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We investigate the DGH equation. Analogous to the Camassa-Holm equation, this equation
possesses the blow-up phenomenon. We establish a new blow up criterion on the initial data to
guarantee the formulation of singularities in finite time.

1. Introduction

In 2001, Dullin et al. [1] derived the following equation to describe the unidirectional
propagation of surface waves in a shallow water regime:

yt + c0ux + uyx + 2yux + γuxxx = 0, (1.1)

where y = u − α2uxx, the constants α2 and γ/c0 are squares of length scales, and the constant
c0 =

√
gh > 0 is the critical shallow water speed for undisturbed water at rest at spatial

infinity, where h is the mean fluid depth and g is the gravitational constant, g = 9.8m/s2.
In [2], local well-posedness of strong solutions to (1.1) was established by applying

Katos theory [3] and some sufficient conditions were found to guarantee the finite blowup
of the corresponding solutions for the spatially nonperiodic case. In [4], the author finds best
constants for two convolution problems on the unit circle via a variational method. Then, by
using the best constants on the DGH equation, sufficient conditions on the initial data are
given to guarantee finite time singularity formation for the corresponding solutions.

When γ = 0 and α = 1, system (1.1) reduces to the Camassa-Holm equation, which was
derived physically by Camassa and Holm in [5] (found earlier by Fokas and Fuchssteiner
[6] as a bi-Hamiltonian generalization of the KdV equation) by approximating directly the
Hamiltonian for Eulers equation in the shallow water region with u(x, t) representing the
free surface above a flat bottom. For the hydrodynamic derivation one should also refer to
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the discussion in the papers [7–9]. The Camassa-Holm equation is completely integrable and
has infinitely many conservation laws. The local well-posedness for Camassa-Holm equation
in the Sobolev spaceHs with s > 3/2was proved in [10, 11]. One of the remarkable features of
Camassa-Holm equation is the presence of breaking waves. Wave breaking for a large class
of initial data has been established in [10–16]. Here we would like to mention that in [16]
we give a new and direct proof for McKeans theorem. The wave breaking and propagation
speed for more general family of one-dimensional shallow water equations are studied in
[17]. In [18] Guo and Zhu established sufficient conditions on the initial data to guarantee
blow-up phenomenon for the modified two component Camassa-Holm (MCH2) system.
The existence of global solutions was also explored in [10, 12]. In addition to [10, 12], it is
worth pointing out that the solution can be continued uniquely after wave breaking either
as a conservative global solution or as a dissipative global solution, see the discussions in
the papers [19, 20]. The solitary waves of Camassa-Holm equation are peaked solitons. The
peaked solitons replicate a feature that is characteristic for the waves of great height-waves
of largest amplitude which are exact solutions of the governing equations for water waves
compare the papers [21–23]. The orbital stability of the peakons was shown by Constantin
and Strauss in [24], here the orbital stability means that the shape of the waves is stable under
perturbations, so that these patterns can be detected. It is worthy of being mentioned here the
property of propagation speed of solutions to the Camassa-Holm equation; the first results in
this direction were provided in the papers [25–27], which was also presented by Zhou and his
collaborators in [28]. In [29], it is proved that strong solution to the Camassa-Holm equation
decays algebraically with the same exponent as that of the initial datum.

In this paper, wewill establish a new blow-up criterion on the profile of the initial data.
Now, we give our main result as follows.

Theorem 1.1. Suppose that u0 ∈ Hs(R), s ≥ 3/2, y0 = u0 − α2u0xx satisfies y0(x0) + (1/2)(c0 +
γ/α2) = 0,

∫x0

−∞
eξ/α

[
y0(ξ) +

1
2

(
c0 +

γ

α2

)]
dξ > 0 ,

∫∞

x0

e−ξ/α
[
y0(ξ) +

1
2

(
c0 +

γ

α2

)]
dξ < 0, (1.2)

for some point x0 ∈ R. Then the solution u(x, t) to (1.1) with initial datum u0(x) blows up in finite
time.

2. Proof of Theorem 1.1

As direct calculation, we can rewrite (1.1) as

yt + uyx + 2yux −
γ

α2
yx +

(
c0 +

γ

α2

)
ux = 0. (2.1)

Letting λ = −γ/α2 and κ = (c0 + (γ/α2))/2, the above equation can reduce to

yt + uyx + 2yux + λyx + 2κux = 0. (2.2)
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SetΛ = (1−α2∂2x)
1/2, then the operatorΛ−2 can be expressed by its associated Green’s function

G = (1/2α)e−|x|/α as Λ−2f(x) = G ∗ f(x) = (1/2α)
∫
R
e−|x−y|/αf(y)dy. Then, (2.2) is equivalent

to the following equation:

ut + (u + λ)ux + ∂xG ∗
(

u2 +
α2

2
u2
x + 2κu

)

= 0. (2.3)

Motivated by Mckean’s deep observation for the Camassa-Holm equation [13], we can do
similar particle trajectory as

qt = u
(
q, t

)
+ λ, 0 < t < T, x ∈ R,

q(x, 0) = x, x ∈ R,
(2.4)

where T is the life span of the solution, then q is a diffeomorphism of the line; here
it is worthwhile pointing out that this corresponds to the Lagrangian viewpoint in
hydrodynamics (see the discussion in [30]). Differentiating the first equation in (2.4) with
respect to x, one has

dqt
dx

= qxt = ux

(
q, t

)
qx, t ∈ (0, T). (2.5)

Hence

qx(x, t) = exp

{∫ t

0
ux

(
q, s

)
ds

}

, qx(x, 0) = 1. (2.6)

From (2.2) and (2.5) we can obtain

d

dt

((
y
(
q
)
+ κ

)
q2x

)
=
[
yt

(
q
)
+
(
u
(
q, t

)
+ λ

)
yx

(
q
)
+ 2ux

(
q, t

)(
y
(
q
)
+ k

)]
q2x = 0, (2.7)

then it follows that

(
y
(
q
)
+ κ

)
q2x = y0(x) + κ. (2.8)
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In the case of the CH-equation (with κ = 0), the invariance of (2.8) has a geometric
interpretation, compare [31, 32]. Differentiating (2.2), it follows from the definition of q(x, t)
that

d

dt
ux

(
q(x0, t), t

)
= utx

(
q(x0, t), t

)
+ uxx

(
q(x0, t), t

)(
u
(
q(x0, t), t

)
+ λ

)

= −1
2
u2
x

(
q(x0, t), t

)
+

1
α2

u2(q(x0, t), t
)
+

1
α2

2κu
(
q(x0, t), t

)

− 1
α2

G ∗
(

u2 +
α2

2
u2
x + 2κu

)
(
q(x0, t), t

)

= −1
2
u2
x

(
q(x0, t), t

)
+

1
α2 (u + κ)2

(
q(x0, t), t

)

− 1
α2

G ∗
[

(u + κ)2 +
α2

2
u2
x

]
(
q(x0, t), t

)

≤ −1
2
u2
x

(
q(x0, t), t

)
+

1
2α2 (u + κ)2

(
q(x0, t), t

)
,

(2.9)

here we have used the inequality

G ∗
[

(u + κ)2 +
α2

2
u2
x

]

≥ 1
2
(u + κ)2. (2.10)

In fact,

G ∗
[

(u + κ)2 +
α2

2
u2
x

]

=
1
2α

∫

R

e−|x−ξ|/α
[

(u + κ)2 +
α2

2
u2
ξ

]

(ξ, t)dξ

=
1
2α

e−x/α
∫x

−∞
eξ/α

[

(u + κ)2 +
α2

2
u2
ξ

]

(ξ, t)dξ

+
1
2α

ex/α
∫∞

x

e−ξ/α
[

(u + κ)2 +
α2

2
u2
ξ

]

(ξ, t)dξ.

(2.11)

From

∫x

−∞
eξ/α

[
(u + κ)2 + α2u2

ξ

]
(ξ, t)dξ ≥ 2α

∫x

−∞
eξ/α(u + κ)uξdξ

= α

∫x

−∞
eξ/α(u + κ)2ξdξ

= αex/α(u + κ)2 −
∫x

−∞
eξ/α(u + κ)2dξ,

(2.12)
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we can deduce

∫x

−∞
eξ/α

[

(u + κ)2 +
α2

2
u2
ξ

]

(ξ, t)dξ ≥ α

2
ex/α(u + κ)2. (2.13)

Similarly we can obtain

∫∞

x

e−ξ/α
[

(u + κ)2 +
α2

2
u2
ξ

]

(ξ, t)dξ ≥ α

2
e−x/α(u + κ)2. (2.14)

Combining (2.11), (2.13), and (2.14)we deduce our inequality (2.10).

Claim.

ux(q(x0), t) < 0 is strictly decreasing and (u + κ)2(q(x0, t), t) < α2u2
x(q(x0, t), t) for all t ≥ 0.

Suppose there exists a t0 such that (u + κ)2(q(x0, t), t) > α2u2
x(q(x0, t), t) on [0, t0) and

(u + κ)2(q(x0, t0), t0) = α2u2
x(q(x0, t0), t0). From the expression of u(x, t) in terms of y(x, t), we

can rewrite u(x, t) + κ and ux(x, t) as follows:

u(x, t) + κ =
1
2α

e−x/α
∫x

−∞
eξ/α

[
y(ξ, t) + κ

]
dξ +

1
2α

ex/α
∫∞

x

e−ξ/α
[
y(ξ, t) + κ

]
dξ,

ux(x, t) = − 1
2α2

e−x/α
∫x

−∞
eξ/α

[
y(ξ, t) + κ

]
dξ +

1
2α2

ex/α
∫∞

x

e−ξ/α
[
y(ξ, t) + κ

]
dξ.

(2.15)

Now, let

I(t) := e−q(x0,t)/α
∫q(x0,t)

−∞
eξ/α

[
y(ξ, t) + κ

]
dξ,

II(t) := eq(x0,t)/α
∫∞

q(x0,t)
e−ξ/α

[
y(ξ, t) + κ

]
dξ.

(2.16)

Then,

dI(t)
dt

= − 1
α

(
u
(
q(x0, t)

)
+ λ

)
e−q(x0,t)/α

∫q(x0,t)

−∞
eξ/α

[
y(ξ, t) + κ

]
dξ

+ e−q(x0,t)/α
∫q(x0,t)

−∞
eξ/αyt(ξ, t)dξ.

(2.17)

From (2.2), the equation for y(x, t) can be written as

yt +
((
y + κ

)
u
)
x +

1
2

(
u2 − α2u2

x

)

x
+ λ

(
y + κ

)
x + κux = 0. (2.18)
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Putting (2.18) into the second term on the right-hand side of (2.17) and using (2.8), we have

e−q(x0,t)/α
∫q(x0,t)

−∞
eξ/αyt(ξ, t)dξ

= −e−q(x0,t)/α
∫q(x0,t)

−∞
eξ/α

(
((
y + κ

)
u
)
x +

1
2

(
u2 − α2u2

x

)

x
+ λ

(
y + κ

)
x + κux

)
(ξ, t)dξ

=
1
2

(
α2u2

x − u2
)(

q(x0, t), t
) − κu

+
1
α
e−q(x0,t)/α

∫q(x0,t)

−∞
eξ/α

(
(
y + κ

)
u +

1
2

(
u2 − α2u2

x

)
+ λ

(
y + κ

)
+ κu

)
(ξ, t)dξ

=
1
2

(
α2u2

x − u2
)(

q(x0, t), t
) − κu

+
1
α
e−q(x0,t)/α

∫q(x0,t)

−∞
eξ/α

(
3
2
u2 − α2

2
u2
x − α2uuxx + λ

(
y + κ

)
+ 2κu

)

(ξ, t)dξ

=
α2

2
u2
x − αuux − κu

+
1
α
e−q(x0,t)/α

∫q(x0,t)

−∞
eξ/α

(

u2 +
α2

2
u2
x + λ

(
y + κ

)
+ 2κu

)

(ξ, t)dξ.

(2.19)

Here we have used

−αe−q(x0,t)/α
∫q(x0,t)

−∞
eξ/α(uuxx)(ξ, t)dξ = −α(uux)

(
q(x0, t), t

)
+
1
2
u2(q(x0, t), t

)

+ αe−q(x0,t)/α
∫q(x0,t)

−∞
eξ/α

(
u2
x(ξ, t) −

1
2α2

u2
)
(ξ, t)dξ.

(2.20)

On the other hand, after integration by parts, the first term on the right-hand side of (2.17)
yields

− 1
α
u
(
q(x0, t)

)
e−q(x0,t)/α

∫q(x0,t)

−∞
eξ/α

[
y(ξ, t) + κ

]
dξ

= α(uux)
(
q(x0, t), t

) − u2(q(x0, t), t
) − κu.

(2.21)
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Hence after combining the above terms and inequalities together, (2.17) reads as

dI(t)
dt

=

[
α2

2
u2
x − u2 − 2κu

]
(
q(x0, t), t

)

+
1
α
e−q(x0,t)/α

∫q(x0,t)

−∞
eξ/α

(

u2 + 2κu +
α2

2
u2
x

)

(ξ, t)dξ

=

[
α2

2
u2
x − (u + κ)2

]
(
q(x0, t), t

)

+
1
α
e−q(x0,t)/α

∫q(x0,t)

−∞
eξ/α

(

(u + κ)2 +
α2

2
u2
x

)

(ξ, t)dξ

≥ 1
2

[
α2u2

x − (u + κ)2
](
q(x0, t), t

)
> 0, on [0, t0),

(2.22)

here (2.13) is used again. From the continuity property we have

e−q(x0,t0)/α
∫q(x0,t0)

−∞
eξ/α

[
y(ξ, t0) + κ

]
dξ > e−x0/α

∫x0

−∞
eξ/α

[
y0(ξ) + κ

]
dξ > 0. (2.23)

Similarly,

dII(t)
dt

≤ 1
2

[
(u + κ)2 − α2u2

x

](
q(x0, t), t

)
< 0, on [0, t0). (2.24)

Thus by continuity property

eq(x0,t0)/α
∫∞

q(x0,t0)
e−ξ/α

[
y(ξ, t0) + κ

]
dξ < ex0/α

∫∞

x0

e−ξ/α
[
y0(ξ) + κ

]
dξ < 0. (2.25)

Summarizing (2.23) and (2.25), we obtain

α2u2
x

(
q(x0, t0), t0

) − (u + κ)2
(
q(x0, t0), t0

)

= − 1
α2

∫q(x0,t0)

−∞
eξ/α

[
y(ξ, t0) + κ

]
dξ

∫∞

q(x0,t0)
e−ξ/α

[
y(ξ, t0) + κ

]
dξ

> − 1
α2

∫x0

−∞
eξ/α

[
y0(ξ) + κ

]
dξ

∫∞

x0

e−ξ/α
[
y0(ξ) + κ

]
dξ

= α2u2
0x(x0) − (u0 + κ)2(x0) > 0.

(2.26)

This is a contradiction. So the claim is true.
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Moreover, due to (2.22) and (2.24), we have the following for (α2u2
x −

(u + κ)2)(q(x0, t), t):

d

dt

(
α2u2

x − (u + κ)2
)(

q(x0, t), t
)

= − 1
α2

d

dt

(∫q(x0,t)

−∞
eξ
(
y + κ

)
(ξ, t)dξ

∫∞

q(x0,t)
e−ξ

(
y + κ

)
(ξ, t)dξ

)

= − 1
α2

d

dt

(

e−q(x0,t)
∫q(x0,t)

−∞
eξ
(
y + κ

)
(ξ, t)dξ

)

eq(x0,t)
∫∞

q(x0,t)
e−ξ

(
y + κ

)
(ξ, t)dξ

− 1
α2

e−q(x0,t)
∫q(x0,t)

−∞
eξ
(
y + κ

)
(ξ, t)dξ

d

dt

(

eq(x0,t)
∫∞

q(x0,t)
e−ξ

(
y + κ

)
(ξ, t)dξ

)

≥ − 1
2α2

(
α2u2

x − (u + κ)2
)(

q(x0, t), t
)
eq(x0,t)

∫∞

q(x0,t)
e−ξ

(
y + κ

)
(ξ, t)dξ

+
1
2α2

(
α2u2

x − (u + κ)2
)(

q(x0, t), t
)
e−q(x0,t)

∫q(x0,t)

−∞
eξ
(
y + κ

)
(ξ, t)dξ

= −ux

(
q(x0, t), t

)(
α2u2

x − (u + κ)2
)(

q(x0, t), t
)
.

(2.27)

Now, substituting (2.9) into (2.27), it yields

d

dt

(
α2u2

x − (u + κ)2
)(

q(x0, t), t
) ≥ 1

2α2

(
α2u2

x − (u + κ)2
)(

q(x0, t), t
)

×
(∫ t

0

(
α2u2

x − (u + κ)2
)(

q(x0, τ), τ
)
dτ − 2α2u0x(x0)

)

.

(2.28)

Before completing the proof, we need the following technical lemma.

Lemma 2.1 (see [33]). Suppose that Ψ(t) is twice continuously differential satisfying

Ψ′′(t) ≥ C0Ψ′(t)Ψ(t), t > 0, C0 > 0,

Ψ(t) > 0, Ψ′(t) > 0.
(2.29)

Then Ψ(t) blows up in finite time. Moreover, the blow-up time can be estimated in terms of the initial
datum as

T ≤ max
{

2
C0Ψ(0)

,
Ψ(0)
Ψ′(0)

}
. (2.30)

Let Ψ(t) = (
∫ t
0(α

2u2
x − (u + κ)2)(q(x0, τ), τ)dτ − 2α2u0x(x0)), then (2.28) is an equation

of type (2.29) with C0 = 1/2α2. The proof is complete by applying Lemma 2.1.
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Remark 2.2. The special case c0+γ/α2 = 0 was studied in [4]. We can regard the special case as
the CH(κ = 0) equation with a strong dispersive term c0yx. Result here without the restriction
is an improvement.

Remark 2.3. Recall, (2.2), we can easily find that the DGH equation is the CH(κ/= 0) equation
with a strong dispersive term.
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