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The orbital dynamics of an artificial satellite in the Earth’s atmosphere is considered. An analytic
first-order atmospheric drag theory is developed using Lagrange’s planetary equations. The
short periodic perturbations due to the geopotential of all orbital elements are evaluated. And to
construct a second-order analytical theory, the equations of motion become very complicated to
be integrated analytically; thus we are forced to integrate them numerically using the method of
Runge-Kutta of fourth order. The validity of the theory is checked on the already decayed Indian
satellite ROHINI where its data are available.

1. Introduction

The problem of the orbital motion of celestial bodies in a resisting medium can be traced back
to Newton’s Principle [1] and Laplace’s analysis of a possibly finite velocity of gravitation
[2]. However, with the advent of the space age there arose the need of precisely predicting
the orbital behavior of the newly launched bodies.

When the artificial satellites move in Low Earth Orbits (in brief LEO) their orbital
motion is perturbed by the resisting force. Therefore, an adequate analytical description of
the drag force is required to predict precisely the orbital perturbations due to atmospheric
drag. These perturbations due to the atmospheric drag are more complicated and difficult to
deal with than orbits perturbed by gravity because of the nonconservative property of the
drag force. The adequate allowance for atmospheric drag turned out to be a problem for
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unforeseen complexity [3–8]. In order to be able to solve the equations of motion including
the drag force analytically, one is forced to do many approximations. On the other hand, from
the computational point of view, having an analytical solution at hand, we can jump from the
initial conditions to the new state, which makes the computation extremely fast.

The order of magnitude of the atmospheric drag acting on a satellite depends on the
altitude of the satellite. The orbital behavior of an LEO satellite could be strongly influenced
by atmospheric drag [4, 9, 10], and therefore affects the quality of the remote sensing of the
satellite [11, 12]. Traditionally, the problem of orbit disturbance by atmospheric drag is solved
by numerical integration [13–18]. An analytical solution gives the theoretical integrals and
shows the physical effects with very clear spectral properties [19–24]. This may give a direct
insight into the physical phenomenon of the disturbance [25–27]. Bezdeka and Vokrouhlicky
[28] developed a semianalytic theory of motion for close-Earth spherical satellites including
drag and gravitational perturbations. Xu et al. [29] derived an analytical solution of a satellite
orbit disturbed by atmospheric drag. They first transformed the disturbance force vector and
rotated it to the orbital frame so that it can be used in the simplified Gaussian equations of
satellite motion. The disturbances are separated into three parts: shortperiodic terms with
triangular functions of the mean anomaly M, longperiodic terms with triangular functions
of the argument of perigee and inclination (ω, I), and secular terms [nonperiodic functions
of semimajor axis and eccentricity (a, e)].

The main effects of the force are to bring out large secular decreases in the elements a,
the semimajor axis, and e, the eccentricity, that cause the satellite plunges toward Earth. This
perturbing influence is one of the most important perturbing forces in the altitude regime
from 150 to 600 km which is called the drag force. The drag force, �FD, per unit mass of the
satellite can be represented by

�FD = −1
2
CD

(
A

m

)
ρ
∥∥∥ �V∥∥∥ �V , (1.1)

where CD is a dimensionless drag coefficient, empirically determined to have a value close to
2; it can be taken as 2.2 with an error (standard deviation)which should not exceed 5% unless
the assumption about the accommodation coefficient is greatly in error. But in fact the drag
coefficient depends on the mean free path of the atmospheric molecules with respect to the
linear dimensions of the satellite; therefore, the orbital theory should be applied with caution
for large satellites in their last revolutions [4]. After that Sehnal [30] derived a theoretical
expression for the dimensionless drag coefficient (see (3.1) there). �V is the velocity of the
satellite relative to the atmosphere (called the ambient velocity), A represents the effective
cross-sectional area of the satellite, which is to be found by averaging all possible projected
areas of the satellite onto a plane perpendicular to �V ,m is the mass of the satellite, and ρ is the
density of the atmosphere. The density ρ depends on position and time in a very complicated
manner. Its variation with height depends on the form of the atmosphere, since it decreases
rapidly with slight growing in the altitude; the effect of the flattening of the atmosphere is
rather significant.

2. Rotation of the Atmosphere

This effect is so small, so a simple approximation is justified. The differential rotation of the
atmosphere complicates the numerical calculation and it gives no sense in this very small
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effect. So we will assume that the atmosphere rotates with the same angular velocity of the
Earth �σ, then

�V = �v − �σ × �r, (2.1)

where �v is the orbital velocity of the satellite, and �r its radius vector. Thus

V 2 = v2 − 2�v · (�σ × �r) + (�σ × �r)2. (2.2)

If (̂i, ĵ, k̂) are the base vectors of the rectangular geocentric equatorial frame associated
with the spherical coordinates (r, λ, δ), then �σ = σk̂ with σ = 7.27205217 × 10−5 rad/s, and

V 2 = v2 − 2σh cos I + σ2r2cos2δ, (2.3)

where I is the orbital inclination, δ is the satellite’s declination, and h is the integral of areas.
Now the ambient velocity can be written in the form:

V 2 = v2kR, (2.4)

where

kR = 1 − 2σh cos I
v2

+
σ2r2cos2δ

v2
. (2.5)

The third term in kR may usually be neglected, being less than about 1/250, and the second
termwhich is of order of 1/15 may be evaluated at perigee, where the density is much greater
than elsewhere on the orbit; thus we may effectively regard kR as a constant.

3. The Atmospheric Drag Force Model

We have assumed that the atmospheric density is approximated as an exponential function
which is given by

ρ = ρpo exp
[
β
(
rpo − r

)]
, (3.1)

where ρpo is the atmospheric density at the initial perigee point rpo , β is taken as a constant,
1/β is about 50 kilometers for most satellite orbits, and r is given by relation:

r = a(1 − e cosE), (3.2)

where a, e are the orbital semimajor axis and eccentricity and E is the eccentric anomaly of
the satellite. Now

ρ = ρpo exp
[
β(ao − a − xo) + βx cos E

]
, (3.3)
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where x = ae, xo = aoeo, �V is the velocity of satellite relative to ambient atmosphere and is
generally through

�V = �v − �ωa × �r, (3.4)

where �v is the velocity of satellite with respect to the Earth’s center, �ωa is the west-to-east
angular velocity of the atmosphere and �r is the position vector of the satellite.

The radial Vs, transverse Vt, and orthogonal Vw components of the velocity are given
by

Vs =

√
μ

a(1 − e2)
e sin f,

Vt =

√
μ

a(1 − e2)
(
1 + e cos f

) − rωa cos I,

Vw = ωar sin I cos
(
f +ω

)
,

(3.5)

where μ = G(M⊕ + m) ≈ GM⊕, the Earth’s gravitational parameter, is the product of the
universal constant of gravity G and the total mass of the Earth M⊕, the mass of the satellite
m, and f,ω are the true anomaly and the argument of the perigee of the satellite. Then, the
radial SD, transverse TD, and orthogonal WD components of the drag force are given by

SD = −1
2
CD

A

m
ρ
∥∥∥ �V∥∥∥

√
μ

a(1 − e2)
e sin f,

TD = −1
2
CD

A

m
ρ
∥∥∥ �V∥∥∥

[√
μ

a(1 − e2)
(
1 + e cos f

) − rωa cos I

]
,

WD = −1
2
CD

A

m
ρ
∥∥∥ �V∥∥∥rωa sin I cos

(
f +ω

)
,

(3.6)

where

∥∥∥ �V
∥∥∥ =

[
μ

a(1 − e2)

(
e2 + 2e cos f + 1

)

+r2ω2
a

(
cos2I + sin2I co s2

(
f +ω

)) − 2rωa cos I

√
μ

a(1 − e2)
(
1 + e cos f

)]1/2
.

(3.7)

Using the relations

cos f =
cosE − e

1 − e cosE
, (3.8)

sin f =

√
1 − e2 sinE
1 − e cosE

. (3.9)
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Equations (3.6), can be written in the form

SD = −b n

1 − cosE
aeρ
∥∥∥ �V∥∥∥ sinE,

TD = −bn
(
1 − e2

)
1 − cosE

aρ
∥∥∥ �V∥∥∥

[
1 − d

(1 − ed cosE)2

1 − e2

]
,

WD = −bωaaρ
∥∥∥ �V∥∥∥(1 − e cosE) sin I cos

(
f +ω

)
,

(3.10)

where

∥∥∥ �V
∥∥∥ =
√

μ

a

√
1 + e cosE
1 − e cosE

{
1 − d

1 + e cosE
1 − e cosE

+
ω2

a

2n2

[
1 + e cosE
1 − e cosE

]2

+
[(

1 − e2cos2E
)
sin2Icos2

(
f +ω

)
+ e2cos2I sin2I

]}
+ · · · ,

d =
ωa

n

√
1 − e2 cos I,

(3.11)

where n =
√
μ/a3 is the mean motion.

For a close Earth’s satellite the ratioωa/n is about 1/15; the third term in the expansion
is thus only about 1/500 of the leading term and will be ignored. For satellites that are not
close, the ratio will be larger but the atmospheric density that will multiply this expression
will then be so small that the product will still be unimportant. we thus take

∥∥∥ �V∥∥∥ =
√

μ

a

√
1 + e cosE
1 − e cosE

[
1 − d

1 + e cosE
1 − e cosE

]
,

b =
1
2
CD

(
A

m

)
.

(3.12)

4. Lagrange’s Planetary Equations

The orbit is uniquely determined by 6 elements, namely, the orbital elements. The Lagrange
planetary equations are a set of 6 differential equations which measure the rate change of
these orbital elements a, e, i, ω,Ω and any time element, for example, the mean anomaly M

ȧ =
2e sin f

n
√
1 − e2

S +
2a

√
1 − e2

nr
T,

ė =

√
1 − e2 sin f

na
S +

√
1 − e2

nae

[
a
(
1 − e2

)
r

− r

a

]
T,
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·
I =

r cos
(
f +ω

)
na2

√
1 − e2

W,

Ω̇ =
r sin
(
f +ω

)
na2

√
1 − e2 sin I

W,

ω̇ = − Ω̇ cos I −
√
1 − e2

nae

[
S cos f − T

(
1 +

r

a(1 − e2)

)
sin f

]
,

Ṁ = n − 2
na2

Sr − ω̇
√
1 − e2 − Ω̇

√
1 − e2 cos I.

(4.1)

There are many forms of the Lagrange planetary equations. In many cases, some of
orbital elements are undefined, and hence, we have to replace this set by a new set of elements
valid to define the orbit, and the planetary equations will take a new form in terms of the new
element. For the equatorial orbits I = 0 or I = 180o or even when I, e have small values we
have near equatorial near circular orbits and the periapsis is undefined and hence the time
of pericentric passage, T and ω are undefined or at least meaningless and should be replaced
by other elements as the longitude of periapsis, 	 , defined as 	 = ω + Ω.

5. The Earth’s Gravity Force Model

The gravitational field of the Earth is quite irregular. However, it can be represented by an
infinite series of spherical harmonics, choosing the principal axes with origin of coordinates
at centre of mass in addition assuming also that the gravitational field of the Earth is axially
symmetric; then the form adopted is, [31]

U⊕ = −μ
r

[
1 −

∞∑
n=2

(
R⊕
r

)n

JnPn(sin δ)

]
, (5.1)

where R⊕ is the equatorial radius of the Earth, μ is the Earth’s gravitational parameter, (r, δ)
are the appeared geocentric coordinates of the satellite, Jn are zonal harmonic coefficients,
and Pn(sin δ) the Legendre Polynomials are given by

Pn(sin δ) =
1
2n

N∑
j=0

(−1)j (2n − 2)!(sin δ)n−2j

j!
(
n − j

)
!
(
n − 2j

)
!
, (n = 0, 1, 2, 3, . . .), (5.2)

where

N =

⎧⎪⎨
⎪⎩

n

2
n even,

n − 1
2

n odd.
(5.3)
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After some lengthy straightforward algebraic calculation we can evaluate the force
components in the radial SG, transverse TG, and normal WG components as

SG = −3
4
J2
μR2

⊕
r4

[
2 − 3 sin2I

(
1 − cos 2

(
f +ω

))]

+ J3
R3

⊕μ
2r5

sin I
[(

15 sin2I − 12
)
sin
(
f +ω

) − 5 sin2I sin 3
(
f +ω

)]

+ J4
5R4

⊕μ
64r6

[
24 − 120 sin2I + 105 sin4I + 20

(
6 sin2I − 7 sin4I

)

× cos 2
(
f +ω

)
+ 35 sin4I cos 4

(
f +ω

)]
,

TG = −3J2
μR2

⊕
r4

sin I cos I sinF1,1 cosF1,1 − J3
3R3

⊕μ
4r5

sin I cosF1,1

[
−2 + 5 sin2I − sin2I cosF2,2

]

− J4
5R4

⊕μ
8r6

sin2I cosF1,1

[(
−12 + 21 sin2I

)
sinF1,1 − 7 sin2I sinF3,3

]
,

WG = −3J2
μR2

⊕
r4

sin I cos I sin
(
f +ω

)

− J3
3R3

⊕μ
4r5

cos I
[
−2 + 5 sin2I − sin2I cos 2

(
f +ω

)]

− J4
5R4

⊕μ
8r6

sin I cos I
[(

−12 + 21 sin2I
)
sin
(
f +ω

) − 7 sin2I sin 3
(
f +ω

)]
.

(5.4)

6. The Analytical Solution

In this section, we proceed to calculate the first-order approximation of the orbital elements
caused by the drag and the gravity forces during revolution by integrating Lagrange’s plan-
etary equations (4.1) from E = −π to E = π , and retain only terms to order O(e2), after
substitution of {S = SD + SG, T = TD + TG,W = WD + WG} into the Lagrange planetary
equations we have the perturbations in the elements as

Δσ = ΔσD + ΔσG, (6.1)

where σ ≡ (a, e, I, ω,Ω,M) denotes any of the orbital elements, ΔσD the perturbations due
to the drag force, and ΔσG the perturbations due to the gravity force is given by

ΔaD = −4πa2Ho

{[(
1 − 2

ωa

n
cos I

)
+
3
2

(
1 +

ωa

n
cos I

)
e2
]
Io

+2eI1 +
1
2

(
3
2
+
ωa

n
cos I

)
I2e

2
}
,

ΔaG = J2
5∑
i=1

2∑
j=−2

α′′
ij cosFi,j + J3

7∑
k=1

3∑
l=−3

β′′kl sinFk,l + J4
9∑

m=1

4∑
n=−4

γ ′′mn cosFm,n,
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ΔeD = −4πabH0

{
e

2

(
1 +

5ωa

2n
cos I

)
I0 +
[(

1 − 2ωa

n
cos I

)
− e2
(
5
8
− 2ωa

n
cos I

)]
I1

+
e

2

(
1 +

3ωa

2n
cos I

)
I2 +

e2

8
I3

}
,

ΔeG = J2
5∑
i=1

2∑
j=−2

δij cosFi,j + J3

{
X1f +

7∑
m=1

3∑
n=−3

σmn sinFm,n

}
+ J4

{
X2f +

9∑
k=1

4∑
l=−4

Qkl cosFk,l

}
,

ΔID = −πabωaHo
sin I
n

{[(
1 − ωa

n
cos I

)

+
e2

2

(
9
4
− 3ωa

n
cos I +

17
8

cos 2ω
)
+
55ωa

8n
cos I cos 2ω

]
Io

+ e

[
−1 + 3ωa

n
cos I +

1
2

(
5ωa

n
cos I − 9

)
cos 2ω

]
I1

+

[(
1 − ωa

n
cos I

)

+
e2

2

(
5 − 17ωa

n
cos I

)
+
(
1 − 21ωa

n
cos I

)
cos 2ω

]
I2

+
e

2

(
ωa

n
cos I − 1

)
cos 2ωI3 +

e2

16

(
9 − 11ωa

n
cos I

)
cos 2ωI4

}
,

ΔIG = J2
3∑
i=1

Zi cosFi,2 + J3

{
X3f +

5∑
k=1

3∑
l=−1

Ckl sinFk,l

}
+ J4

⎧⎨
⎩X4f +

7∑
p=1

4∑
q=−2

Spq cosFp,q

⎫⎬
⎭,

ΔΩD = −abωaH0
ωa

n

{([
3e
4

(
1 − ωa

n
cos I

)
+
e2

8

(
41 − 64ωa

n
cos I

)]
sin 2ω

+
e2

2

(
1 − ωa

n
cos I

)
cos 2ω

)
Io

+

[
e

2

(
9 − 7ωa

n
cos I

)
− e2

2

(
6 − 11ωa

n
cos I

)]
sin 2ωI1

+
([(

1 − ωa

n
cos I

)
+ e

(
1 − ωa

n
cos I

)

+
e2

4

(
9 − 33ωa

n
cos I

)
sin 2ω +

e2

2

(
1 − ωa

n
cos I

)
cos 2ω

])
I2

+

[
e

2

(
3ωa

n
cos I − 1

)
− e2

4

(
4 − 9ωa

n
cos I

)]
× sin 2ωI3
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+
e

8

[ (
2 − 2ωa

n
cos I

)
+
(
5 − 13ωa

n
cos I

)]
sin 2ωI4

+
e2

4
ωa

n
cos I sin 2ωI5

}
,

ΔΩG = J2

{
X8f +

3∑
b=1

2∑
c=0

ρbc sinFb,c

}
+ J3

⎧⎨
⎩X9f +

5∑
α=1

3∑
β=−1

qαβ cosFα,β

⎫⎬
⎭

+ J4

⎧⎨
⎩X10f +

7∑
i=1

4∑
j=−2

pij sinFi,j

⎫⎬
⎭,

ΔωD = ΔΩD cos I,

ΔωG = J2

⎧⎨
⎩X5f +

5∑
p=1

2∑
q=−2

Upq sinFp,q

⎫⎬
⎭ + J3

{
X6f +

7∑
k=1

3∑
l=−3

V kl cosFk,l

}

+ J4

{
X7f +

9∑
m=1

4∑
n=−4

Zmn sinFm,n

}
,

ΔM = −2πn,
(6.2)

where

I0(x) =
1
π

∫π

0
cosnE exp(x cosE)dE (6.3)

is the first kind modified Bessel function of order n, and by using the values of I0(c) and I1(c)
one finds that

I2 = I0 − 2
c
I1,

I3 = −4
c
I0 +
(
1 +

8
c2

)
I1,

I4 =
(
1 +

24
c2

)
I0 −
(
1 − 6

c2

)
I1,

I5 = −12
c

(
1 +

16
c2

)
I0 +
(
1 +

72
c2

+
384
c4

)
I1,

(6.4)

where Ho is the scale height. It is given by

Ho = ρpoexe
[
β(ao − a − xo)

]
. (6.5)
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Finally the nonvanishing coefficients included in the gravity perturbations are previ-
ously computed by the authors [32].

7. The Numerical Solution

It is well known that the numerical solutionmethods provide accurate ephemeris of a satellite
with respect to a force of a complex mathematical formulation. So in this section we will solve
numerically the equations of motion after substituting the drag force components SD, TD,
WD, given by (3.10) together with the Earth’s gravity force components SG, TG, WG, given
by (5.4) (we will use Earth’s oblate model and retaining terms up to fourth zonal harmonics
J4).

There are many methods to get the numerical solutions of any first-order differential
equations. We will use one of the best methods of the numerical integration schemes, namely,
Runge-Kutta fourth-order method.

If the Earth was assumed spherical, had no atmosphere, and the satellite is isolated
from the other bodies in the solar system, the orbit of a satellite would be an ellipse of constant
size and shape in a plane whose direction remains fixed relative to the stars. The orbital
elements a, e, i, ω,Ω would remain unchanged. This simple thought rather insipid situation
is upset by the effects of the considered perturbing forces, the Earth’s oblateness, and the
atmospheric drag.

The Earth’s oblateness leads to two major gravitational perturbations on the satellite
orbits, the first is the rotation of the orbital plane about the Earth’s axis in the direction
opposite to the satellite’s motion so that (if I < 90o) the angle steadily decreases while I

remains constant. The second effect is the rotation of the major axis in the orbital plane so
that the argument of perigee ω increases. The chief effects of the atmospheric drag on a
satellite orbit are fortunately quite different from those of the gravitational field. Since the
atmospheric density decreases rapidly as height above the Earth increases, a satellite in an
orbit of appreciable eccentricity is affected mostly by drag within a small section of the orbit
where it is closest to the Earth. To first-order approximation, the effect of atmospheric drag is
to retard the satellite as it passes perigee, with the result that it does not swing out so far from
the Earth at the subsequent apogee. The apogee height is reduced while the perigee height
remains almost constant. The orbit contracts and becomes more nearly circular; the orbital
elements (a, e) decrease steadily [4].

Now, a computer program of fourth-order Runge-Kutta method is applied for the
solution of this system using the initial values and a fixed step size. Also, we will choose
one of the numerical examples to show the decay in two orbital elements, namely, (a, e). Also
we will give a numerical example to the analytical solution given by (6.1) in order to compare
the results of the numerical and analytical solutions.

8. Numerical Example

In this paragraph, we give a numerical example concerning the artificial satellite ROHINI
(1980 62A) [33]. The data are as follows.

The satellite mass and its cross-sectional areas are, respectively, (m) = 35.443 kg, (A) =
0.319019 × 10−6. The initial orbital elements (semimajor axis, eccentricity, and the inclination)
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Figure 1: (a) For one hundred revolutions at 300 km height above the Earth’s surface. (b) For one hundred
revolutions at 300 km height above the Earth’s surface.

of the satellite are a0 = 6989.2057 km, e0 = 0.04367712, I0 = 44.67198o ω0 = 239.3378o km,
Ω0 = 174.1602o, and M0 = 25.63974o. And one orbital revolution was elapsed in 1.58835208
hours. The required physical and dynamical constants are

RÅ = 6378.135 km, μ = 398600.8 km3/sec−2, J2 = 1.08263 × 10−3,

J3 = −2.53648 × 10−6, J4 = −1.6233 × 10−6, ωa = 7.27205217 × 10−6 rad/sec,

ρ0 (300 km) = 0.0221 kg km−3, ρ0 (250 km) = 0.0681 kg km−3,

ρ0 (200 km) = 0.271 kg km−3, CD = 2.2.
(8.1)

The results of the numerical example of the analytical solution as well as the numerical
solution are represented on Figures 1(a), 2(a), 3(a), 4(a), 5(a), 6(a), 7(a), 8(a), and 9(a) to show
the decay of the semimajor axis, and Figures 1(b)– 9(b) to show the change in the eccentricity.
To read the figures properly we used the letters B, C, and D to denote to the numerical
example of the analytical solutions while we used the letters E, F, and G to denote for the
numerical solutions. The description of these letters is as follows.

B: with drag and rotation,

C: with drag without rotation,

D: without drag,

E: with drag and rotation,

F: with drag without rotation, and

G: without drag.
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Figure 2: (a) For five hundred revolutions at 300 km height above the Earth’s surface. (b) For five hundred
revolutions at 300 km height above the Earth’s surface.
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Figure 3: (a) For one thousand revolutions at 300 km height above the Earth’s surface. (b) For one thousand
revolutions at 300 km height above the Earth’s surface.
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Figure 4: (a) For one hundred revolutions at 250 km height above the Earth’s surface. (b) For one hundred
revolutions at 250 km height above the Earth’s surface.
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Figure 5: (a) For five hundred revolutions at 250 km height above the Earth’s surface. (b) For five hundred
revolutions at 250 km height above the Earth’s surface.

All figures show the decrease in the semimajor axis and in the eccentricity for the
rotating and nonrotating atmosphere at different altitudes.

9. Analysis of the Solutions

The following dynamical effects are very clear. The decay of the semimajor axis is shown
on Figures 1(a) to 9(a). We depicted the analytical and numerical solutions on one
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Figure 6: (a) For one thousand revolutions at 250 km height above the Earth’s surface. (b) For one thousand
revolutions at 250 km height above the Earth’s surface.
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Figure 7: (a) For one hundred revolutions at 200 km height above the Earth’s surface. (b) For one hundred
revolutions at 200 km height above the Earth’s surface.

figure at different altitudes. Similar situation is done for the eccentricity on Figures 1(b)–
9(b).

(1) The decrease in the semimajor and in the eccentricity is significant (much bigger)
at the high altitudes at the beginning of the motion but it oscillates afterwards,
that is, the slope of the rate of change is sometimes high, sometimes moderate, and
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Figure 8: (a) For five hundred revolutions at 200 km height above the Earth’s surface. (b) For five hundred
revolutions at 200 km height above the Earth’s surface.

sometimes low. Therefore, we can conclude that the perturbation on the long range
is nonlinear (see Figures 10(a) and 10(b)).

(2) The effect of the atmospheric rotation is so small.

(a) The atmospheric rotation appeared clearly on the figures of numerical solution
because we have used the well-known fourth-order Runge-Kutta method.

(b) The atmospheric rotation disappeared on the figures of the analytical solution
since the approximation made in the analytical solution is much bigger than
this effect.

(3) Disregarding the drag force makes the rate of change of the semimajor axis and the
rate of change of the eccentricity very little as seen clearly from the slopes of the
figures of the solutions with drag and those without drag. This justifies the fact that
at Low Earth Orbits (in brief LEO) the dominant secular perturbation is due to the
drag force.

(4) The difference between the solutions with drag and those without drag is some-
times big, sometimes low, and sometimes moderate. This signifies that the pertur-
bation is nonlinear.

10. Conclusion

In this paper, we studied the effect of the atmospheric drag and the asphericity of the Earth on
the orbital dynamics of an artificial satellite in a low Earth orbit. We approximated the density
of the atmosphere to an exponential function including the rotation of the atmosphere.
We obtained a first-order analytic atmospheric drag perturbations. We evaluated the short
periodic perturbations of all orbital elements due to the geopotential. To obtain amore precise
treatment, we integrated the equations of motion numerically using the Runge-Kutta method
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Figure 9: (a) For five thousand revolutions at 200 km height above the Earth’s surface. (b) For five thousand
revolutions at 200 km height above the Earth’s surface.
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Figure 10: (a) Long range perturbation in the semimajor axis. (b) Long range perturbation in the eccentric-
ity.

of fourth order. The validity of the theory is checked using the already decayed Indian
satellite ROHINI where its data are available. A good agreement between the observed line
elements of the satellite and our predicted solutions encourage us in future to apply our
theory on any similar future missions.
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