for j = 1, . . . , m, (2.3)

where aσj , cσj,i, and dσj are positive constants which can be specified by the designer, φ(·) :
�r → �r×s is also a sigmoidal function, that is,

φij(z) :=
aφij

1 + exp
(−∑r

l=1 cφij,lzl
) − dφij for i = 1, . . . , r, j = 1, . . . , s, (2.4)
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where aφij , cφij,l, and dφij are positive constants which can be specified by the designer, γ(·) :
�q → �s represents the nonlinearity with respect to the input—if it exists—which is assumed
a priori known for the system (2.1). It is important to mention that m and r, that is, the
number of neurons for σ(·) and the number of rows for φ(·), respectively, can be selected by
the designer.

The problem of identifying system (2.1) based on the multilayer differential neural
network (2.2) consists of, given the measurable state xt and the input ut, adjusting on line
the weights W1,t,W2,t, V1,t, and V2,t by proper learning laws such that the identification error
Δt := x̂t − xt can be reduced.

Hereafter, it is considered that the following assumptions are valid;

(A1) System (2.1) satisfies the (uniform on t) Lipschitz condition, that is,

∥∥f(x, u, t) − f(z, v, t)
∥∥ ≤ L1‖x − z‖ + L2‖u − v‖; x, z ∈ �n; u, v ∈ �q; 0 ≤ L1, L2 < ∞. (2.5)

(A2) The differences of functions σ(·) and φ(·) fulfil the generalized Lipschitz conditions

σ̃T
t Λ1σ̃t ≤ ΔT

t ΛσΔt, γT (ut)φ̃T
t Λ2φ̃tγ(ut) ≤ ΔT

t ΛφΔt

∥∥γ(ut)
∥∥2, (2.6)

where

σ̃t := σ
(
V1

0x̂t

)
− σ
(
V1

0xt

)
, φ̃t := φ

(
V2

0x̂t

)
− φ
(
V2

0xt

)
, (2.7)

Λ1 ∈ �m×m, Λ2 ∈ �r×r , Λσ ∈ �n×n, Λφ ∈ �n×n are known positive definite matrices,
V 0
1 ∈ �m×n and V 0

2 ∈ �r×n are constant matrices which can be selected by the
designer.

As σ(·) and φ(·) fulfil the Lipschitz conditions and from Lemma A.1 proven in [26]
the following is true:

σ̃ ′
t := σ(V1,tx̂t) − σ

(
V1

0x̂t

)
= DσṼ1,tx̂t + νσ,

σ̃ ′
tγ(ut) :=

(
φ(V2,tx̂t) − φ

(
V 0
2 x̂t

))
γ(ut)

(2.8)

=
s∑
i=1

(
φi(V2,tx̂t) − φi

(
V 0
2 x̂t

))
γi(ut) =

s∑
i=1

(
DiφṼ2,tx̂t + viφ

)
γi(ut), (2.9)

where

Dσ =
∂σ(Y )
∂Y

∣∣∣∣
Y=V 0

1 x̂t

∈ �m×m, Diφ =
∂φi(Z)
∂Z

∣∣∣∣
Z=V 0

2 x̂t

∈ �r×r , (2.10)

νσ ∈ �m and νiφ ∈ �n are unknown vectors but bounded by ‖νσ‖2Λ1
≤ l1‖Ṽ1,tx̂t‖

2
Λ1
,

‖νiφ‖2Λ2
≤ l2‖Ṽ2,tx̂t‖

2
Λ2
, respectively; Ṽ1,t := V1,t − V 0

1 , Ṽ2,t := V2,t − V 0
2 , l1 and l2 are
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positive constants which can be defined as l1 := 4L2
g,1, l2 := 4L2

g,2, where Lg,1 and
Lg,2 are global Lipschitz constants for σ(·) and φi(·), respectively.

(A3) The nonlinear function γ(·) is such that ‖γ(ut)‖2 ≤ u where u is a known positive
constant.

(A4) Unmodeled dynamics f̃t is bounded by

∥∥∥f̃t
∥∥∥2
Λ3

≤ f̃0 + f̃1‖xt‖2Λ3
, (2.11)

where f̃0 and f̃1 are known positive constants and Λ3 ∈ �n×n is a known positive
definite matrix and f̃t can be defined as f̃t := f(xt, ut, t) − Axt − W0

1σ(V
0
1 xt) −

W0
2φ(V

0
2 xt)γ(ut); W0

1 ∈ �n×m and W0
2 ∈ �n×r are constant matrices which can be

selected by the designer.

(A5) The deterministic disturbance is bounded, that is, ‖ξt‖2Λ4
≤ Υ,Λ4 is a known positive

definite matrix.

(A6) The following matrix Riccati equation has a unique, positive definite solution P :

ATP + PA + PRP +Q = 0, (2.12)

where

R = 2W0
1Λ

−1
1

(
W0

1

)T
+ 2W0

2Λ
−1
2

(
W0

2

)T
+ Λ−1

3 + Λ−1
4 , Q = Λσ + uΛφ +Q0, (2.13)

Q0 is a positive definite matrix which can be selected by the designer.

Remark 2.1. Based on [30, 31], it can be established that the matrix Riccati equation (2.12) has
a unique positive definite solution P if the following conditions are satisfied;

(a) The pair (A,R1/2) is controllable, and the pair (Q1/2, A) is observable.

(b) The following matrix inequality is fulfilled:

1
4

(
ATR−1 − R−1A

)
R
(
ATR−1 − R−1A

)T ≤ ATR−1A −Q. (2.14)

Both conditions can relatively easily be fulfilled if A is selected as a stable diagonal
matrix.

(A7) It exists a bounded control ut, such that the closed-loop system is quadratic stable,
that is, it exists a Lyapunov function V 0 > 0 and a positive constant λ such that

∂V 0

∂x
f(xt, ut, t) ≤ −λ‖xt‖2. (2.15)

Additionally, the inequality λ ≥ f̃1‖Λ3‖must be satisfied.
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Now, consider the learning law:

Ẇ1,t = − stK1PΔtσ
T (V1,tx̂t) + stK1PΔtx̂

T
t Ṽ

T
1,tD

T
σ ,

Ẇ2,t = − stK2PΔtγ
T (ut)φT (V2,tx̂t) + stK2PΔtx̂

T
t Ṽ

T
2,t

s∑
i=1

(
γi(ut)DT

iφ

)
,

V̇1,t = − stK3D
T
σW

T
1,tPΔtx̂

T
t − st

l1
2
K3Λ1Ṽ1,tx̂tx̂

T
t ,

V̇2,t = − stK4

s∑
i=1

(
γi(ut)DT

iφ

)
WT

2,tPΔtx̂
T
t − st

sl2u

2
K4Λ2Ṽ2,tx̂tx̂

T
t ,

(2.16)

where s is the number of columns corresponding to φ(·), K1 ∈ �n×n, K2 ∈ �n×n, K3 ∈ �m×m,
and K4 ∈ �r×r are positive definite matrices which are selected by the designer. st is a dead-
zone function which is defined as

st :=

[
1 − μ∥∥P 1/2Δt

∥∥
]
+

, [z]+ =

⎧⎨
⎩

z z ≥ 0,

0 z < 0,

μ =
f̃0 + Υ

λmin
(
P−1/2Q0P−1/2) .

(2.17)

Based on this learning law, the following result was demonstrated in [26].

Theorem 2.2. If the assumptions (A1)–(A7) are satisfied and the weight matricesW1,t,W2,tV1,t, and
V2,t of the neural network (2.2) are adjusted by the learning law (2.16), then

(a) the identification error and the weights are bounded:

Δt,W1,t,W2,t, V1,t, V2,t ∈ L∞, (2.18)

(b) the identification error Δt satisfies the following tracking performance:

lim sup
T →∞

1
T

∫T

0

[
1 − f̃0 + Υ

λmin
(
P−1/2Q0P−1/2)∥∥P 1/2Δt

∥∥
]
+

ΔT
t Q0Δtdt ≤ f̃0 + Υ. (2.19)

In order to prove this result, the following nonnegative function was utilized:

Vt :=V0 +
[∥∥∥P 1/2Δt

∥∥∥ − μ
]2
+
+ tr

[
W̃T

1,tK
−1
1 W̃1,t

]
+ tr

[
W̃T

2,tK
−1
2 W̃2,t

]
+ tr

[
Ṽ T
1,tK

−1
3 Ṽ1,t

]

+ tr
[
Ṽ T
2,tK

−1
4 Ṽ2,t

]
,

(2.20)

where W̃1,t := W1,t −W0
1 ; W̃2,t := W2,t −W0

2 .
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3. Exponential Convergence of the Identification Process

Consider that the assumptions (A1)–(A3) and (A5)-(A6) are still valid but the assumption
(A4) is slightly modified as follows.

(B4) In a compact set Ω ∈ �n, unmodeled dynamics f̃t is bounded by ‖f̃t‖
2
Λ3

≤ f̃0 where

f̃0 is a constant not necessarily a priori known.

Remark 3.1. (B4) is a common assumption in the neural network literature [17, 22]. As
mentioned in Section 2, f̃t is given by f̃t := f(xt, ut, t) −Axt −W0

1σ(V
0
1 xt) −W0

2φ(V
0
2 xt)γ(ut).

Note that W0
1σ(V

0
1 xt) and W0

2φ(V
0
2 xt)γ(ut) are bounded functions because σ(·) and φ(·) are

sigmoidal functions. As xt belongs toΩ, clearly xt is also bounded. Therefore, assumption B4
implies implicitly that f(xt, ut, t) is a bounded function in a compact set Ω ∈ �n.

Although certainly assumption (B4) is more restrictive than assumption (A4), from
now on, assumption (A7) is not needed anymore.

In this paper, the following modification to the learning law (2.16) is proposed:

Ẇ1,t = − 2k1PΔtσ
T (V1,tx̂t) + 2k1PΔtx̂

T
t Ṽ

T
1,tD

T
σ − α

2
W̃1,t,

Ẇ2,t = − 2k2PΔtγ
T (ut)φT (V2,tx̂t) + 2k2PΔtx̂

T
t Ṽ

T
2,t

s∑
i=1

(
γi(ut)DT

iφ

)
− α

2
W̃2,t,

V̇1,t = − 2k3DT
σW

T
1,tPΔtx̂

T
t − k3l1Λ1Ṽ1,tx̂tx̂

T
t − α

2
Ṽ1,t,

V̇2,t = − 2k4
s∑
i=1

(
γi(ut)DT

iφ

)
WT

2,tPΔtx̂
T
t − k4sl2uΛ2Ṽ2,tx̂tx̂

T
t − α

2
Ṽ2,t,

(3.1)

where k1, k2, k3, and k4 are positive constants which are selected by the designer; P is the
solution of the Riccati equation given by (2.12); α := λmin(P−1/2Q0P

−1/2); s is the number
of columns corresponding to φ(·). By using the constants k1, k2, k3, and k4 in (3.1) instead
of the matrices K1, K2, K3, and K4 in (2.16), the tuning process of the neural network (2.2)
is simplified. Besides, none dead-zone function is now required. Based on the learning law
(3.1), the following result is here established.

Theorem 3.2. If the assumptions (A1)–(A3), (B4), (A5)-(A6) are satisfied and the weight matrices
W1,t, W2,t, V1,t, and V2,t of the neural network (2.2) are adjusted by the learning law (3.1), then

(a) the identification error and the weights are bounded:

Δt,W1,t,W2,t, V1,t, V2,t ∈ L∞, (3.2)

(b) the norm of identification error converges exponentially to a region bounded given by

lim
t→∞

‖xt − x̂t‖ ≤
√√√ f̃0 + Υ

αλmin(P)
. (3.3)
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Proof of Theorem 3.2. Before beginning analysis, the dynamics of the identification error Δt

must be determined. The first derivative of Δt is

dΔt

dt
=

d

dt
(x̂t − xt). (3.4)

Note that an alternative representation for (2.1) could be calculated as follows:

ẋt = Axt +W0
1σ
(
V 0
1 xt

)
+W0

2φ
(
V 0
2 xt

)
γ(ut) + f̃t + ξt. (3.5)

Substituting (2.2) and (3.5) into (3.4) yields

Δ̇t = Ax̂t +W1,tσ(V1,tx̂t) +W2,tφ(V2,tx̂t)γ(ut) −Axt −W0
1σ
(
V 0
1 xt

)

−W0
2φ
(
V 0
2 xt

)
γ(ut) − f̃t − ξt,

= AΔt +W1,tσ(V1,tx̂t) −W0
1σ
(
V 0
1 xt

)
+W2,tφ(V2,tx̂t)γ(ut)

−W0
2φ
(
V 0
2 xt

)
γ(ut) − f̃t − ξt.

(3.6)

Subtracting and adding the terms W0
1σ(V1,tx̂t), W0

1σ(V
0
1 x̂t), W0

2φ(V2,tx̂t)γ(ut), and
W0

2φ(V
0
2 x̂t)γ(ut) and considering that W̃1,t := W1,t − W0

1 , W̃2,t := W2,t − W0
2 , σ̃t := σ(V1

0x̂t) −
σ(V1

0xt), φ̃t := φ(V2
0x̂t) − φ(V2

0xt), σ̃ ′
t := σ(V1,tx̂t) − σ(V1

0x̂t), φ̃′
tγ(ut) := (φ(V2,tx̂t) −

φ(V2
0x̂t))γ(ut), (3.6) can be expressed as

Δ̇t = AΔt +W1,tσ(V1,tx̂t) −W0
1σ(V1,tx̂t) +W0

1σ(V1,tx̂t) −W0
1σ
(
V 0
1 x̂t

)
+W0

1σ
(
V 0
1 x̂t

)

−W0
1σ
(
V 0
1 xt

)
+W2,tφ(V2,tx̂t)γ(ut) −W0

2φ(V2,tx̂t)γ(ut) +W0
2φ(V2,tx̂t)γ(ut)

−W0
2φ
(
V 0
2 x̂t

)
γ(ut) +W0

2φ
(
V 0
2 x̂t

)
γ(ut) −W0

2φ
(
V 0
2 xt

)
γ(ut) − f̃t − ξt

= AΔt + W̃1,tσ(V1,tx̂t) +W0
1 σ̃

′
t +W0

1 σ̃t + W̃2,tφ(V2,tx̂t)γ(ut) +W0
2 φ̃

′
tγ(ut)

+W0
2 φ̃tγ(ut) − f̃t − ξt,

Δ̇t = AΔt + W̃1,tσ(V1,tx̂t) + W̃2,tφ(V2,tx̂t)γ(ut) +W0
1 σ̃t +W0

2 φ̃tγ(ut) +W0
1 σ̃

′
t

+W0
2 φ̃

′
tγ(ut) − f̃t − ξt.

(3.7)

In order to begin analysis, the following nonnegative function is selected:

Vt = ΔT
t PΔt +

1
2k1

tr
{
W̃T

1,tW̃1,t

}
+

1
2k2

tr
{
W̃T

2,tW̃2,t

}

+
1
2k3

tr
{
Ṽ T
1,tṼ1,t

}
+

1
2k4

tr
{
Ṽ T
2,tṼ2,t

}
,

(3.8)
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where P is a positive solution for the Riccati matrix equation given by (2.12). The first
derivative of Vt is

V̇t =
d

dt

(
ΔT

t PΔt

)
+

d

dt

(
1
2k1

tr
{
W̃T

1,tW̃1,t

})
+

d

dt

(
1
2k2

tr
{
W̃T

2,tW̃2,t

})

+
d

dt

(
1
2k3

tr
{
Ṽ T
1,tṼ1,t

})
+

d

dt

(
1
2k4

tr
{
Ṽ T
2,tṼ2,t

})
.

(3.9)

Each term of (3.9)will be calculated separately. For (d/dt)(ΔT
t PΔt),

d

dt

(
ΔT

t PΔt

)
= 2ΔT

t PΔ̇t. (3.10)

substituting (3.7) into (3.10) yields

d

dt

(
ΔT

t PΔt

)
= 2ΔT

t PAΔt + 2ΔT
t PW̃1,tσ(V1,tx̂t) + 2ΔT

t PW̃2,tφ(V2,tx̂t)γ(ut)

+ 2ΔT
t PW

0
1 σ̃t + 2ΔT

t PW
0
2 φ̃tγ(ut) + 2ΔT

t PW
0
1 σ̃

′
t + 2ΔT

t PW
0
2 φ̃

′
tγ(ut)

− 2ΔT
t P f̃t − 2ΔT

t Pξt.

(3.11)

The terms 2ΔT
t PW

0
1 σ̃t, 2ΔT

t PW
0
2 φ̃tγ(ut), −2ΔT

t P f̃t, and −2ΔT
t Pξt in (3.11) can be bounded

using the following matrix inequality proven in [26]:

XTY + YTX ≤ XTΓ−1X + YTΓY, (3.12)

which is valid for any X,Y ∈ �n×k and for any positive definite matrix 0 < Γ = ΓT ∈ �n×n.
Thus, for 2ΔT

t PW
0
1 σ̃t and considering assumption (A2),

2ΔT
t PW

0
1 σ̃t = ΔT

t PW
0
1 σ̃t + σ̃T

t

(
W0

1

)T
PΔt

≤ ΔT
t PW

0
1Λ

−1
1

(
W0

1

)T
PΔt + σ̃T

t Λ1σ̃t

≤ ΔT
t PW

0
1Λ

−1
1

(
W0

1

)T
PΔt + ΔT

t ΛσΔt.

(3.13)

For 2ΔT
t PW

0
2 φ̃tγ(ut), and considering assumptions (A2) and (A3)

2ΔT
t PW

0
2 φ̃tγ(ut) = ΔT

t PW
0
2 φ̃tγ(ut) + γT (ut)φ̃T

t

(
W0

2

)T
PΔt

≤ ΔT
t PW

0
2Λ

−1
2

(
W0

2

)T
PΔt + γT (ut)φ̃T

t Λ2φ̃tγ(ut)

≤ ΔT
t PW

0
2Λ

−1
2

(
W0

2

)T
PΔt + uΔT

t ΛφΔt.

(3.14)
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By using (3.12) and given assumptions (B4) and (A5), −2ΔT
t P f̃t and −2ΔT

t Pξt can be bounded,
respectively, by

−2ΔT
t P f̃t = −ΔT

t P f̃t − f̃ T
t PΔt ≤ ΔT

t PΛ
−1
3 PΔt + f̃ T

t Λ3f̃t

≤ ΔT
t PΛ

−1
3 PΔt + f̃0,

−2ΔT
t Pξt = −ΔT

t Pξt − ξTt PΔt ≤ ΔT
t PΛ

−1
4 PΔt + ξTt Λ4ξt

≤ ΔT
t PΛ

−1
4 PΔt + Υ.

(3.15)

Considering (2.8), 2ΔT
t PW

0
1 σ̃

′
t can be developed as

2ΔT
t PW

0
1 σ̃

′
t = 2ΔT

t PW
0
1DσṼ1,tx̂t + 2ΔT

t PW
0
1νσ. (3.16)

By simultaneously adding and subtracting the term 2ΔT
t PW1,tDσṼ1,tx̂t into the right-hand

side of (3.16),

2ΔT
t PW

0
1 σ̃

′
t = 2ΔT

t PW1,tDσṼ1,tx̂t − 2ΔT
t PW̃1,tDσṼ1,tx̂t + 2ΔT

t PW
0
1νσ. (3.17)

By using (3.12) and considering assumption (A2), the term ΔT
t PW

0
1νσ can be bounded as

2ΔT
t PW

0
1νσ = ΔT

t PW
0
1νσ + νTσ

(
W0

1

)T
PΔt ≤ ΔT

t PW
0
1Λ

−1
1

(
W0

1

)T
PΔt + νTσΛ1νσ

≤ ΔT
t PW

0
1Λ

−1
1

(
W0

1

)T
PΔt + l1

∥∥∥Ṽ1,tx̂t

∥∥∥2
Λ1
.

(3.18)

And consequently, 2ΔT
t PW

0
1 σ̃

′
t is bounded by

2ΔT
t PW

0
1 σ̃

′
t≤2ΔT

t PW1,tDσṼ1,tx̂t−2ΔT
t PW̃1,tDσṼ1,tx̂t+ΔT

t PW
0
1Λ

−1
1

(
W0

1

)T
PΔt+l1

∥∥∥Ṽ1,tx̂t

∥∥∥2
Λ1
.

(3.19)

For 2ΔT
t PW

0
2 φ̃

′
tγ(ut) and considering (2.9),

2ΔT
t PW

0
2 φ̃

′
tγ(ut) = 2ΔT

t PW
0
2

s∑
i=1

(
DiφṼ2,tx̂t + νiφ

)
γi(ut)

= 2ΔT
t PW

0
2

s∑
i=1

DiφṼ2,tx̂tγi(ut) + 2ΔT
t PW

0
2

s∑
i=1

νiφγi(ut).

(3.20)
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Adding and subtracting the term 2ΔT
t PW2,t

∑s
i=1 DiφṼ2,tx̂tγi(ut) into the right-hand side of

(3.20),

2ΔT
t PW

0
2 φ̃

′
tγ(ut) = 2ΔT

t PW2,t

s∑
i=1

DiφṼ2,tx̂tγi(ut) − 2ΔT
t PW̃2,t

s∑
i=1

DiφṼ2,tx̂tγi(ut)

+ 2ΔT
t PW

0
2

s∑
i=1

νiφγi(ut).

(3.21)

By using (3.12), 2ΔT
t PW

0
2
∑s

i=1 νiφγi(ut) can be bounded by

2ΔT
t PW

0
2

s∑
i=1

νiφγi(ut) = ΔT
t PW

0
2

s∑
i=1

νiφγi(ut) +

(
s∑
i=1

νiφγi(ut)

)T(
W0

2

)T
PΔt

≤ ΔT
t PW

0
2Λ

−1
2

(
W0

2

)T
PΔt +

(
s∑
i=1

νiφγi(ut)

)T

Λ2

s∑
i=1

νiφγi(ut),

(3.22)

but considering that

(
s∑
i=1

νiφγi(ut)

)T

Λ2

s∑
i=1

νiφγi(ut) ≤ s
s∑
i=1

γ2i (ut)νTiφΛ2νiφ (3.23)

and from assumptions (A2) and (A3), the following can be concluded:

2ΔT
t PW

0
2

s∑
i=1

νiφγi(ut) ≤ ΔT
t PW

0
2Λ

−1
2

(
W0

2

)T
PΔt + sl2u

∥∥∥Ṽ2,tx̂t

∥∥∥2
Λ2
. (3.24)

Thus, 2ΔT
t PW

0
2 φ̃

′
tγ(ut) is bounded by

2ΔT
t PW

0
2 φ̃

′
tγ(ut) ≤ 2ΔT

t PW2,t

s∑
i=1

DiφṼ2,tx̂tγi(ut) − 2ΔT
t PW̃2,t

s∑
i=1

DiφṼ2,tx̂tγi(ut)

+ ΔT
t PW

0
2Λ

−1
2

(
W0

2

)T
PΔt + sl2u

∥∥∥Ṽ2,tx̂t

∥∥∥2
Λ2
.

(3.25)
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Consequently, given (3.13), (3.14), (3.15), (3.19), and (3.25), (d/dt)(ΔT
t PΔt) can be bounded

as

d

dt

(
ΔT

t PΔt

)
≤ ΔT

t

(
ATP + PA

)
Δt + 2ΔT

t PW̃1,tσ(V1,tx̂t) + 2ΔT
t PW̃2,tφ(V2,tx̂t)γ(ut)

+ ΔT
t PW

0
1Λ

−1
1

(
W0

1

)T
PΔt + ΔT

t ΛσΔt + ΔT
t PW

0
2Λ

−1
2

(
W0

2

)T
PΔt

+ uΔT
t ΛφΔt + ΔT

t PΛ
−1
3 PΔt + f̃0 + ΔT

t PΛ
−1
4 PΔt + Υ

+ 2ΔT
t PW1,tDσṼ1,tx̂t − 2ΔT

t PW̃1,tDσṼ1,tx̂t + ΔT
t PW

0
1Λ

−1
1

(
W0

1

)T
PΔt

+ l1
∥∥∥Ṽ1,tx̂t

∥∥∥2
Λ1

+ 2ΔT
t PW2,t

s∑
i=1

DiφṼ2,tx̂tγi(ut)

− 2ΔT
t PW̃2,t

s∑
i=1

DiφṼ2,tx̂tγi(ut) + ΔT
t PW

0
2Λ

−1
2

(
W0

2

)T
PΔt

+ sl2u
∥∥∥Ṽ2,tx̂t

∥∥∥2
Λ2
.

(3.26)

With respect to (d/dt)((1/2k1) tr{W̃T
1,tW̃1,t}), using several properties of the trace of a matrix,

d

dt

(
1
2k1

tr
{
W̃T

1,tW̃1,t

})
=

1
2k1

tr
{

d

dt

(
W̃T

1,tW̃1,t

)}
=

1
2k1

tr

{ ·
W̃

T

1,tW̃1,t + W̃T
1,t

·
W̃1,t

}

=
1
2k1

(
tr

{ ·
W̃

T

1,tW̃1,t

}
+ tr

{
W̃T

1,t

·
W̃1,t

})
=

1
k1

tr

{ ·
W̃

T

1,tW̃1,t

}
.

(3.27)

As W̃1,t := W1,t −W0
1 , the derivative of W1,t is clearly

·
W̃1,t =

·
W1,t. However,

·
W1,t is given by

the learning law (3.1). Therefore, by substituting (3.1) into
·
W̃1,t =

·
W1,t and the corresponding

expression into the right-hand side of (3.27), it is possible to obtain

d

dt

(
1
2k1

tr
{
W̃T

1,tW̃1,t

})
=

1
k1

tr
{
−2k1σ(V1,tx̂t)ΔT

t PW̃1,t+2k1DσṼ1,tx̂tΔT
t PW̃1,t−α2 W̃

T
1,tW̃1,t

}

=−2 tr
{
σ(V1,tx̂t)ΔT

t PW̃1,t

}
+2 tr

{
DσṼ1,tx̂tΔT

t PW̃1,t

}
− α

2k1
tr
{
W̃T

1,tW̃1,t

}

=−2 tr
{
ΔT

t PW̃1,tσ(V1,tx̂t)
}
+2 tr

{
ΔT

t PW̃1,tDσṼ1,tx̂t

}
− α

2k1
tr
{
W̃T

1,tW̃1,t

}

=−2ΔT
t PW̃1,tσ(V1,tx̂t)+2ΔT

t PW̃1,tDσṼ1,tx̂t− α

2k1
tr
{
W̃T

1,tW̃1,t

}
.

(3.28)
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Proceeding in a similar way for

d

dt

(
1
2k2

tr
{
W̃T

2,tW̃2,t

})
,

d

dt

(
1
2k3

tr
{
Ṽ T
1,tṼ1,t

})
,

d

dt

(
1
2k4

tr
{
Ṽ T
2,tṼ2,t

})
, (3.29)

it is possible to obtain

d

dt

(
1
2k2

tr
{
W̃T

2,tW̃2,t

})
= −2ΔT

t PW̃2,tφ(V2,tx̂t)γ(ut) + 2ΔT
t PW̃2,t

s∑
i=1

DiφṼ2,tx̂tγi(ut)

− α

2k2
tr
{
W̃T

2,tW̃2,t

}
,

d

dt

(
1
2k3

tr
{
Ṽ T
1,tṼ1,t

})
= −2ΔT

t PW1,tDσṼ1,tx̂t − l1
∥∥∥Ṽ1,tx̂t

∥∥∥2
Λ1

− α

2k3
tr
{
Ṽ T
1,tṼ1,t

}
,

d

dt

(
1
2k4

tr
{
Ṽ T
2,tṼ2,t

})
= −2ΔT

t PW2,t

s∑
i=1
DiφṼ2,tx̂tγi(ut) − sl2u

∥∥∥Ṽ2,tx̂t

∥∥∥2
Λ2

− α

2k4
tr
{
Ṽ T
2,tṼ2,t

}
.

(3.30)

By substituting (3.26), (3.28), and (3.30) into (3.9), the following bound for
·
V t can be

determined:

V̇t ≤ ΔT
t

(
ATP + PA

)
Δt + 2ΔT

t PW̃1,tσ(V1,tx̂t) + 2ΔT
t PW̃2,tφ(V2,tx̂t)γ(ut)

+ ΔT
t PW

0
1Λ

−1
1

(
W0

1

)T
PΔt + ΔT

t ΛσΔt + ΔT
t PW

0
2Λ

−1
2

(
W0

2

)T
PΔt

+ uΔT
t ΛφΔt + ΔT

t PΛ
−1
3 PΔt + f̃0 + f̃1x

T
t Λ3xt + ΔT

t PΛ
−1
4 PΔt + Υ

+ 2ΔT
t PW1,tDσṼ1,tx̂t − 2ΔT

t PW̃1,tDσṼ1,tx̂t + ΔT
t PW

0
1Λ

−1
1

(
W0

1

)T
PΔt

+ l1
∥∥∥Ṽ1,tx̂t

∥∥∥2
Λ1

+ 2ΔT
t PW2,t

s∑
i=1

DiφṼ2,tx̂tγi(ut) − 2ΔT
t PW̃2,t

s∑
i=1

DiφṼ2,tx̂tγi(ut)

+ ΔT
t PW

0
2Λ

−1
2

(
W0

2

)T
PΔt + sl2u

∥∥∥Ṽ2,tx̂t

∥∥∥2
Λ2

− 2ΔT
t PW̃1,tσ(V1,tx̂t)

+ 2ΔT
t PW̃1,tDσṼ1,tx̂t − α

2k1
tr
{
W̃T

1,tW̃1,t

}
− 2ΔT

t PW̃2,tφ(V2,tx̂t)γ(ut)

+ 2ΔT
t PW̃2,t

s∑
i=1

DiφṼ2,tx̂tγi(ut) − α

2k2
tr
{
W̃T

2,tW̃2,t

}
− 2ΔT

t PW1,tDσṼ1,tx̂t

− l1
∥∥∥Ṽ1,tx̂t

∥∥∥2
Λ1

− α

2k3
tr
{
Ṽ T
1,tṼ1,t

}
− 2ΔT

t PW2,t

s∑
i=1

DiφṼ2,tx̂tγi(ut)

− sl2u
∥∥∥Ṽ2,tx̂t

∥∥∥2
Λ2

− α

2k4
tr
{
Ṽ T
2,tṼ2,t

}
.

(3.31)
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Simplifying like terms

V̇t ≤ ΔT
t

(
ATP + PA

)
Δt + 2ΔT

t PW
0
1Λ

−1
1

(
W0

1

)T
PΔt + 2ΔT

t PW
0
2Λ

−1
2

(
W0

2

)T
PΔt

+ ΔT
t PΛ

−1
3 PΔt + ΔT

t PΛ
−1
4 PΔt + ΔT

t ΛσΔt + uΔT
t ΛφΔt + f̃0 + Υ

− α

2k1
tr
{
W̃T

1,tW̃1,t

}
− α

2k2
tr
{
W̃T

2,tW̃2,t

}
− α

2k3
tr
{
Ṽ T
1,tṼ1,t

}
− α

2k4
tr
{
Ṽ T
2,tṼ2,t

}
.

(3.32)

Adding and subtracting ΔT
t Q0Δt into the right-hand side of the last inequality yields the

expression ATP + PA + PRP +Q. That is

V̇t ≤ −ΔT
t Q0Δt + ΔT

t

(
ATP + PA + PRP +Q

)
Δt + f̃0 + Υ − α

2k1
tr
{
W̃T

1,tW̃1,t

}

− α

2k2
tr
{
W̃T

2,tW̃2,t

}
− α

2k3
tr
{
Ṽ T
1,tṼ1,t

}
− α

2k4
tr
{
Ṽ T
2,tṼ2,t

}
.

(3.33)

However, the expression ATP + PA + PRP + Q is, in accordance with the assumption (A6),
equal to zero. Therefore,

V̇t ≤ −ΔT
t Q0Δt − α

2k1
tr
{
W̃T

1,tW̃1,t

}
− α

2k2
tr
{
W̃T

2,tW̃2,t

}
− α

2k3
tr
{
Ṽ T
1,tṼ1,t

}

− α

2k4
tr
{
Ṽ T
2,tṼ2,t

}
+ f̃0 + Υ.

(3.34)

Now, considering thatΔT
t Q0Δt = ΔT

t P
1/2P−1/2Q0P

−1/2P 1/2Δt and using Rayleigh’s inequality,
the following can be obtained:

ΔT
t Q0Δt ≥ λmin

(
P−1/2Q0P

−1/2
)
ΔT

t PΔt (3.35)

or alternatively

−ΔT
t Q0Δt ≤ −λmin

(
P−1/2Q0P

−1/2
)
ΔT

t PΔt. (3.36)

In view of (3.36), it is possible to establish that

V̇t ≤ −λmin

(
P−1/2Q0P

−1/2
)
ΔT

t PΔt − α

2k1
tr
{
W̃T

1,tW̃1,t

}
− α

2k2
tr
{
W̃T

2,tW̃2,t

}

− α

2k3
tr
{
Ṽ T
1,tṼ1,t

}
− α

2k4
tr
{
Ṽ T
2,tṼ2,t

}
+ f̃0 + Υ.

(3.37)

As α := λmin(P−1/2Q0P
−1/2), finally the following bound for V̇t can be concluded:

V̇t ≤ −αVt + f̃0 + Υ. (3.38)
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Equation (3.38) can be rewritten in the following form

V̇t + αVt ≤ f̃0 + Υ. (3.39)

Multiplying both sides of the last inequality by exp(αt), it is possible to obtain

exp(αt)V̇t + α exp(αt)Vt ≤
(
f̃0 + Υ

)
exp(αt). (3.40)

The left-hand side of (3.40) can be rewritten as

d

dt

(
exp(αt)Vt

) ≤ exp(αt)
(
f̃0 + Υ

)
(3.41)

or equivalently as

d
(
exp(αt)Vt

) ≤ exp(αt)
(
f̃0 + Υ

)
dt. (3.42)

Integrating both sides of the last inequality yields

exp(αt)Vt − V0 ≤
∫ t

0

(
f̃0 + Υ

)
exp(ατ)dτ. (3.43)

Adding V0 to both sides of the inequality,

exp(αt)Vt ≤ V0 +
∫ t

0

(
f̃0 + Υ

)
exp(ατ)dτ. (3.44)

Multiplying both sides of the inequality (3.44) by exp(−αt), the following can be obtained:

Vt ≤ exp(−αt)V0 + exp(−αt)
∫ t

0

(
f̃0 + Υ

)
exp(ατ)dτ. (3.45)

and, consequently,

Vt ≤ V0 exp(−αt) +
f̃0 + Υ

α

(
1 − exp(−αt)). (3.46)

As P and Q0 are positive definite matrices, then α is always a positive scalar and
therefore Vt is an upperly bounded function. However, in reference to (3.8), Vt is also a
nonnegative function. Consequently, Δt,W1,t,W2,t, V1,t, V2,t ∈ L∞, and, thus, the first part of
the Theorem 3.2 has been proven. With respect to the final part of this theorem, from (3.8),
it is evident that ΔT

t PΔt ≤ Vt. Besides, from Rayleigh’s inequality, λmin(P)ΔT
t Δt ≤ ΔT

t PΔt.
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Consequently, λmin(P)ΔT
t Δt ≤ Vt. Nonetheless, in accordance with (3.46), Vt is bounded by

V0 exp(−αt) + ((f̃0 + Υ)/α)(1 − exp(−αt)). This means that

‖Δt‖ ≤

√√√√V0 exp(−αt) +
((

f̃0 + Υ
)
/α
)(

1 − exp(−αt))
λmin(P)

. (3.47)

Finally, taking the limit as t → ∞ of the last inequality, the last part of Theorem 3.2 has been
proven.

Remark 3.3. Based on the results presented in [32, 33], and, from the inequality (3.38), uniform
stability for the identification error can be guaranteed.

Remark 3.4. Although, in [34], the asymptotic convergence of the identification error to zero
is proven for multilayer neural networks, the considered class of nonlinear systems is much
more restrictive than in this work.

Remark 3.5. In [35], the main idea behind Theorem 3.2 was utilized but only for the single
layer case. In this paper, the generalization for the multilayer case is presented for first time.

4. Tuning of the Multilayer Identifier

In this section, some details about the selection of the parameters for the neural identifier
are presented. In first place, it is important to mention that the positive definite matrices
Λ1 ∈ �m×m,Λ2 ∈ �r×r ,Λσ ∈ �n×n,Λφ ∈ �n×n,Λ3 ∈ �n×n, andΛ4 ∈ �n×n presented throughout
assumptions (A2)–(A5) are known a priori. In fact, their selection can be very free. Although,
in many cases, identity matrices can be enough, the corresponding freedom of selection can
be used to satisfy the conditions specified in Remark 2.1.

Other important design decision is related to the proper number of elements m or
neurons for σ(·). A good point of departure is to select m = n where n is the dimension of
the state vector xt. Normally, this selection is enough in order to produce adequate results.
In other case, m should be selected such as m > n. With respect to φ(·), for simplicity, a first
attempt could be to set the elements of this matrix as zeroes except for the main diagonal.

Another very important question which must be taken into account is the following:
how should the weights W1

0,W2
0, V1

0, V2
0 be selected? Ideally, these weights should be

chosen in such a way that the modelling error or unmodeled dynamics f̃t can be minimized.
Likewise, the design processmust consider the solution of the Riccati equation (2.12). In order
to guarantee the existence of a unique positive definite solution P for (2.12), the conditions
specified in Remark 2.1 must be satisfied. However, these conditions could not be fulfilled
for the optimal weights. Consequently, different values for W1

0 and W2
0 could be tested

until a solution for (2.12) can be found. At the same time, the designer should be aware
of that as W1

0,W2
0, V1

0, V2
0 take values increasingly different from the optimal ones, the

upper bound for unmodeled dynamics in assumption B4 becomes greater. With respect to
the initial values for W1,t,W2,t, V1,t, and V2,t, some authors, for example [26], simply select
W1,0 = W1

0,W2,0 = W2
0, V1,0 = V1

0, and V2,0 = V2
0.
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Finally, a last recommendation, in order to achieve a proper performance of the neural
network, the variables in the identification process should be normalized. In this context,
normalization means to divide each variable by its corresponding maximum value.

5. Numerical Example

In this section, a very simple but illustrative example is presented in order to clarify the tuning
process of the neural identifier and compare the advantages of the scheme developed in this
paper with respect to the results of previous works [26–29].
Consider the following first-order nonlinear system:

ẋt = −xt + 1.9 sin(xt) + 2.2 cos(xt) − 3 sin(xt) cos(xt) + xtut, (5.1)

with the initial condition x0 = 0.7 and the input given by ut = sin(t).
For simplicity, ξt is assumed equal to zero. It is very important to note that (5.1) is only

used as a data generator since apart from the assumptions (A1)–(A3), (B4), (A5)-(A6), none
previous knowledge about the unknown system (5.1) is required to satisfactorily carry out
the identification process.

The parameters of the neural network (2.2) and the learning laws (3.1) are selected as

σ(z) =
2

1 + e−2z
− 1, φ

(
y
)
=

1
1 + e−0.5y

− 0.5,

Dσ =
∂σ(z)
∂z

∣∣∣∣
z=V 0

1 x̂t

=
4e−2V

0
1 x̂t

(
1 + e−2V

0
1 x̂t

)2 , Diφ =
∂φi(y)
∂y

∣∣∣∣
y=V 0

2 x̂t

=
0.5e−0.5V

0
2 x̂t

(
1 + e−0.5V

0
2 x̂t

)2 ,
(5.2)

A = −5, Λ1 = 1, Λ2 = 1, Λ3 = 1, Λσ = 1,

Λφ = 1, u = 1, Q0 = 2, W0
1 = 1.5,

W0
2 = 0.5, V 0

1 = 0.9, V 0
2 = 1.1.

(5.3)

Note that Riccati equation (2.12) becomes a simple second-order algebraic equation for this
case:

RP 2 + 2AP +Q = 0. (5.4)

As R = 2W0
1Λ

−1
1 (W0

1 )
T +2W0

2Λ
−1
2 (W0

2 )
T +Λ−1

3 +Λ−1
4 , Q = Λσ +uΛφ+Q0, and given the previous

values for these parameters, (5.4) has the following solution: P = 1. The rest of the parameters
for the neural identifier are selected as α = 2, l1 = 4, l2 = 0.0625, k1 = 500, k2 = 400, k3 =
600, k4 = 800. The initial condition for the neural identifier is selected as x̂0 = 0.1.

The results of the identification process are displayed in Figures 1 and 2. In Figure 1,
the state xt of the nonlinear system (5.1) is represented by solid line whereas the state x̂t is
represented by dashed line. Both states were obtained by using Simulink with the numerical
method ode23s. In order to appreciate better the quality of the identification process, the
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Figure 1: Identification process.
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Figure 2: Identification error evolution.

absolute value of the identification error Δt := x̂t − xt is showed in Figure 2. Clearly, the new
learning laws proposed in this paper exhibit a satisfactory behavior.

Now, which is the practical advantage of this method with respect to previous works
[26–29]? The determination of f̃0 and f̃1 more still (parameters associated with assumption
A.4) can result difficult. Besides, assuming that f̃1 is equal to zero, f̃0 can result excessively
large inclusive for simple systems. For example, for system (5.1) and the values selected for
the parameters of the identifier, f̃0 can approximately be estimated as 140. This implies that
the learning laws (2.16) are activated only when |Δt| ≥ 70 due to the dead-zone function
st. Thus, although the results presented in works [26–29] are technically right, on these
conditions, that is, f̃0 ≈ 70, the performance of the identifier results completely unsatisfactory
from a practical point of view since the corresponding identification error is very high. To
avoid this situation, it is necessary to be very careful with the selection of weightsW0

1 ,W
0
2 , V

0
1 ,

and V 0
2 in order to minimize the unmodeled dynamics f̃t. However, with these optimal

weights, the matrix Riccati equation could have no solution. This dilemma is overcome by
means of the learning laws (3.1) developed in this paper. In fact, as can be appreciated, a
priory knowledge of f̃0 is not required anymore for the proper implementation of (3.1).
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6. Conclusions

In this paper, a modification of a learning law for multilayer differential neural networks
is proposed. By this modification, the dead-zone function is not required anymore and a
stronger result is here guaranteed: the exponential convergence of the identification error
norm to a bounded zone. This result is thoroughly proven. First, the dynamics of the
identification error is determined. Next, a proper nonnegative function is proposed. A bound
for the first derivative of such function is established. This bound is formed by the negative of
the original nonnegative function multiplied by a constant parameter α plus a constant term.
Thus, the convergence of the identification error to a bounded zone can be guaranteed. Apart
from the theoretical importance of this result, from a practical point of view, the learning law
here proposed is easier to implement and tune. A numerical example confirms the efficiency
of this approach.
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