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We investigate an Oseen two-level stabilized finite-element method based on the local pressure
projection for the 2D/3D steady Navier-Stokes equations by the lowest order conforming finite-
element pairs (i.e., Q1 − P0 and P1 − P0). Firstly, in contrast to other stabilized methods, they
are parameter free, no calculation of higher-order derivatives and edge-based data structures,
implemented at the element level with minimal cost. In addition, the Oseen two-level stabilized
method involves solving one small nonlinear Navier-Stokes problem on the coarse mesh with
mesh sizeH, a large general Stokes equation on the finemeshwithmesh size h = O(H)2. TheOseen
two-level stabilized finite-element method provides an approximate solution (uh, ph) with the
convergence rate of the same order as the usual stabilized finite-element solutions, which involves
solving a large Navier-Stokes problem on a fine mesh with mesh size h. Therefore, the method
presented in this paper can save a large amount of computational time. Finally, numerical tests
confirm the theoretical results. Conclusion can be drawn that the Oseen two-level stabilized finite-
element method is simple and efficient for solving the 2D/3D steady Navier-Stokes equations.

1. Introduction

There are numerous works devoted to the development of efficient stable mixed finite-
element methods for solving the Navier-Stokes equations. It is a well-known fact that the
lowest-order conforming elements spaces P1 − P0 (linear velocity, constant pressure) and
Q1 − P0 (bilinear velocity, constant pressure), which are the most attractive choice from an
implementation point of view, fail to satisfy the inf-sup condition [1]. In order to make full
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use of these finite-element spaces, some kinds of stabilized finite-element methods for the
two- or three-dimensional Stokes flows and two dimensional Navier-Stokes flows appeared
in [2–13]. However, these stabilized methods depend on the stabilization parameters, the
derivatives of the pressure, the edge-based data structures, and nested mesh. Examples
include the local and global pressure jump formulations for the bilinear-constant pair where
the constraint is relaxed by using the jumps of the pressure across element interfaces.
Moreover, there is no satisfactory way to choose the optimal parameters for any given mesh.

The idea of the stabilized finite-element method based on the local pressure projection
is derived from [14] for the Stokes equations. This method differs from existing stabilization
techniques and avoids approximation of derivatives, specification of mesh-dependent
parameters, interface boundary data structures, and evaluated locally at the element level.
This stabilized technique has been extended to solve the two-dimensional Navier-Stokes
equation by Wang et al. [15].

In the last two decades, two-level strategy has been studied for efficiently solving the
nonlinear partial differential and sometimes also some linear problems. The basic idea of
two-level method is to compute an initial approximation on a very coarse mesh (involving
the solution of a very small number of nonlinear equations). Moreover, the fine structures are
captured by solving one linear system. If we choose the appropriate proportion between the
coarse and fine scale, then the two-level stabilized methods have the same convergence rate
as the usual stabilized finite-element methods. Some ideas of two-level method can be found
in the works of Xu [16, 17], Layton and Tobiska [18], Layton [19], Layton and Lenferink [20],
He et al. [21–24], and Li [25].

Recently, He and Li [22] and Li [25] have combined simplified and Newton’s two-
level iterative techniques with different stabilized finite-element methods for solving the
2D Navier-Stokes problems. The method we study in this paper is to combine the new
stabilized finite-element method in [14] with the two-level method based on the Oseen
iterative technique by the lowest-order conforming finite-element pairsQ1−P0 and P1−P0 for
solving the 2D/3D stationary Navier-Stokes problems. We present theoretical analysis under
the assumption of the uniqueness condition. The results of Theorem 4.1 in Section 4 show
that if we choose the coarse mesh scale H and the fine mesh scale h satisfying h = O(H2),
the method we study is of the convergence rate of the same order as the usual stabilized
finite-element method. However, our method is more simple and efficient. The numerical
experiments further confirm the theoretical results.

This paper is organized as follows. In Section 2, an abstract functional setting for
the steady Navier-Stokes equations is given, together with some basic notations and
assumptions. Section 3 is to recall the stabilized finite-element method based on the local
pressure projection [14] for the steady Stokes equations. we borrow the well-posedness and
the optimal error estimate of the stabilized finite-element method for the steady Navier-
Stokes equations in [15]. In Section 4, the uniform stability and convergence of the Oseen
two-level stabilized finite method are proved. In Section 5, a series of numerical experiments
is given to illustrate the theoretical results.

2. Functional Setting of the Navier-Stokes Equations

Let Ω be a bounded domain in Rd (d = 2, 3), assumed to have a Lipschitz continuous
boundary Γ and to satisfy a further condition stated in (H0) below. The steady incompressible
Navier-Stokes equations are considered as follows:
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−νΔu + (u · ∇)u +
1
2
(div u)u +∇p = f in Ω, (2.1)

div u = 0 in Ω, u = 0 on Γ,
∫
Ω
pdx = 0. (2.2)

Here u : Ω → Rd and p : Ω → R are the velocity and pressure, ν > 0 is the viscosity, and f
represents the body forces.

For the mathematical setting of problem (2.1)-(2.2), we introduce the following
Sobolev spaces:

X = H1
0(Ω)d, Y = L2(Ω)d, M = L2

0(Ω) =
{
q ∈ L2(Ω),

∫
Ω
q(x)dx = 0

}
,

D(A) = H2(Ω)d ∩X.

(2.3)

We make a regularity assumption on the Stokes problem as follows.

Assumption 2.1 (H0). For a given g ∈ Y and the Stokes problem

−Δv +∇q = g, div v = 0 in Ω, v|Γ = 0, (2.4)

we assume that (v, q) satisfy the following regularity result:

‖v‖2 +
∥∥q∥∥1 ≤ κ

∥∥g∥∥0, (2.5)

where ‖·‖i is the norm of the Sobolev spaceHi(Ω) orHi(Ω)d, i = 0, 1, 2, as appropriate, and κ
is a positive constant depending only onΩ, whichmay stand for different value at its different
occurrences. Subsequently, the positive constants κ and c (with or without a subscript) will
depend only on the data (ν,Ω, f). Because the norm and seminorm are equivalent onH1

0(Ω)d,
we use the same notation ‖u‖1 for them.

Now, the bilinear forms a(·, ·) and d(·, ·) on X ×X and X ×M are defined, respectively,
by

a(u, v) = ν(∇u,∇v), ∀u, v ∈ X, d
(
v, q

)
=
(
q,div v

)
, ∀(v, q) ∈ (X,M). (2.6)

Also, a generalized bilinear form B((·, ·); (·, ·)) on (X,M) × (X,M) is defined by

B
((
u, p

)
;
(
v, q

))
= a(u, v) − d

(
v, p

)
+ d

(
u, q

)
. (2.7)
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Then there hold the following estimates for the bilinear term B((·, ·); (·, ·)) ([2–4]):

∣∣B((u, p); (u, p))∣∣ = ν‖u‖21,∣∣B((u, p); (v, q))∣∣ ≤ α
(‖u‖1 + ∥∥p∥∥0

)(‖v‖1 + ∥∥q∥∥0

)
,

sup
(v,q)∈(X,M)

∣∣B(u, p); (v, q)∣∣
‖v‖1 +

∥∥q∥∥0

≥ β
(‖u‖1 + ∥∥p∥∥0

)
,

(2.8)

for all (u, p), (v, q) ∈ (X,M) and constants α, β > 0. Moreover, we define the trilinear form

b(u, v,w) = ((u · ∇)v,w) +
1
2
((div u)v,w)

=
1
2
((u · ∇)v,w) − 1

2
((u · ∇)w,v), ∀u, v,w ∈ X.

(2.9)

By the above notations and Hölder’s inequality, there hold the following estimates:

b(u, v,w) = −b(u,w, v), ∀u ∈ X, v,w ∈ X, (2.10)

|b(u, v,w)| ≤ 1
2
c0‖u‖1/20 ‖u‖1/21

(
‖v‖1‖w‖1/20 ‖w‖1/21 + ‖v‖1/20 ‖v‖1/21 ‖w‖1

)
, ∀u, v,w ∈ X,

(2.11)

|b(u, v,w)| + |b(v, u,w)| + |b(w,u, v)| ≤ c1‖u‖1‖v‖2‖w‖0, ∀u ∈ X, v ∈ D(A), w ∈ Y.
(2.12)

Also, the Poincare inequality holds:

‖v‖0 ≤ γ0‖v‖1, (2.13)

where c0, c1, and γ0 are positive constants depending only on Ω.
For a given f ∈ Y , the variational formulation of problem (2.1)-(2.2) reads as follows:

find (u, p) ∈ (X,M) such that

B((u, p); (v, q)) + b(u, u, v) =
(
f, v

)
, ∀(v, q) ∈ (X,M). (2.14)

The following existence and uniqueness result is classical [26, 27].

Theorem 2.2. Assume that ν > 0 and f ∈ Y satisfy the following uniqueness condition:

1 − c0γ
2
0

ν2
∥∥f∥∥−1 > 0. (2.15)



Abstract and Applied Analysis 5

Then the variational problem (2.14) admits a unique solution (u, p) ∈ (D(A)∩X,H1(Ω)∩M) such
that

‖u‖1 ≤
γ0
ν

∥∥f∥∥−1, ‖u‖2 +
∥∥p∥∥1 ≤ κ

∥∥f∥∥0. (2.16)

3. The Stabilized Finite-Element Method

In this section, we focus on the stabilized method proposed by [14] for the Stokes equations.
Let h be a real positive parameter tending to zero. Finite-element subspace (Xh,Mh) of (X,M)
is characterized by τh = τh(Ω), a partitioning ofΩ into triangles, quadrilaterals, tetrahedrons,
or hexahedrons K, assumed to be regular in the usual sense. The set of all interelement
boundaries will be denoted by Γh, and the norm will be endowed as follows:

‖u‖Γh =
⎛
⎝ ∑

γf∈Γh

∫
γf

u2dS

⎞
⎠

1/2

. (3.1)

In this paper, the finite element of velocity is defined by setting

R1(K) =

⎧⎨
⎩
P1(K), if K is triangular or tetrahedron,

Q1(K), if K is the quadrilateral or hexahedron.
(3.2)

Then, the finite-element pairs are coupled as follows:

Xh = {v ∈ X;vi|K ∈ R1(K), i, . . . , d},
Mh =

{
q ∈ M : q

∣∣
K ∈ P0(K), ∀K ∈ τh

}
.

(3.3)

Also, well-known approximation results are presented as follows [26, 27].

(H1) Approximation properties

‖v − Ihv‖0 + h1/2‖v − Ihv‖Γh + h‖v − Ihv‖1 ≤ κh2‖v‖2, ∀v ∈ D(A),
∥∥q − Jhq

∥∥
0 ≤ κh

∥∥q∥∥1, ∀q ∈ H1(Ω) ∩M.
(3.4)

(H2) Inverse inequality

‖vh‖1 ≤ κh−1‖vh‖0, ∀vh ∈ Xh,

∥∥[qh]∥∥Γh
≤ κh−1/2∥∥qh∥∥0, ∀qh ∈ Mh.

(3.5)
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Here, Ih : D(A) → Xh is the interpolation operator, and Jh : H1(Ω) ∩ M → Mh is the
L2-orthogonal projection.

Note that neither of these methods are stable in the standard Babuška-Brezzi sense;
P1 − P0 triangle or tetrahedron “locks” on regular grids (since there are more discrete
incompressibility constraints than velocity degrees of freedom), and theQ1 −P0 quadrilateral
or hexahedron is the most infamous example of unstable mixed method [28]. Obviously, the
following Lemma 3.1 manifest the insufficiency of the Babuška-Brezzi condition.

Lemma 3.1 (see [14]). There exist positive constants κ1 and κ2 whose values are independent of h
and such that

sup
vh∈Xh

∫
Ω ph∇ · vhdΩ

‖vh‖1
≥ κ1

∥∥ph∥∥0 − κ2h
1/2∥∥[ph]∥∥Γh

, ∀ph ∈ Mh. (3.6)

In order to counterbalance the terms h1/2‖[ph]‖Γh in (3.6) and compensate the inf-sup
deficiency of the lowest-order conforming finite-element pairs, the bilinear formG(·, ·) can be
defined:

G
(
p, q

)
=
(
p −Πp, q −Πq

)
, (3.7)

where the local pressure projection Π : L2(Ω) → R1.

Lemma 3.2 (see [14]). There exist positive constants C1 and C2 whose values are independent of h
and such that

C2h
1/2∥∥[ph]∥∥Γh

≤ ∥∥ph −Πph
∥∥
0, ∀ph ∈ Mh. (3.8)

Furthermore, it holds that

sup
vh∈Xh

∫
Ω ph∇ · vhdΩ

‖vh‖1
≥ C1

∥∥ph∥∥0 − C2
∥∥ph −Πph

∥∥
0, ∀ph ∈ Mh. (3.9)

With the above notations and the choice of the velocity-pressure finite-element spaces
(Xh,Mh) ⊂ (X,M), we define the stabilized bilinear form as follows:

Bh

((
uh, ph

)
;
(
v, q

))
= a(uh, v) − d

(
v, ph

)
+ d

(
uh, q

)
+G

(
ph, q

)
, ∀(v, q) ∈ (Xh,Mh).

(3.10)

Then the stabilized discrete variational formulation of the Navier-Stokes problem (2.14) reads
as follows: find (uh, ph) ∈ (Xh,Mh) such that, for all (v, q) ∈ (Xh,Mh),

Bh

((
uh, ph

)
;
(
v, q

))
+ b(uh, uh, v) =

(
f, v

)
. (3.11)

The stability of the stabilized finite-element method based on the local pressure projection for
the Stokes equation is presented as follows.
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Theorem 3.3 (see [2, 14]). Let (Xh,Mh) be the lowest-order conforming finite-element spaces.
Assume that

∥∥Πp
∥∥
0 ≤ κ

∥∥p∥∥0, ∀p ∈ L2(Ω),
∥∥p −Πp

∥∥
0 ≤ κh

∥∥p∥∥1, ∀p ∈ H1(Ω), (3.12)

hold. Then there exists a positive constant β, independent of h and satisfying

∣∣Bh

((
u, p

)
;
(
v, q

))∣∣ ≤ α
(‖u‖1 + ∥∥p∥∥0

)(‖v‖1 + ∥∥q∥∥0

)
, ∀(u, p), (v, q) ∈ (X,M), (3.13)

β
(‖uh‖1 +

∥∥ph∥∥0

) ≤ sup
(vh,qh)∈(Xh,Mh)

∣∣Bh

((
uh, ph

)
;
(
vh, qh

))∣∣
‖vh‖1 +

∥∥qh∥∥0

, ∀(uh, ph
) ∈ (Xh,Mh). (3.14)

Applying Brouwer’s fixed-point theorem, the following theorem can be directly given.

Theorem 3.4 (see [2, 15]). Under the assumptions of Theorems 2.2 and 3.3, problem (3.11) admits
a unique solution (uh, ph) ∈ (Xh,Mh) satisfying

‖uh‖1 ≤
γ0
ν

∥∥f∥∥0,
∥∥ph∥∥0 ≤ β−1

(
c0ν

−2γ30
∥∥f∥∥2

0 + γ
∥∥f∥∥0

)
. (3.15)

For simpleness, the Stokes projection (Rh,Qh) : (X,M) → (Xh,Mh) is defined by

Bh

((
Rh

(
v, q

)
, Qh

(
v, q

))
;
(
vh, qh

))
= B((v, q); (vh, qh

))
, ∀(vh, qh

) ∈ (Xh,Mh), (3.16)

for all (v, q) ∈ (X,M), and satisfies [2, 15]

∥∥v − Rh(v, q)
∥∥
0 + h

(∥∥v − Rh

(
v, q

)∥∥
1 +

∥∥q −Qh

(
v, q

)∥∥
0

)

≤ κh2(‖v‖2 + ∥∥q∥∥1

)
, ∀(v, q) ∈

(
D(A),H1(Ω) ∩M

)
.

(3.17)

Thus, we can easily obtain the following optimal error estimate for the steady Navier-
Stokes equations.

Theorem 3.5 (see [15]). Under the assumptions of Theorems 2.2 and 3.3, one has

‖u − uh‖0 + h
(‖u − uh‖1 +

∥∥p − ph
∥∥
0

) ≤ κh2. (3.18)

4. Oseen Two-Level Stabilized Finite-Element Method

In this section, we will present Oseen two-level stabilized finite-element method and derive
optimal bound of the errors. Let H and h � H be two real positive parameters tending
to 0. Also, a coarse mesh partition τH(Ω) of Ω is made as in Section 3, and a fine mesh
partition τh(Ω) is generated by a mesh refinement process to τH(Ω). The conforming finite-
element space pais (Xh,Mh) and (XH,MH) ⊂ (Xh,Mh) based on the partition τh(Ω)
and τH(Ω), respectively, are constructed in Section 3. The Oseen two-level stabilized finite
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approximations is applied by using the lowest finite-element pairs P1 − P0 and Q1 − P0 as
follows.

Step I. Solve the nonlinear Navier-Stokes problem on a coarse mesh: find (uH, pH) ∈
(XH,MH) such that

Bh

((
uH, pH

)
;
(
vH, qH

))
+ b(uH, uH, vH) =

(
f, vH

)
, ∀(vH, qH

) ∈ (XH,MH). (4.1)

Step II. Solve the linear Stokes problem on a fine mesh: find (uh, ph) ∈ (Xh,Mh) such that

Bh

((
uh, ph

)
;
(
vh, qh

))
+ b

(
uH, uh, vh

)
=
(
f, vh

)
, ∀(vh, qh

) ∈ (Xh,Mh). (4.2)

Obviously, the Oseen two-level stabilized finite-element method admits a unique
solution by applying the Lax-Milgram theorem. For convenience, we set eh = uh − uh, ηh =
ph − ph, then a sequence of error estimates for the Oseen two-Level errors u − uh and p − ph

are derived as follows.

Theorem 4.1. Under the assumptions of Theorems 2.2 and 3.3, the Oseen two-level stabilized finite-
element scheme (4.1)-(4.2) admits a unique solution (uh, ph) ∈ (Xh,Mh) such that

∥∥∥u − uh
∥∥∥
1
+
∥∥∥p − ph

∥∥∥
0
≤ κ

(
h +H2

)
. (4.3)

Proof. Subtracting (3.11) from (4.2) yields that

a(eh, vh) − d
(
vh, ηh

)
+ d

(
eh, qh

)
+G

(
ηh, qh

)
+ b(uh − uH, uh, vh) + b(uH, eh, vh) = 0. (4.4)

Using (2.10) and taking (vh, qh) = (eh, ηh), then

ν‖eh‖21 +G
(
ηh, ηh

)
= b(uH − uh, uh, eh). (4.5)

For the trilinear terms, by (2.11), (2.12), (2.16), and (3.18), we estimate the following

|b(uH − uh, uh, eh)| = |b(uH − uh, uh − u, eh) + b(uH − uh, u, eh)|
≤ κ(‖uH − uh‖1‖u − uh‖1 + ‖u‖2‖uh − uH‖0)‖eh‖1

≤ κH2‖eh‖21 ≤
ν

2
‖eh‖21 + κH4.

(4.6)

Thanks to (3.14), (4.6), and the relation h < H, it follows that

‖e‖1 +
∥∥η∥∥0 ≤ β−1 sup

(vh,qh)∈(Xh,Mh)

∣∣Bh

((
e, η

)
;
(
vh, qh

))∣∣
‖vh‖1 +

∥∥qh∥∥0

≤ cH2.

(4.7)
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Then, we deduce from a triangle inequality, (3.18), and (4.7) that

∥∥∥u − uh
∥∥∥
1
+
∥∥∥p − ph

∥∥∥
0
≤ ‖eh‖1 + ‖u − uh‖1 +

∥∥ηh∥∥0 +
∥∥p − ph

∥∥
0

≤ κ
(
h +H2

)
.

(4.8)

5. Numerical Examples

In this section, we concentrate on the performance of the one-level finite-element method and
Oseen two-level finite element method described in this paper.

In order to implement these methods presented in this paper, a suitable choice of local
pressure projection Π is important. The simplest way to accomplish this is to use standard
finite-element projection or interpolation operators.

From a practical viewpoint, the main factors in the choice of Π are simplicity and
locality, that is, computation of its action must be done at the element level using only
standard nodal data structures.We recall the technique presented in Pavel Bochev [14], which
is different from references [29, 30]. For a given node Ni in τh, let Ω̂i denote its dual volume.
Given a function q ∈ L2(Ω), let qi be the constant function on Ω̂i that minimizes the functional

Ji
(
q
)
=

1
2

∫
Ω̂i

(
qi − q

)2
dΩ. (5.1)

Then set

Πq =
Nnodes∑
i=1

qiNi(x) ∈ R1, (5.2)

whereNi(x) denotes the nodal basis of R1 andNnodes is the number of nodes in τh. The action
of the operator defined in (5.2) can be computed locally at the element level and has the same
properties as the usual Clement interpolation, that is, (3.12) is satisfied. For q ∈ qh ∈ R0, the
functional in (5.1) further simplifies to

Ji
(
qh
)
=

∑
K∩Ω̂i /= 0

Vi(K)
(
qi − qkh

)2
, (5.3)

where qkh is the constant value of qh on K and Vi(K) is the volume fraction of the element K
that belongs to the dual cell Ω̂i associated with the node Ni. Minimization of Ji then yields
the formula

qi =

∑
K∈Ω̂i

Vi(K)qkh∑
K∈Ω̂i

Vi(K)
; (5.4)

that is, the nodal values of Πqh are area weighted averages of the surrounding constant
pressure values of qh.
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Table 1: Comparison of the one-level stabilized method with the Oseen two-level stabilized method.

1/H 1/h ‖u − uh‖H1/‖u‖H1 rate ‖p − ph‖L2/‖p‖L2 rate Time (s)

3 9 0.573428 / 0.140335 / 1.00
9 0.573514 / 0.140348 / 0.45

4 16 0.250137 1.4419 0.0709911 / 6.00
16 0.250247 1.4414 0.071002 1.1843 1.88

5 25 0.134685 1.3872 0.0430539 1.1181 50.00
25 0.13479 1.3864 0.0430626 1.1205 24.85

6 36 0.0832799 1.3184 0.029072 1.0769 421.20
36 0.0833677 1.3176 0.0290787 1.0768 214.00

7 49 0.056536 1.2563 0.0210298 1.0504 2526.50
49 0.0566021 1.2560 0.0210348 1.0504 1255.30

For the purpose of numerical comparisons, we consider the spatial domain in R2 as
[0, 1]×[0, 1] and viscosity ν = 1.0. The velocity and pressure are designed on the same uniform
triangulation of Ω. The exact solution is given by

u =
(
u1
(
x, y

)
, u2

(
x, y

))
, p

(
x, y

)
= 10(x − 0.5),

u1
(
x, y

)
= 10x2(1 − x)2y

(
1 − y

)(
1 − 2y

)
,

u2
(
x, y

)
, = −10x(1 − x)(1 − 2x)y2(1 − y

)2
,

(5.5)

and f is determined by (2.1).
For simplicity, the unit square is divided into N2 small squares, where N dedicates

the number of the partition in each direction. When K is the square, Vi(K) = 1/N2. Then the
formula (5.4) can be given as follows:

qi =

∑
K∈Ω̂i

qkh

nk
, (5.6)

where nk is the number of elements in Ω̂i.
To establish a reference point for the evaluation of the possible impact from the

Oseen two-level stabilized finite-element method, we compute the one-level stabilized finite-
element method for the steady Navier-Stokes equations on the fine mesh. The Oseen two-
level stabilized finite-element solutions (uh, ph) are obtained by solving the solution (uH, pH)
of the stationary Navier-Stokes equations on a coarse mesh and then solving a linear system
on a fine mesh with mesh size h.

Table 1 shows the relative energy error estimates of the numerical velocity and
pressure for these methods. In particular, the results of the one-level stabilized finite-element
method are presented on the first line; those of the Oseen two-level stabilized finite-element
method with relationship h = O(H2) on second line. From Table 1, we find that these two
methods have a convergence rate of the same order, as shown in Theorem 4.1. However, the
Oseen method is probably two times faster than the one-level stabilized method.
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In conclusion, the Oseen two-level stabilized finite-element method is an efficient and
potential method for solving the 2D/3D steady Navier-Stokes equation. It is also suitable
to solve some practical engineering problems arising in the fluid dynamics. Furthermore,
the methods can help to solve the two-dimensional and three-dimensional nonstationary
incompressible viscous flows which will be discussed in our further work.
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