
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2012, Article ID 497345, 12 pages
doi:10.1155/2012/497345

Research Article
Homotopy Interior-Point Method for
a General Multiobjective Programming Problem

X. Zhao,1, 2 S. G. Zhang,1 and Q. H. Liu3

1 Department of Mathematics, Jilin University, Changchun 130001, China
2 Department of Mathematics, Beihua University, Jilin 132013, China
3 Institute of Applied Mathematics, Changchun University of Technology, Changchun 130012, China

Correspondence should be addressed to Q. H. Liu, liuqinghuaijl@163.com

Received 26 October 2011; Revised 10 February 2012; Accepted 12 February 2012

Academic Editor: Yongkun Li

Copyright q 2012 X. Zhao et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We present a combined homotopy interior-point method for a general multiobjective program-
ming problem. For solving the KKT points of the multiobjective programming problem, the
homotopy equation is constructed.We prove the existence and convergence of a smooth homotopy
path from almost any initial interior point to a solution of the KKT system under some basic
assumptions.

1. Introduction

We consider the following multiobjective programming problem:

min f(x),

s.t. g(x) ≤ 0,

h(x) = 0,

(MOP)

where f = (f1, f2, . . . , fp)
T : Rn → Rp, g = (g1, g2, . . . , gm)

T : Rn → Rm and h =
(h1, h2, . . . , hs)

T : Rn → Rs.
Since Kellogg et al. [1] and Smale [2] have published their remarkable papers, more

andmore attention has been paid to the homotopymethod. As a globally convergent method,
the homotopy method now becomes an important tool for numerically solving complemen-
tary problem and nonlinear mathematical programming problem [3–5].
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Among most interior-point methods for solving mathematical programming, one of
the main ideas is numerically tracing the center path generated by the optimal solution set of
the logarithmic barrier function. Usually, the strict convexity of the logarithmic barrier func-
tion or boundedness of the solution set is needed [6, 7]. Lin et al. [8] presented a new interior-
point method, combined homotopy interior-point method (CHIP method), for convex
nonlinear programming. Subsequently, Lin et al. [9] generalized the CHIP method to convex
multi-objective programming with only inequality constraints. Recently, Song and Yao [10]
generalized the combined homotopy interior-point method to the general multiobjective
programming problem under the so-called normal cone condition. In that paper, they proved
the existence of the homotopy path under the following assumptions:

(A1) Ω0 is nonempty and bounded;

(A2) for all x ∈ Ω, the vectors {∇gi(x), i ∈ B(x),∇hj(x), j ∈ J} are linearly independent;

(A3) for all x ∈ Ω, {x +
∑

i∈B(x) ui∇gi(x) +
∑

j∈J zj∇hj(x) : z = (zj) ∈ Rs, ui ≥ 0, i ∈
B(x)}⋂Ω = {x},

where Ω = {x ∈ Rn | g(x) � 0, h(x) = 0}, Ω0 = {x ∈ Rn | g(x) < 0, h(x) = 0}, and B(x) =
{i ∈ {1, 2, . . . , m} | gi (x) = 0}.

In [10], the combined homotopy method was given as follows:

H
(
ω,ω(0), t

)
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1 − t)
(∇f(x)λ +∇g(x)u

)
+∇h(x)z + t

(
x − x(0))

h(x)

U × g(x) − tU(0) × g
(
x(0))

(1 − t)

(

1 −
p∑

i=1

λi

)

e − t
(
λ − λ(0)

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0, (1.1)

where x(0) ∈ Ω0, u
(0) > 0, λ(0) > 0, and

∑p

i=1 λi
(0) = 1. However, the solution simply yields

λ = λ(0) for all t ∈ (0, 1]. In fact, from the last equation, we have p(1−t)+(pt−p−t)∑p

i=1 λi+t = 0.
According to this, we know that λ ≡ λ0 for all of t ∈ [0, 1]. That is, the method given in [10]
just solves the single-objective programming problem.

The purpose of this paper is to generalize the combined homotopy interior-point
method for a general multiobjective programming problem (MOP) under quasinorm cone
condition that weakens the assumptions more than the ones in [10] and constructs a new
homotopy equation which is much different and simpler the that one given in [9].

The paper is organized as follows. In Section 2, we recall some notations and pre-
liminaries results. In Section 3, we construct a new combined homotopy mapping and prove
the existence and convergence of a smooth homotopy path from almost any interior initial
point to a KKT point of MOP under some assumptions. In Section 4, numerical results are
given.
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2. Some Definitions and Properties

Let Rn
+ and Rn

++ denote the nonnegative and positive orthants of Rn, respectively. For any two
vectors y = (y1, y2, . . . , yn)

T and z = (z1, z2, . . . , zn)
T in Rn, we use the following conventions:

y = z, iff yi = zi, i = 1, 2, . . . , n,

y < z, iff yi < zi, i = 1, 2, . . . , n,

y � z, iff yi ≤ zi, i = 1, 2, . . . , n,

y ≤ z, iff yi ≤ zi, y /= z, i = 1, 2, . . . , n.

(2.1)

Suppose that f = (f1, f2, . . . , fp)
T : Rn → Rp, g = (g1, g2, . . . , gm)

T : Rn → Rm, and h =
(h1, h2, . . . , hs)

T : Rn → Rs are three times continuously differentiable functions. Let

Ω =
{
x ∈ Rn | g(x) � 0, h(x) = 0

}
, Ω0 =

{
x ∈ Rn | g(x) < 0, h(x) = 0

}
, ∂Ω =

Ω
Ω0

,

Λ+ =

{

λ ∈ R
p
+ |

p∑

i=1

λi = 1

}

, Λ++ =

{

λ ∈ R
p
++ |

p∑

i=1

λi = 1

}

,

I = {1, 2, . . . , m}, J = {1, 2, . . . , s},
(2.2)

and let

B(x) =
{
i ∈ {1, 2, . . . , m}gi(x) = 0

}
(2.3)

denote the active index set at a given point.

Definition 2.1. A point x ∈ Ω is said to be an efficient solution to multiobjective programming
problem (MOP), if there is no y ∈ Ω such that f(y) ≤ f(x) holds.

Definition 2.2. Let U ⊂ Rn be an open set, and let ϕ : U → RP be a smooth mapping. If
Range [∂ϕ(x)/∂x] = Rp for all x ∈ ϕ−1(y), then y ∈ Rp is a regular value and x ∈ Rn is a
regular point.

Definition 2.3. Let ηi : Rn → Rn(i = 1, 2, . . . , m). For any x ∈ Ω, {ηi(x) : i ∈ B(x)} is said to be
positive linear independent with respect to ∇g(x)n and ∇h(x) if

∇h(x)z +
∑

i∈B(x)

(
yi∇gi(x) + uiηi(x)

)
= 0, z ∈ Rs, yi ≥ 0, ui ≥ 0 (i ∈ B(x)) (2.4)

implies that

z = 0, yi = 0, ui = 0 (i ∈ B(x)). (2.5)
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Lemma 2.4 (parametric form of the Sard theorem on a smooth manifold; see [11]). Let
Q,N and P be smooth manifolds of dimensions q,m and p. Respectively, let ϕ : Q × N → P be
a Cr map, where r > max{0, m − p}. If 0 ∈ P is a regular value of ϕ, then for almost all α ∈ Q, 0 is a
regular value of ϕ(α, ·).

Lemma 2.5 (inverse image theorem; see [12]). If 0 is a regular value of the mapping ϕα(·) �
ϕ(α, ·), then ϕ−1

α (0) consists of some smooth manifolds.

Lemma 2.6 (classification theorem of one-dimensional manifold; see [12]). A one-dimensional
smooth manifold is diffeomorphic to a unit circle or a unit interval.

The following three basic assumptions are commonly used in this paper:

(C1) Ω0 is nonempty and bounded;

(C2) for any x ∈ Ω, there exists a positive linear independent map η(x) with respect to ∇g(x)
and ∇h(x) such that, {ηi(x) : i ∈ B(x)} is positive linear independent with respect to
∇g(x) and ∇h(x);

(C3) for any x ∈ ∂Ω, there exists a positive linear independent map η(x) with respect to ∇g(x)
and ∇h(x) , such that

⎧
⎨

⎩
x +
∑

i∈B(x)
uiηi(x) +

∑

j∈J
zj∇hj(x) : zj ∈ R, j ∈ {J}, ui ≥ 0, i ∈ B(x)

⎫
⎬

⎭

⋂
Ω = {x} (2.6)

(quasinormal cone condition).

Remark 2.7. If Ω satisfies assumptions (A1)–(A3), then it necessarily satisfies assumptions
(C1)–(C3).

In fact, if we choose η(x) = ∇g(x), then it is easy to get the result. Clearly, ifΩ satisfies
assumptions (C1)–(C3), then it does not necessarily satisfies assumptions (A1)–(A3).

3. Main Results

Let x ∈ Ω. We say that x is a KKT point of (MOP) if there exists (λ, u, z) ∈ R
p+m
+ × Rs, such

that

∇f(x)λ +∇g(x)u +∇h(x)z = 0, (3.1a)

Ug(x) = 0, (3.1b)

1 −
p∑

i=1

λi = 0, (3.1c)

where ∇f(x) = (∇f1(x), . . . ,∇fp(x)) ∈ Rn×p, ∇g(x) = (∇g1(x), . . . ,∇gm(x)) ∈ Rn×m, ∇h(x) =
(∇h1(x), . . . ,∇hm(x)) ∈ Rn×s.

Meanwhile, the KKT system of MOP is (3.1a)–(3.1c).
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For a convex multiobjective programming problem, the solution of the MOP can be
obtained from the KKT system, and for a non-convex multi-objective programming problem,
it is significant when we get a solution of the KKT system.

To solve the KKT system (3.1a)–(3.1c), we construct a homotopy equation as follows:

H
(
ω,ω(0), t

)
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1 − t)
(∇f(x)λ +∇g(x)u + tη(x)u2) +∇h(x)z + t

(
x − x(0))

h(x)

U × g(x) − tU(0) × g
(
x(0))

(1 − t)

(

1 −
p∑

i=1

λi

)

e − t
(
λ5/2 − (λ(0))5/2

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0, (3.2)

where ω(0) = (x(0), λ(0), u(0), z(0)) ∈ Ω0 × Λ++ × Rm
++ × {0}, ω = (x, λ, u, z) ∈ Rn × Rp × Rm × Rs,

u2 = (u2
1, u

2
2 . . . , u

2
m)

T ∈ Rm, λ5/2 = (λ5/21 , λ5/22 , . . . , λ5/2p )
T ∈ Rp, U = diag(u), e = (1, 1, . . . , 1)T ∈

Rp and t ∈ [0, 1].
When t = 1, the homotopy equation (3.2) becomes

∇h(x)z +
(
x − x(0)

)
= 0, (3.3a)

h(x) = 0, (3.3b)

Ug(x) −U(0)g
(
x(0)
)
= 0, (3.3c)

λ5/2 =
(
λ(0)
)5/2

. (3.3d)

By assumption (C3), we get z = 0, x = x(0). Since g(x(0)) < 0, (3.3c) implies that
u = u(0). Equation (3.3d) shows that λ = λ(0). That is, the equation H(ω,ω(0), 1) = 0 with
respect to ω has only one solution ω = ω(0) = (x(0), λ(0), u(0), 0).

When t = 0, H(ω,ω(0), t) = 0 turns to the KKT system (3.1a)–(3.1c).
For a given ω(0), rewrite H(ω,ω(0), t) asHω(0) (ω, t). The zero-point set of Hω(0) is

H−1
ω(0) =

{
(ω, t) ∈ Ω × R

p+m
++ × Rs × (0, 1] : H

(
ω,ω(0), t

)
= 0
}
. (3.4)

Theorem 3.1. Suppose that H is defined as in (3.2) and let f, g, and h be three times continuously
differentiable functions. In addition, let assumptions (C1)–(C3) hold, and let ηi be two times contin-
uously differentiable function. Then, for almost all initial points ω(0) ∈ Ω0 × Λ++ × Rm

++ × {0}, 0 is
a regular value of Hω(0) and H−1

ω(0) consists of some smooth curves. Among them, a smooth curve, say
Γω(0) , is starting from (ω(0), 1).

Proof. Denote the Jacobi matrix of H(ω,ω(0), t) by DH(ω,ω(0), t). For any ω(0) ∈ Ω and
t ∈ [0, 1], we have DH(ω,ω(0), t) = (∂H/∂ω, ∂H/∂ω(0), ∂H/∂t). Now, we consider the sub-
matrix of DH(ω,ω(0), t).
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For any (x, x(0), λ(0), u(0)) ∈ Rn ×Ω0 ×Λ++ × Rm
++,

∂H

∂
(
x, x(0), λ(0), u(0)

) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Q −tIn 0 0

∇h(x)T 0 0 0

U∇g(x)T −tU(0)∇g
(
x(0))T 0 −tdiag(g(x(0)))

0 0
5
2
t
(
λ(0)
)3/2

Ip 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (3.5)

where Q = (1 − t)(
∑p

i=1 λi∇2fi(x) +
∑m

j=1 uj∇2gj(x) + t
∑m

j=1 u
2
j∇ηj(x)) +

∑s
k=1 zk∇2hk(x) + tIn.

We obtain that

rank
∂H

∂
(
x, x(0), λ(0), u(0)

) = n + p +m + s. (3.6)

That is, 0 is a regular value of H. By the parametric form of the Sard theorem, for
almost all ω(0) ∈ Ω0 × Λ++ × Rm

++ × {0}, 0 is a regular value of Hω(0) . By the inverse image
theorem, H−1

ω(0) (0) consists of some smooth curves. Since H(ω(0), ω(0), 1) = 0, there must be a
smooth curve, denoted by Γω(0) , starting from (ω(0), 1).

Theorem 3.2. Let assumptions (C1)-(C2) hold. For a givenω(0) = (x(0), λ(0), u(0), z(0)) ∈ Ω0×Λ++×
Rm

++×{0}, if 0 is a regular value ofHω(0) , then the projection of the smooth curve Γω(0) on the component
λ is bounded.

Proof. Suppose that the conclusion does not hold. Since (0, 1] is bounded, there exists a
sequence {(ω(k), tk)} ⊂ Γω(0) such that

tk −→ t∗,
∥
∥
∥λ(k)

∥
∥
∥ −→ ∞. (3.7)

From the last equality of (3.2), we have

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 − tk

1 − tk

· · ·
1 − tk

⎞

⎟
⎟
⎟
⎟
⎟
⎠

−

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(1 − tk)λ
(k)
1 + (1 − tk)

∑

i /= 1

λ
(k)
i + tk

(
λ
(k)
1

)5/2

(1 − tk)λ
(k)
2 + (1 − tk)

∑

i /= 2

λ
(k)
i + tk

(
λ
(k)
2

)5/2

· · ·

(1 − tk)λ
(k)
p + (1 − tk)

∑

i /= p

λ
(k)
i + tk

(
λ
(k)
p

)5/2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

− tk

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(
λ
(0)
1

)5/2

(
λ
(0)
2

)5/2

· · ·
(
λ
(0)
p

)5/2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0. (3.8)

If we assume ‖λ(k)‖ → +∞(k → ∞), this hypothesis implies that

{

i ∈ {1, 2, . . . , p} : lim
k→∞

λ
(k)
i = ∞

}

/=Φ. (3.9)
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Since tk → t∗, λ(k) > 0, it follows that the second part in the left-hand side of some
equations in (3.8) tends to infinity as k → ∞. But the other two parts are bounded. This is
impossible. Thus, the component λ is bounded.

Theorem 3.3. Let f, g, and h be three times continuously differentiable functions. In addition, let
assumptions (C1)–(C3) hold, and let ηi be two times continuously differentiable function. Then, for
almost all of ω(0) ∈ Ω0 ×Λ++ × Rm

++ × {0},H−1
ω(0) (0) contains a smooth curve Γω(0) ⊂ Ω × R

p
+ × Rm

+ ×
Rs × (0, 1], which starts from (ω(0), 1). As t → 0, the limit set T × {0} ⊂ Ω ×Λ+ ×Rm

+ ×Rs × {0} of
Γω(0) is nonempty and every point in T is a solution of the KKT system (3.1a)–(3.1c).

Proof. From the homotopy equation (3.2), it is easy to see that Γω(0) ⊂ Ω×Rp
+×Rm

+ ×Rs×(0, 1]. By
Theorem 3.1, for almost all ω(0) ∈ Ω0 ×Λ++ × Rm

++ × {0}, 0 is a regular value ofHω(0) andH−1
ω(0)

contains of a smooth curve Γω(0) starting from (ω(0), 1). By the classification theorem of one-
dimensional smoothmanifolds, Γω(0) is diffeomorphic to a unit circle or the unit interval (0, 1].

Noticing that

∣
∣
∣
∣
∣

∂Hω(0)
(
ω(0), 1

)

∂ω

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

In 0 0 ∇h
(
x(0))

∇h
(
x(0))T 0 0 0

U(0)∇g
(
x(0))T 0 diag

(
g
(
x(0))) 0

0 −5
2
(
λ(0)
)3/2

Ip 0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= (−1)s
∣
∣
∣
∣diag

(
g
(
x(0)))

∥
∥
∥
∥−

5
2
(
λ(0)
)3/2

Ip

∥
∥
∥
∥∇h
(
x(0))T∇h

(
x(0))
∣
∣
∣
∣,

(3.10)

By assumption (C2), we know that |∇h(x(0))T∇h(x(0))|/= 0. And because g(x(0)) < 0,
λ(0) ∈ Λ++, we obtain that [∂Hω(0) (ω(0), 1)/∂ω] is nonsingular. Therefore, the smooth curve
Γω(0) , which starts from (ω(0), 1), is diffeomorphic to (0, 1].

Let (ω∗, t∗) be a limit point of Γω(0) . Only three cases are possible:

(a) (ω∗, t∗) ∈ Ω ×Λ+ × Rm
+ × Rs × {0},

(b) (ω∗, t∗) ∈ ∂(Ω0 × R
p+m
+ ) × Rs × (0, 1],

(c) (ω∗, t∗) ∈ Ω × R
p+m
+ × Rs × {1}.

Because H(ω(0), ω(0), 1) = 0 has a unique solution (ω(0), 1), case (c) will not happen.
In case (b), because Ω and (0, 1] are bounded sets and by assumption (C2), for any

x ∈ Ω, there exists a positive linear independent map η(x) with respect to ∇g(x) and ∇h(x)
such that {ηi(x) : i ∈ B(x)} is positive linear independent with respect to ∇g(x) and ∇h(x).
From the first equality of (3.2), we get that the component z of Γω(0) is bounded.

If case (b) holds, then there exists a sequence {(ω(k), tk)} ⊂ Γω(0) such that

∥
∥
∥
(
ω(k), tk

)∥
∥
∥ −→ ∞. (3.11)
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Because Ω and (0, 1] are bounded and by Theorem 3.2, there exists a sequence
(denoted also by {(ω(k), tk)} ⊂ Γω(0) ) such that

x(k) −→ x∗, λ(k) −→ λ∗,
∥
∥
∥u(k)

∥
∥
∥ −→ ∞, z(k) −→ z∗, tk −→ t∗, as k −→ ∞.

(3.12)

From the third equality of (3.2), we have

g
(
x(k)
)
= tk
(
U(k)
)−1

U(0)g
(
x(0)
)
. (3.13)

Hence, the active index set B(x∗) is nonempty.
From the homotopy equation (3.2), it follows that

(1 − tk)
(

∇f
(
x(k)
)
λ(k) +∇g

(
x(k)
)
u(k) + tkη

(
x(k)
)(

u(k)
)2
)

+∇h
(
x(k)
)
z(k) + tk

(
x(k) − x(0)

)
= 0.

(3.14)

(i) When t∗ = 1, rewrite (3.14) as

∑

j∈B(x∗)
(1 − tk)

(

∇gj
(
x(k))u

(k)
j + tkηj

(
x(k))
(
u
(k)
j

)2
)

+∇h
(
x(k))z(k) +

(
x(k) − x(0))

= −(1 − tk)

[
∑

j/∈B(x∗)
∇gj
(
x(k))u

(k)
j + tkηj

(
x(k))
(
u
(k)
j

)2
+∇f

(
x(k))λ(k) − (x(k) − x(0))

]

.

(3.15)

Because {u(k)
j }, j /∈ B(x∗), are bounded and by assumption (C1), when k → ∞, we

observe that

lim
k→∞

⎛

⎝
∑

j∈B(x∗)

(1 − tk)
(

∇gj
(
x(k)
)
u
(k)
j + tkηj

(
x(k)
)(

u
(k)
j

)2
)

+∇h
(
x(k)
)
z(k) +

(
x(k) − x(0)

)
=0

⎞

⎠.

(3.16)

Using x(k) → x∗ and z(k) → z∗(k → ∞), we have from (3.16) that

∑

j∈B(x∗)

(

∇gj(x∗) lim
k→∞

(1 − tk) u
(k)
j + ηj(x∗) lim

k→∞
(1 − tk) tk

(
u
(k)
j

)2
)

= −
(
∇h(x∗)z∗ + x∗ − x(0)

)
.

(3.17)
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It is easy to see that the right-hand side of (3.17) is bounded. By assumption (C2) and
(3.17), we get

lim
k→∞

(1 − tk)u
(k)
j = 0, lim

k→∞
(1 − tk)tk

(
u
(k)
j

)2
= αj , j ∈ B(x∗), (3.18)

where αj ≥ 0.
Then, we have

x(0) = x∗ +∇h(x∗)z∗ +
∑

j∈B(x∗)

αjηj(x∗), (3.19)

which contradicts assumption (C3).

(ii) When t∗ ∈ [0, 1), rewrite (3.14) as

∑

j∈B(x∗)

(1 − tk)
(

∇gj
(
x(k)
)
u
(k)
j + tkηj

(
x(k)
)(

u
(k)
j

)2
)

= −(1 − tk)

⎡

⎣
∑

j/∈B(x∗)

(

∇gj
(
x(k)
)
u
(k)
j + tkηj

(
x(k)
)(

u
(k)
j

)2
)

+∇f
(
x(k)
)
λ(k)

⎤

⎦

− tk
(
x(k) − x(0)

)
− ∇h

(
x(k)
)
z(k).

(3.20)

We know that, since Ω and {u(k)
j }, j /∈ B(x∗) are bounded as k → ∞, the right-hand

side of (3.20) is bounded. But by assumptions (C2) and (C3), if u
(k)
j → ∞(j ∈ B(x∗)), then the

left-hand side of (3.20) is infinite, this is a contradiction.
As a conclusion, (a) is the only possible case, and ω∗ is a solution of the KKT system

(3.1a)–(3.1c).
Let s be the arc-length of Γω(0) . We can parameterize Γω(0) with respect to s.

Theorem 3.4. The homotopy path Γω(0) is determined by the following initial-value problem for the
ordinary differential equation:

DHω(0) (ω(s), t(s))

⎡

⎢
⎢
⎢
⎢
⎢
⎣

·
ω

·
μ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= 0,

ω(0) = ω(0), t(0) = 1.

(3.21)

The component ω∗ of the solution point (ω(s∗), t(s∗)), for t(s∗) = 0, is a solution of the KKT system.



10 Journal of Applied Mathematics

4. Algorithm and Example

The following algorithm describes the numerical computation for Pareto optimal solutions.

Algorithm 4.1 ((MOP) Euler-Newton method).

Step 1. Give an initial point (ω(0), 1) ∈ Ω0 ×R
p+m
++ × {0} × {1}, an initial step length h0 > 0, and

three small positive numbers ε1, ε2, ε3. Let k := 0.

Step 2. Compute the direction γ (k) of the predictor step:

(a) compute a unit tangent vector ξ(k) ∈ Rn+p+m+s+1 of Γω0 at (ω(0), tk);

(b) determine the direction γ (k) of the predictor step.

If the sign of the determinant
∣
∣
∣
∣
DH

ω(0) (ω(k),tk)

ξ(k)
T

∣
∣
∣
∣ is (−1)p+m+s+pm+ps+ms+1, take γ (k) = ξ(k).

If the sign of the determinant
∣
∣
∣
∣
DH

ω(0) (ω(k),tk)

ξ(k)
T

∣
∣
∣
∣ is (−1)p+m+s+pm+ps+ms, take γ (k) = −ξ(k).

Step 3. Compute a corrector point (ω(k+1), tk+1):

(
(ω∗)(k), (t∗)k

)
=
(
ω(k), tk

)
+ hkγ

(k),

(
ω(k+1), tk+1

)
=
(
(ω∗)(k), (t∗)k

)
−DHω(0)

(
(ω∗)(k), (t∗)k

)+
Hω(0)

(
(ω∗)(k), (t∗)k

)
,

(4.1)

where

DHω(0) (ω, t)+ = DHω(0) (ω, t)T
(
DHω(0) (ω, t)DHω(0) (ω, t)T

)−1
(4.2)

is the Moore-Penrose inverse of DHω(0) (ω, t).
If ‖Hω(0) (ω(k+1), tk+1)‖ ≤ ε1, let hk+1 = min{h0, 2hk} and go to Step 4.
If ‖Hω(0) (ω(k+1), tk+1)‖ ∈ (ε1, ε2), let hk+1 = hk and go to Step 4.
If ‖Hω(0) (ω(k+1), tk+1)‖ ≥ ε2, let hk+1 = max{(1/2)h0, (1/2)hk} and go to Step 3.

Step 4. If ω(k+1) ∈ Ω × R
p+m
+ × Rs and tk+1 > ε3, let k = k + 1 and go to Step 2.

If ω(k+1) ∈ Ω × R
p+m
+ × Rs and tk+1 < −ε3, let hk := hk(tk/(tk − tk+1)), go to Step 3, and

recompute (ω(k+1), tk+1) for the initial point (w(k), tk).
If ω(k+1) /∈ Ω × R

p+m
+ × Rs, let hk := (hk/2)(tk/(tk − tk+1)), go to Step 3, and recompute

(ω(k+1), tk+1) for the initial point (ω(k), tk).
If ω(k+1) ∈ Ω × R

p+m
+ × Rs and |tk+1| ≤ ε3, then stop.

Remark 4.2. In Algorithm 4.1, the arc length parameter is not computed explicitly. The tangent
vector at a point on Γω(0) has two opposite directions, one (the positive direction) makes s
increase and the other (the negative direction) makes s decrease. The negative direction will
lead us back to the initial point, so we must go along the positive direction. The criterion in
Step 2 (b) of Algorithm 4.1 that determines the positive direction is based on a basic theory of
homotopy method, that is, the positive direction γ at any point (ω, t) on Γω(0) keeps the sign
of the determinant

∣
∣
∣
DH

ω(0) (ω,t)
γT

∣
∣
∣ invariant.
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Table 1: Results of Example 4.3.

x(0) x∗ f(x∗) ‖Hω∗ ‖
(4.000, −1.000) (7.1927, −2.0476) (55.9269, 21.7710) 1.0e−003

(3.000, 0.000) (3.7552, −0.8690) (14.8563, 1.3254) 1.0e−013

Table 2: Results of Example 4.4.

x(0) x∗ f(x∗) ‖Hω∗ ‖
(1.0000, 2.0000, 0.0000, 1.0000, 1.0000) (−1.3074, −2.8605) (11.3566, −9.2942) 1.0e−012

(−1.0000, −2.0000, 1.0000, 1.0000, 1.0000) (−1.3073, −2.8603) (11.3550, −9.2930) 1.0e−003

Example 4.3. We have

min f = min
{
x2
1 + x2

2, (x1 + 3)2 + x2
2

}
,

s.t. g1(x) = (x1 − 3)2 + x2
2 − 64 ≤ 0,

g2(x) = (x1 − 5)2 + x2
2 − 9 ≤ 0,

h(x) = x1 − x2
2 − 3 = 0.

(4.3)

The results are shown in Table 1.

Example 4.4. We have

min f = min
{

x2
1 + x2

2 + x2
3 + x2

4 + x2
5, 3x1 + 2x2 − 1

3
x3 + 0.01(x4 − x5)3

}

,

s.t. g1(x) = x2
1 + x2

2 + x2
3 + x2

4 − 10 ≤ 0,

h1(x) = 4x1 − 2x2 + 0.8x3 + 0.6x4 + 0.5x2
5 = 0,

h2(x) = x1 + 2x2 − x3 − 0.5x4 + x5 − 2 = 0.

(4.4)

The results are shown in Table 2.
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