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The estimation of ground subsidence processes is an important subject for the asset management
of civil infrastructures on soft ground, such as airport facilities. In the planning and design stage,
there exist many uncertainties in geotechnical conditions, and it is impossible to estimate the
ground subsidence process by deterministic methods. In this paper, the sets of sample paths
designating ground subsidence processes are generated by use of a one-dimensional consolidation
model incorporating inhomogeneous ground subsidence. Given the sample paths, the mixed
subsidence model is presented to describe the probabilistic structure behind the sample paths. The
mixed model can be updated by the Bayesian methods based upon the newly obtained monitoring
data. Concretely speaking, in order to estimate the updating models, Markov Chain Monte Calro
method, which is the frontier technique in Bayesian statistics, is applied. Through a case study, this
paper discussed the applicability of the proposed method and illustrated its possible application
and future works.

1. Introduction

In Japan, it is not rare to build airports on man-made islands or reclamation land. In these
offshore airports, the airport pavement may be damaged due to the ground’s inhomogeneous
subsidence. If the performance standard regarding airport pavement gradients is not
satisfied, due to the progression of ground subsidence, large-scale repair work on concrete
pavement is necessary. Therefore, predicting future ground subsidence is an important issue
for asset management strategy of airport pavements.

Ground subsidence estimation models using the consolidation theory have been
developed for soft ground [1]. However, there are many uncertainties in the actual
ground conditions, and it is extremely difficult to deterministically predict the process
of ground subsidence. Therefore, a method of probabilistically predicting the process of
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ground subsidence using a one-dimensional consolidation model that takes inhomogeneous
subsidence into consideration, and using soil constants that show ground conditions as
random variables, was developed [2]. With these probabilistic ground subsidence models,
soil constants are generated with Monte Carlo simulation, and sample paths of the process of
ground subsidence are simulated in accordance.

In this paper, a statistical ground subsidence model (hereinafter, mixed ground
subsidence model) is expressed as the aggregation of sample paths sought by probabilistic
ground subsidence models. Then, a mixed ground subsidence model, which employs
monitoring information of ground subsidence after the establishment of airports, and
sequentially performs Bayesian updating on weight coefficients of sample paths, is proposed.
With this method, the accuracy of estimation of ground subsidence using monitoring
information can be improved sequentially. The estimation accuracy of the mixed ground
subsidence model depends on the method of generation of sample paths and its estimation
accuracy.

With the above issues, this paper proposes a mixed ground subsidence model targeted
for offshore airports. In the following sections, Section 2 organizes the basic idea of the study,
Section 3 formulates a mixed ground subsidence model using the sample paths, Section 4
proposes a Bayesian updating model, and Section 5 introduces a numerical calculation
example.

2. Basic Approach of This Study

2.1. Mixed Ground Subsidence Model

The target period is divided into two periods: before the airport was in service and after
it began services. The former period shall be defined as the planning phase, and the latter
the operating phase. For the planning phase, there is no monitoring information regarding
ground subsidence process. Therefore, it becomes an issue to predict the amount of ground
subsidence over the years for each mesh, using the first model (probabilistic one-dimensional
consolidation model). The airport manager performs necessary boring tests during the
planning phase and acquires data on ground subsidence. Data acquired by boring tests is
partial information regarding ground subsidence, and not complete information. Therefore,
the process of ground subsidence cannot be definitely predicted. Consequently, for the
planning phase, several scenarios of ground subsidence will be established and sample
paths of ground subsidence process for each mesh will be acquired. Then, using the sample
information, the statistical regularity of the process of ground subsidence is expressed
using the second model. From the second model, it is possible to express the probabilistic
distribution of the deterioration process. Next, the operating phase is considered. From the
point when the airport begins services, the airport manager continuously monitors ground
subsidence amount for each mesh. The airport manager uses the monitoring information
of the ground subsidence amount to conduct Bayesian updating on the second model
and formulates the third model. The ground subsidence estimation model proposed in
this paper is a composite estimation model comprising the following: (1) the probabilistic
one-dimensional consolidation model (first model) that generates sample paths of the
ground subsidence process, (2) the mixed ground subsidence model (second model) that
expresses the statistical regularity of the sample paths generated with the first model,
and (3) the third model updated by Bayesian updating on the second model using new
monitoring information acquired as time passes.
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In this paper, the subsidence process of airport ground is expressed using a
probabilistic one-dimensional consolidation model, with consideration to the process of
inhomogeneous ground subsidence. Therefore, the targeted airport ground is divided into
planar meshes and also uses a three-dimensional model that divides meshes perpendicular
to each planar mesh. By using the first model, the change over time in the amount of ground
subsidence can be predicted for each planar mesh. However, there are many uncertainties in
ground conditions. Therefore, using a one-dimensional consolidation model with randomly
sampled ground conditions, multiple ground subsidence scenarios will be generated. The
ground condition of each three-dimensional mesh is established by random generation. If
the ground condition of each mesh is established in this way, the ground subsidence process
over time of each planar mesh can be predicted using the first model. A ground subsidence
process obtained in this way is one sample of subsidence process (hereinafter, sample path)
for that ground condition scenario by random generation.

By randomly generating ground condition scenarios, multiple sample paths can
be obtained for each planar mesh. In order to develop an airport pavement design and
maintenance plan, it is necessary to summarize the numerous sample path information
created by the first model. The easiest method is to use an expectation path that averages
the sample paths generated with the first model. An expectation path is convenient, but it
does not adequately utilize the enormous information acquired by the first model. Therefore,
in this paper, weight coefficients are assigned to the sample paths acquired by the first
model, and a mixed ground subsidence model (second model) that expresses the ground
subsidence process by weight average of the sample paths is formulated. As the actual
ground subsidence process cannot be observed in the planning phase, it is impossible
to statistically predict the second model. Thus, unless there is theoretical or experiential
additional information on the certainty of each sample path, the weight of each sample
path must be handled equally. In other words, the ground subsidence process is defined
as the expectation path that averages all sample paths. However, after the airport begins
services, monitoring information on the process of ground subsidence can be acquired. The
issue now is to improve the estimation accuracy of the ground subsidence process by using
the monitoring information and sequentially performing Bayesian updating on the second
model. The model acquired by Bayesian updating using monitoring information will be
called the third model.

2.2. Bayesian Updating Scheme

In airport pavement management, it is required that the ground subsidence process
is continuously monitored, the subsidence process predicted in the planning phase is
reevaluated, and if necessary the maintenance strategy is reconsidered. As shown in Figure 1,
let us say a certain amount of time has passed since the point when airport services began
t0 and has reached point T . The ground subsidence process is predicted during the planning
phase with the probabilistic one-dimensional consolidation model. The dotted lines in the
figure are the predicted results of the amount of ground subsidence over time, for a certain
planar mesh. The figure shows sample paths of ground subsidence process for 20 calculation
scenarios, with altered soil constants. Furthermore, the thick red line in the figure is the
expectation path, which is the simple average of these paths. Let us say that after the airport
begins services, the ground subsidence process of each mesh is continuously monitored. In
the figure, the ground subsidence amount actually observed from point t0 when services
began and the current point T is shown with the black dots. In this example, the actual values
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Figure 1: Bayesian updating on mixed ground subsidence model.

of the ground subsidence are in a lower position than the expectation path. Therefore, when
ground subsidence is predicted using the expectation path, the actual subsidence may be
underestimated.

The mixed ground subsidence model can be obtained by assigning weight coefficients
to sample paths and seeking the weight average of sample paths. Furthermore, let us say the
distribution is according to prior distribution with weight vectors. At the initial point there is
nomonitoring information regarding ground subsidence. Therefore, equal weight is assigned
to all sample paths. However, when monitoring information is acquired, higher weight can
be assigned to sample paths closer to the observed values of ground subsidence amount. As
a result, it is possible to limit the distribution range of weight coefficients within a narrower
range. In Figure 1, the ground subsidence sample paths predicted for after point T are shown
in thick blue lines, using the mixed ground subsidence model with Bayesian updating with
monitoring information up to point T . In comparison to the spread of the sample paths sought
with the first model, sample paths with Bayesian updating are collected within a narrower
range, and it can be understood that the estimation accuracy of the mixed ground subsidence
model is improved.

3. Mixed Ground Subsidence Model

3.1. Purpose of Second Model

By using the first model, sample paths regarding multiple ground subsidence processes can
be generated for each planar mesh. In other words, each sample path shows the result of
ground subsidence process simulation, with randomly generated soil constants as conditions.
There are many uncertainties with ground conditions, so there is no guarantee that the
actually observed ground subsidence process matches one sample path. In this chapter,
the actual ground subsidence process is expressed with a mixed ground subsidence model,
which expresses the aggregation of sample paths obtainedwith the first model. Asmentioned



Journal of Applied Mathematics 5

above, the expectation path is the expectation sought from all sample paths and can be said
to be a special case of the mixed ground subsidence model with equal weight assigned to
all sample paths. Using the mixed ground subsidence model (second model), it is possible to
express the probabilistic structure behind the sample paths. Furthermore, merits of the second
model include (1) Bayesian updating of the ground subsidence model using monitoring
information of ground subsidence amount observed at airports after services begin is made
easy and (2) statistical testing on estimation accuracy of the ground subsidence model is
possible.

3.2. Formalization of Mixed Ground Subsidence Model

The sample path k = 1, . . . , K calculated with the first model expresses the ground subsidence
amount at point t for each mesh. The ground subsidence amount at point t (t = 0, . . . , T)
in sample path k of planar mesh i (i = 1, . . . ,N) can be expressed as fi(t, k). The mixed
ground subsidence model is defined as an aggregation of sample paths generated with the
first model. For weight coefficients assigned to each sample path to be uniquely determined,
the sample paths that comprise the mixed ground subsidence model must be independent.
Let us say a total of K independent samples are obtained. The mixed ground subsidence
model can be expressed as the linear combination of sample paths:

yt
i =

K∑

k=1

ωi(k)fi(t, k) + εi. (3.1)

Here, ωi(k) is the weight assigned to the sample path k, and the following holds:
K∑

k=1

ωi(k) = 1 (i = 1, . . . ,N). (3.2)

Here, the weight vector of planar mesh i shall be expressed as ωi = (ωi(1), . . . , ωi(K)). The
weight vector ωi is a random variable that satisfies the constrained condition (3.2). Next,
let us assume that εi is a random variable that expresses the measurement error and each
independently is subject to the one-dimensional normal distribution N(0, σ2

i ).

3.3. Probabilistic Estimation of Ground Subsidence Amount

The weight matrix ωi and probability error εi of the mixed ground subsidence model (3.1)
are random variables. If these random variable values can be formalized, specific ground
subsidence paths can be acquired. Here, let us say the prior probability density function of
ωi is subject to the Dirichlet distribution. The probability density function of the Dirichlet
distribution is given by

D
(
ωi | α(0)) = Ψ

(
α(0)
) K∏

k=1

{ωi(k)}a
(0)
k

−1, (3.3a)

Ψ
(
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Γ
(∑K

k=1 α
(0)
k

)

∏K
k=1Γ
(
α
(0)
k

) . (3.3b)
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Here, Γ(-) is a gamma function, and α(0) = (α(0)
1 , . . . , α

(0)
K ) is a constant parameter vector in

the initial data. During the planning phase, the calculation results of the first model (sample
paths) are available, as forerunning information [3]. The method of establishing parameters
of the Dirichlet distribution using sample paths will be discussed in Section 5.3. Next, we
will say φi = σ−2

i , and the prior probability density function of φi is subject to a gamma
distribution. In other words, φi � G(β(0), γ (0)), and the probability density function of the
gamma distribution is given by

g
(
φi | β(0), γ (0)

)
=

(
γ (0)
)β(0)

Γ
(
β(0)
) φi

β(0)−1 exp
(
−γ (0)φi

)
. (3.4)

Hence, β(0) and γ (0) are constant parameters in the initial data. At this time, the prior
probability density function π(yt

i) of the ground subsidence amount yt
i at point t of mesh

i can be expressed as

π
(
yt
i

) ∝
∫
· · ·
∫
φi

β(0)−1/2
K∏

k=1

ωi(k)
a
(0)
k

−1 exp

⎡

⎣−φi

⎧
⎨

⎩γ (0) +
1
2

(
yt
i −

K∑

k=1

ωi(k)fi(t, k)

)2
⎫
⎬

⎭

⎤

⎦

dφi dωi(1) · · ·dωi(K − 1).

(3.5)

However, ωi(K) = 1 −∑k−1
k=1 ωi(k). It is difficult to analytically calculate the prior probability

density function π(yt
i), so it shall be calculated with Monte Carlo simulation. In other

words, by random sampling φi, ωi(1), . . . , ωi(K − 1) with prior probability density functions
(3.3a) and (3.4), and randomly selecting yt

i with the normal probability density function
N(
∑K

k=1 ωi(k)fi(t, k), φ−1
i ), the probability distribution of the ground subsidence amount can

be estimated.

4. Bayesian Updating Model

4.1. Bayesian Updating of the Mixed Ground Subsidence Model

The mixed ground subsidence model is a statistical model that expresses statistical
uncertainties in ground subsidence process, using sample paths of ground subsidence
process generated by the first model. The mixed ground subsidence model includes random
variables ωi (weight vector assigned to each sample path) and εi (probabilistic error). At
the initial point, measurement values for these random variables do not exist, and the
statistical characteristics of the ground subsidence process is expressed with the random
variables’ prior probability density functions (3.3a) and (3.4). In the operating phase when
the airport is in service, monitoring information regarding the ground subsidence amount
of each mesh is measured. Now, let us say time has passed from the point when services
began (hereinafter, initial point) and has reached point T . Furthermore, let us say that
from monitoring at point t (t = 0, . . . , T), the data regarding ground subsidence amount
y0,T
i = (y0

i , . . . , y
T
i ) (i = 1, . . . ,N) has been acquired. The symbol “ ′′ means the monitoring

information (actual value). The overall monitoring results shall be expressed with the vector
y0,T = (y0,T

1 , . . . , y0,T
N ). Here, let us consider for now that the weight vectorωi is a given value,

and only the probability error is a random variable. Also, the reciprocal φ of the probability
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error variance shall be a given value. Now, the likelihood that the monitoring result y0,T
i is

observed can be expressed as

L
(
y0,T
i | ωi, φi

)
∝

T∏

t=0

φ1/2
i exp

⎡

⎣−φi

2

{
yt
i −

K∑

k=1

ωi(k)fi(t, k)

}2
⎤

⎦. (4.1)

Next, it shall be assumed that the prior probability density function of ωi is subject to
the Dirichlet distribution (3.3a), and the reciprocal φi of the variance follows the gamma
distribution (3.4).

Here, the conditional posterior probability density function π(φi | ωi, y
0,T
i ) of φi, with

ωi and y0,T
i as known values, can be expressed as

π
(
φi | ωi, y

0,T
i

)
∝ φi

β
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(
−γ (0)φi

)
,

β
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T + 1
2

,

γ
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1
2
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{
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ωi(k)fi(t, k)

}2

.

(4.2)

In other words, π(φi | ωi, y
0,T
i ) is subject to the gamma distribution G(β

(0)
, y(0)), and model

samples of φi can be generated from the gamma distribution G(β
(0)
, y(0)).

Next, the conditional posterior probability density function π(ωi | φi, y
0,T
i ) of ωi, with

φi and y0,T
i as known values, can be expressed as

π
(
ωi | φi, y
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∝ exp
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ωi(k)
a
(0)
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−1. (4.3)

4.2. MH Algorithm

The conditional posterior probability density function ofωi, shown in (4.3), is not a generally
known distribution. Therefore, it is difficult to conduct direct sampling [4] of model samples
of ωi from the conditional posterior probability density function π(ωi | φi, y

0,T
i ). This paper

applies theMH (Metropolis-Hasting)method [5] that does not use a direct samplingmethod.
The MH method samples from a proposed distribution that is similar to π(ωi | φi, y

0,T
i ) and

according to it obtains samples from the original distribution [6]. Furthermore, to improve
the efficiency of sampling, random walk is used. It is not new to use the MH method with
random walk, but the algorithm should be explained briefly here, for the convenience of the
reader.

First, the initial value of the parameter vector ωi can be expressed as
(ω0

i (1), . . . , ω
0
i (K)). Here, a new candidate point ω′

i shall be proposed with

ω′
i = ω0

i + λν. (4.4)
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Here, λ is the constant parameter that establishes the range of step width, and ν =
(ν(1), . . . , ν(K)) is the parameter vector that establishes the step width. In order for the
candidate point ω′

i to satisfy the constrained condition
∑K

k=1 ω
′
i(k) = 1,

∑K
k=1 ν(k) = 0 must

hold. Now, from the change of variables ν′ = ν + K−1I, ν′ shall be subject to the Dirichlet
distribution. However, I is an identity matrix of 1 × K. The range of step width is the same
for every k and established at (−λK−1, λ(1 − K−1)). Also, the proposed distribution shall be
defined, using the Dirichlet distribution with the constant parameter vector x = (x1, . . . , xK),
as follows:

q
(
ω0

i , ω
′
i | φi, y

0,T
i

)
= D

(
ω′

i −ω0
i

λ
+

I
K

| χ
)
. (4.5)

This proposed distribution satisfies the condition:

q
(
ω0

i , ω
′
i | φi, y

0,T
i

)
= q
(
ω′

i, ω
0
i | φi, y

0,T
i

)
. (4.6)

Therefore, as the proposed density q is symmetrical to (ω0
i , ω

′
i), the acceptance probability

κ(ω0
i , ω

′
i | y0,T

i ) of the new candidate point can be expressed as

κ
(
ω0

i , ω
′
i | y0,T

i

)
= min

⎧
⎨

⎩

π
(
ω′

i | φn
i , y

0,T
i

)

π
(
ωn

i | φn
i , y

0,T
i

) , 1

⎫
⎬

⎭. (4.7)

If accepted, it moves to a new candidate point, and if rejected it remains. The MH algorithm
procedure can be organized as follows.

Step 1 (Initial Establishment). The parameter vectors α(0) = (α(0)
1, . . . , α

(0)
k), β(0), and γ (0)

of the prior distributions (3.3a) and (3.4) are arbitrarily established. Furthermore, the initial
valuesω0

i = (ω0
i (1), . . . , ω

0
i (K)) and φ0

i of the parameter estimation are arbitrarily established.
The constant parameter λ, constant parameter vector χ, and sample numbers n and n are
established. The influence of these initial values shall decrease gradually, as the number of
MCMC simulations increase. The number of simulations has to be n = 0.

Step 2 (Sample Extraction of Parameter Estimation ωi). The parameter estimation ωn+1
i =

(ωn+1
i (1), . . . , ωn+1

i (K)) when the number of simulations is n + 1 is generated as follows. ν′

that is subject to the Dirichlet distribution is randomly generated. The parameter vector ν
that establishes the step width is calculated with ν = ν′ −K−1I. The new candidate point ω′

i is

ω′
i = ωn

i + λν. (4.8)

The acceptance probability is calculated as

κ
(
ωn

i , ω
′
i | φn

i , y
0,T
i

)
= min

⎧
⎨

⎩

π
(
ω′

i | φn
i , y

0,T
i

)

π
(
ωn

i | φn
i , y

0,T
i

) , 1

⎫
⎬

⎭. (4.9)
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Then the uniform distribution u ∼ U(0, 1) is generated, and if the two following equations
are satisfied:

κ
(
ωn

i , ω
′
i | φn

i , y
0,T
i

)
> u,

ω′
i(k) ≥ 0 (k = 1, . . . , K),

(4.10)

then ωn+1
i = ω′

i, so proceed to Step 3. If not, return to Step 2.

Step 3 (Sample Extraction of Parameter Estimation φi). φn+1
i is generated from π(φi |

ωn+1
i , y0,T

i ). In other words, φn+1
i is randomly generated from the gamma distribution

G(β
(0)
, γ (0)).

Step 4 (Final Judgment of the Algorithm). The updated values ωn+1
i = ωn+1

i (1), . . . , ωn+1
i (K)),

φn+1
i of the parameter estimation, obtained from the above steps, are recorded. If n ≤ n, then

n = n + 1 so return to Step 2. If not, the algorithm is finished.

4.3. Bayesian Updating and Bayesian Estimation

It shall be considered that using the monitoring result y0,T
i = (y0

i , . . . , y
t
i) of mesh i up to

the monitoring at point t, the posterior distribution of the unknown parameters of the mixed
ground subsidence model is obtained. Then, using themonitoring result yt+1,t′

i = (yt+1
i , . . . , yt′

i )
from between point t + 1 and t′, the problem of updating the posterior distribution of
the unknown parameters is supposed. If the posterior probability density function of the
unknown parameters of the first Bayesian estimation is π(ωi, φi | y0,T

i ), the posterior
probability density function of the unknown parameter after the second Bayesian updating
π(ωi, φi | y0,t′

i ) can be expressed as

π
(
ωi, φi | y0,T

i

)
∝ L
(
ωi, φi | yt+1,t′

i

)
π
(
ωi, φi | y0,T

i

)

∝ L
(
ωi, φi | y0,T

i

)
D
(
ωi | α(0)

)
g
(
φi | β(0), γ

)
.

(4.11)

Here, L(ωi, φi | y0,t′

i ) is the likelihood function defined using the database that pools the
monitoring results from the initial point to point t′. On the other hand, D(ωi | α(0)) and
g(φi | β(0), γ (0)) are each prior distributions of ωi and φi used in the first Bayesian estimation.
Therefore, the posterior distribution after Bayesian updating is

π
(
ωi, φi | y0,T

i

)
∝ φ

β(0)+(t
′−1)/2

i · exp
⎡

⎣−φi

⎧
⎨

⎩γ (0) +
1
2

t′∑

t=0

(
yt
i −

K∑

k=1

ωi(k)fi(t, k)

)2
⎫
⎬

⎭

⎤

⎦

·
K∏

k=1

ωi(k)
α
(0)
k

−1.

(4.12)
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In other words, in order to update the posterior distribution of unknown parameters, it is
necessary to define the likelihood functions with the database that includes new monitoring
results and newly estimate the posterior distribution by the MH method.

Themonitoring information y0,T
i from initial point t = 0 to point t = T and the posterior

distribution of the parameter of the mixed ground subsidence model π(ωi, φi | y0,T
i ) are

assumed to be given values. With this, the ground subsidence amount after point t = T can
be estimated. The actual value (monitoring information) of ground subsidence amount of
planar mesh i at point t = T shall be expressed as yT

i . On the other hand, the predicted value
of ground subsidence amount for point t (> T), which comes after point t = T , predicted at
point t = T , shall be yt̃

i(T). If it is assumed that with the passing of time ground subsidence
always progresses, then the following holds:

yT
i ≤ ỹT̃+1

i (T) ≤ · · · ≤ ỹT̃+n
i (T) ≤ · · · . (4.13)

Hence, n is a natural number. Here, the parameterωi of the mixed ground subsidence model
is a given value. At this time, if ground subsidence amount yT

i is observed at point t = T ,
prediction residual of the mixed ground subsidence model can be expressed as

ξTi = yT
i −

K∑

k=1

ωi(k)fi(t, k). (4.14)

Furthermore, if the weight coefficient ωi is given, the predicted value of ground subsidence
amount at point t (> T), which comes after point t = T , predicted at point T , can be expressed
definitely with the mixed ground subsidence model:

ỹt̃
i(T) =

K∑

k=1

ωi(k)fi
(
t̃, k
)
+ ξTi . (4.15)

Next, the posterior distribution F(ωi | y0,T
i ) of parameter ωi updated by Bayesian updating

using the monitoring information y0,T up to point t = T can be approximated with MCMC
method. Furthermore, the weight sample generated withMCMCmethod can be expressed as
ωn

i (n ∈ M, i = 1, . . . ,N). At this point, if ground subsidence amount yT
i is observed at point

T , the probability distribution function Hi(yi | t, yT
i ) regarding ground subsidence amount

yt̃
i (T) at point t (> T) can be expressed as

Hi

(
ỹi | t̃, yT

i

)
=

�
{
ỹt̃,n
i (T) ≤ ỹ, n ∈ M

}

n − n
. (4.16)
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However, yt̃,n
i (T) is the predicted value of ground subsidence for point t (> T), predicted at

point T , using the weight coefficient sample value ωn
i , and can be defined as

ỹt̃,n
i (T) =

K∑

k=1

ωn
i (k)fi

(
t̃, k
)
+ ξT,ni ,

ξT,ni = yT
i −

K∑

k=1

ωn
i (k)fi(T, k).

(4.17)

Furthermore, the expected value of ground subsidence amount E[yt̃
i(T)] at point t can be

expressed as

E
[
ỹt̃
i(T)
]
=

∑n
n=n+1 ω

n
i (k)fi

(
t̃, k
)
+ ξT,ni

n − n
. (4.18)

Also, the 100%(1 − 2δ) credible interval of ground subsidence amount yt̃
i (T) of point t,

predicted at point T , can be defined as yt̃

i
(δ, T) < yt̃

i(T) < yt̃
i(δ, T) using sample order statistics

yt̃

i
(δ, T) and yt̃

i
(δ, T):

yt̃

i
(δ, T) = argmax

y∗
i

⎧
⎪⎨

⎪⎩

�
{
ỹt̃,n
i (T) ≤ y∗

i , n ∈ M
}

n − n
≤ δ

⎫
⎪⎬

⎪⎭
,

yt̃

i
(δ, T) = argmin

y∗∗
i

⎧
⎪⎨

⎪⎩

�
{
ỹt̃,n
i (T) ≥ y∗∗

i , n ∈ M
}

n − n
≤ δ

⎫
⎪⎬

⎪⎭
.

(4.19)

5. Empirical Study

5.1. Summary of Applied Case

In this paper, the offshore H airport is targeted. At this airport, with approximately 30
thousand commissions of short-range international passenger flights and commissions of
international cargo flights during late-night and early-morning hours, PFI is applied from
planning and construction to maintenance of basic facilities including aprons, airport safety
facilities, supplementary facilities, roads and parking spaces, and green tracts. Among these,
aprons are areas where aircraft are parked, and concrete pavement is used because of the
necessity of strong resistance of fluidity and oil. These aprons are situated on soft ground, and
the fatigue and deterioration of the concrete pavement due to inhomogeneous subsidence of
the ground is a problem.

The targeted area was the apron area of H airport, with a range of 825m × 400m,
and for consolidation subsidence the basic unit was a 25m × 25m square mesh. The apron
area was divided into planar meshes. Also, the targeted consolidation layers were alluvial
clay layer around GL-7m to GL-25m and diluvial clay layer around GL-25m to GL-60m,
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Table 1: Soil constants using first model.

Compression index: Cc Normal distribution
Initial void ratio e0 Normal distribution
Consolidation yielding stress: Pc Normal distribution
Consolidation coefficient: cv Log-normal distribution

and the one-dimensional consolidation theory was used. With Markov hazard model [7], the
correlation between soil constants can be considered. In this applied case, from the boring
test results, the horizontal correlation length was set at b = 100m, and the perpendicular
correlation length was set at 4-5m. The perpendicular mesh divisions were divided at every
4m, even within the same ground. For analysis, from the 17 boring results and consolidation
test results conducted on the targeted area, the alluvial clay layer and diluvial clay layer
was divided in the depth direction into 10 layers, Ac1–Ac6 and Dc1–Dc4, respectively, and the
soil constants were organized. Table 1 shows the inhomogeneous subsidence simulation soil
constant used in the applied case.

5.2. Analysis Results by the First Model

The inhomogeneous subsidence shall be simulated with the first model. For each block,
the soil constant is randomly generated from the probability distribution. Specifically, the
soil constants of each consolidation layer divided perpendicularly were generated from
the expected value, standard deviation, and coefficient of variation shown in Table 2, by
normal distribution for compression indexCc, initial void ratio e0, and consolidation yielding
stress pc, and by log-normal distribution for consolidation coefficient cν. Furthermore, these
expected values and distributions are established according to boring test results conducted
on representative planar meshes. For all three-dimensional blocks, the soil constants were
randomly generated by the Monte Carlo simulation. The pairs of soil constants generated
for all three-dimensional blocks shall be called calculation scenarios. Furthermore, for each
calculation scenario, the ground subsidence process of the targeted calculation scenario is
calculated with the first model.

An example of the inhomogeneous subsidence simulation is shown in Figure 2. This
figure shows 20 sample paths of ground subsidence amount over time, for the planar mesh
i = 73, which was chosen as an example. The chosen planar mesh has an existing ground
height of AP + 3.0m, a planned ground height of AP + 6.0m, and is a part of the areawith high
embankment. As a result of simulation with the first model, the expected path subsidence
amount after 30 years is 35.75 cm as shown in Figure 3 and is predicted to have the largest
subsidence among the entire targeted area. In the horizontal axis, the start of services at H
airport is set at 0, but it can be seen that ground subsidence had already occurred between
roadbed adjustment and the start of services. Also, when comparing the 20 sample paths of
Figure 2, it can be understood that the ground subsidence amount changes greatly depending
on the soil constant scenario. In fact the average subsidence amount for after 30 years is
35.75 cm and the variance is 30.66 cm2. On the other hand, in any sample path the ground
subsidence processes converge with the passing of time.

5.3. Creating the Second Model

Using the 20 sample paths obtained with the first model (see Figure 2), the mixed ground
subsidence model (second model) is estimated. The sample paths from the first model are
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Table 2: Soil constants for inhomogeneous subsidence simulation.

Layer Cc (kN/m2) e0 pc (kN/m2) cv (cm2/day)
EV SD EV SD EV CV EV log cv log cv SD

Ac1 0.45 0.07 1.34 0.17 70 0.36 993 −4.26 0.29
Ac2 0.41 0.06 1.21 0.11 59 0.33 1025 −4.15 0.09
Ac3 0.73 0.11 1.84 0.22 95 0.49 759 −4.40 0.33
Ac4 0.87 0.08 2.09 0.15 90 0.39 787 −4.32 0.23
Ac5 0.74 0.21 1.91 0.39 99 0.44 1103 −4.20 0.26
Ac6 0.31 0.12 1.17 0.22 139 0.08 3435 −3.63 0.09
Dc1 0.44 0.13 1.32 0.30 174 0.71 1680 −3.95 0.14
Dc2 0.57 0.16 1.54 0.27 144 0.67 1945 −4.01 0.34
Dc3 0.66 0.12 1.58 0.19 135 0.66 1000 −4.27 0.29
Dc4 0.70 0.25 1.64 0.67 186 0.65 1002 −4.23 1.66
Note—EV: expected value, SD: standard deviation, CV: coefficient of variation. For Ac1–Ac6, the alluvial clay ground layer
was divided into 6 layers in the depth direction from categorization of soil characteristics, acquired from boring test results
and lab consolidation test results, and the layers were numbered from the top layer to the bottom layer. Similarly, for Dc1–
Dc4 also, according to the categorization of soil characteristics, the diluvial clay ground layers were numbered from the top
layer to the bottom layer.
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Figure 2: Examples of simulation results of inhomogeneous subsidence.

in a strong correlation to each other. For example, the correlation coefficient between the
20 sample paths of Figure 2 was at least 0.976. Therefore, in order to avoid the problem of
multicollinearity, out of the 20 sample paths the 2 sample paths that set the upper limit and
lower limit of predicted subsidence at the end of the contract were selected for the estimation
of the mixed ground subsidence model. Hereinafter, the sample path at the upper limit shall
be called α and the sample path at the lower limit shall be called β. We shall add that with
any mesh, the sample path α and β set the upper and lower limits of predicted subsidence for
the overall contract period. In other words, by selecting sample paths α and β, it is possible
to expand the section between the two sample paths as much as possible and maximize the
range created with the second and third models. Figure 3 shows the expected value path by
simple average of the 20 sample paths. This figure also shows the averaged results of the
2 sample paths used for the mixed ground subsidence model (sample average). Naturally,
this path does not match the expected value path, which is a simple average of the 20 sample
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Figure 3: Simulated monitoring data and sample paths.

paths. Therefore, in order to predict the ground subsidence amount yt
i of mesh i at point t, the

weight coefficient ωi(k) (k = 1, 2) of the mixed ground subsidence model must be corrected
so that the misfit between the expected path of the mixed ground subsidence model and the
sample average is as little as possible. Now, the predicted ground subsidence amount of mesh
i at point t of the expected value path from the 20 sample paths shall be expressed as yt

i. If
ωi(k) (k = 1, 2) takes a value that satisfies:

min
ωi(1),ωi(2)

{
ỹt
i −

2∑

k=1

ωi(k)fi(t, k)

}2

, (5.1)

then the misfit between the expected value path and average path is arbitrarily small.
However, fi(t, k) is the sample path (generated with the first model) selected for the mixed
ground subsidence model. Now, the weight vector ωi at point t established in (5.1) shall
be expressed as ωt

i. Furthermore, let us say the prior probability density function of the
weight vector ωi of the mixed ground subsidence model can be identified as a Dirichlet
distribution of (3.3a). The posterior probability density function π(yt

i) of ground subsidence
amount yt

i at point t of mesh i is difficult to analytically estimate as shown in (3.5), so it
is necessary to calculate this with Monte Carlo simulation. For this, the weight vector ωi is
randomly generated from a Dirichlet distribution as shown in (3.3a). Therefore, in order to
make the separation between the expected value path and average path arbitrarily small, a
Dirichlet distribution and parameter vector is established in which the following equation
approximately holds:

E[ωi(k)] ≈ ω̃t
i(k) (k = 1, 2). (5.2)
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Now, in the Dirichlet distribution, the expected value of ωi(k) can be expressed as

E[ωi(k)] =
α
(0)
k

∑2
k=1 α

(0)
k

(k = 1, 2). (5.3)

Therefore, the initial parameter of the Dirichlet distribution α(0)
k(k = 1, 2) is established so

that the following holds:

ω̃t
i(k) =

α
(0)
k

∑2
k=1 α

(0)
k

(k = 1, 2). (5.4)

Using the mixed ground subsidence model established with the above, the ground
subsidence amount after 5 years y5

i is predicted. The distribution of the predicted subsidence
amount can be obtained, as shown in (3.5), by establishing the prior probability density
function of α(0) and φi. Now, the parameter vector of the Dirichlet distribution α(0) shall be,
according to the weight vector ω5

i , established as α1
(0) = 0.593 and α2

(0) = 0.407. Figure 4
uses planar mesh i = 73 and shows how the predicted subsidence distribution changes after
5 years, due to the values of the parameters β(0) and γ (0) of the prior probability density
function φi. As shown in Figure 4, if the values of parameters β(0) and γ (0) are increased, the
predicted subsidence amount is distributedwithin a narrower range. On the other hand, if the
values of β(0) and γ (0) are decreased, the predicted subsidence amount is distributed within
a wider range. Figure 5 shows how the 95% credible interval of the predicted subsidence
amount at point t changes according to the values β(0) and γ (0). The initial parameter of the
prior probability density of φi can be arbitrarily established, but for the efficiency of Bayesian
learning it is better if the prior distribution is dispersed. In this paper, the initial parameters
were established at β(0) = 0.5 and γ (0) = 0.5. From the results of Figure 4, the case in which
these initial values were used shows greater dispersion of prior distribution of the parameter
values, among the 4 calculation cases in the same figure.

5.4. Estimating the Third Model

After services are offered at the airport, information on the ground subsidence amount of
each planar mesh can be obtained through continuous monitoring. Using this monitoring
information, the mixed ground subsidence model is reconsidered. At the moment, the airport
is not in service and there is no monitoring information. So, the monitoring results of ground
subsidence amount of each planar mesh are assumed and Bayesian updating is conducted
on the mixed ground subsidence model. Now, the period of the airport during operation
and management shall be divided into two periods: (1) from the first year to the sixth
year and (2) after the sixth year. After services begin, each year periodical monitoring of
ground subsidence amount is conducted, and at the fifth year after services begin, Bayesian
estimation of the mixed ground subsidence model is considered. Next, after the sixth year,
monitoring information of ground subsidence can be obtained each year. Here we shall
consider the problem of adding the newly acquired monitoring information to the database
and conducting Bayesian updating of the mixed ground subsidence model every year
according to the newly updated database.
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Figure 5: 95% credible interval of predicted subsidence amount.

In the targeted airport ground, there are a total of 528 planar meshes. Let us assume
the airport apron has been in service for 5 years, and consider the problem of predicting
ground subsidence amount after the sixth year, using monitoring information of 5 years to
update the mixed ground subsidence model. Figure 3 shows the sample path created with
the first model and expected value path calculated with the second model, using an example
mesh (i = 73) of the 528 planar meshes. Currently, there is no monitoring information so
the Bayesian updated third model is created using assumed information. In order to check
whether the estimation results of ground subsidence can be appropriately corrected with the
Bayesian updated third model, even if the actual ground subsidence amount is larger than
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Table 3: Estimation results of mixed ground subsidence model.

Parameter Expected value 95% credible interval Geweke test statistics
ω73(1) 0.553 0.518 0.589 −8.63E − 02
ω73(2) 0.447 0.428 0.467 −8.63E − 02
φ73 2.76 0.66 7.41 −4.49E − 02

the expected path of the secondmodel, the hypothesizedmonitoring information shownwith
the black dots in Figure 3 was used. The ground subsidence process shown in this example
is lower than the expected sample path, and the ground subsidence amount is larger than
the expected value path. The mixed ground subsidence model of the targeted mesh can be
expressed as

yt
73 =

2∑

k=1

ω73(k)f73(t, k) + ε73. (5.5)

Also, k = 1 is the sample path α of Figure 3, while k = 2 is sample path β.
Furthermore, for the prior probability density function of weight vector ωi of the

mixed ground subsidence model, the same distribution was used as the Dirichlet distribution
used in the second model. On the other hand, the prior probability density function of the
variance parameter φi of the probability error term εi is subject to the gamma distribution of
(3.4), and the parameter of the gamma distribution was established as (β(0), γ (0)) = (0.5,0.5)
according to the consideration of Section 5.3. Also, the number of convergence tests totaled
8,000 samples: n = 2, 000, n = 10, 000.

First, after services, the mixed ground subsidence model is updated with Bayesian
updating according to the monitoring information of 5 years. In Table 3, the estimation
results of the mixed ground subsidence model are shown with the weights ω73(1), ω73(2),
expected value of distribution parameter φ73, the 95% credible interval, and the Geweke test
statistics [8]. Geweke test statistics are statistics for testing whether the sampling process of
MCMC method reaches a steady state and is used to test whether the sample number n is
appropriate or not. From the estimation results, the total weight is 1 and the constrained
condition equation (3.2) is satisfied. Also, the expected value of weightω73(1) is high but this
is an inevitable result as the simulated monitoring information is at a higher position than the
sample average path. The posterior probability density functions of these two parameters are
shown in Figures 6 and 7. Also, when conducting the MHmethod, n = 2, 000 was established
as the sample number for the Markov chain to reach a steady state, but the absolute value of
the Geweke test statistics are all lower than 1.96 and the hypothesis that it “converges to a
steady state” with a significance level of 5% cannot be dismissed. The prior distributions of
these parameters are shown in Figures 6 and 7, but the variance of the parameter distributions
of the mixed ground subsidence model is smaller with Bayesian updating.

Next, using the mixed ground subsidence model updated with Bayesian updating
on the fifth year, the ground subsidence path after the sixth year is estimated and the
results are shown in Figure 8. As stated above, the actual path of ground subsidence process
is simulated as having greater subsidence than the expected sample path. Therefore, the
expected subsidence amount after 30 years has passed is 38.11 cm, 35.75 cm greater than the
expected sample path. At year 30, the lower limit of the 95% credible interval is 37.99 cm and
the upper limit is 38.22 cm, and it is understood that after Bayesian updating the estimation



18 Journal of Applied Mathematics

95% credible interval

0.03

0.02

0.01

0
0.45 0.5 0.55 0.6 0.65

Expected value

Parameter value

Posterior distribution
Prior distribution

Pr
ob

ab
ili

ty
 d

en
si

ty

Figure 6: Probability distribution of parameter ω73(1).

95% credible
interval

0.04

0.03

0.02

0.01

0
0

5 10 15

Expected value

Parameter value

Pr
ob

ab
ili

ty
 d

en
si

ty

Posterior distribution
Prior distribution

Figure 7: Probability distribution of parameter φ73.

accuracy of the mixed ground subsidence model has improved and better risk management
of ground subsidence is possible.

Furthermore, we shall consider how after the sixth year monitoring information is
continuously accumulated and Bayesian updating is sequentially conducted on the mixed
ground subsidence model. Let us look at planar mesh i = 73 once more. With this mesh,
monitoring information as shown in the white dots in Figure 3 is accumulated after the
sixth year. Here, let us say that as new monitoring information is obtained each year,
Bayesian updating is conducted on the mixed ground subsidence model. Furthermore, using
the updated mixed ground subsidence model, the ground subsidence amount at year 30
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Figure 8: Subsidence estimation results at 5th year.

Table 4: Estimation results of ground subsidence amount (mesh i = 73).

Year Subsidence estimation of 30th year 95% credible interval Width of credible interval
5 38.109 37.990 38.224 0.234
6 38.209 38.139 38.279 0.140
7 38.218 38.174 38.263 0.089
8 38.226 38.199 38.254 0.055
9 38.439 38.419 38.457 0.038
10 38.151 38.140 38.163 0.023
15 38.115 38.114 38.116 0.002
20 38.477 38.477 38.477 0.000
25 39.046 39.046 39.046 0.000
Note: the simulated monitoring data (subsidence amount) at the 30th year is 39.09 cm.

is estimated and the results are shown in Table 4. In this chart, using the mixed ground
subsidence model after Bayesian updating with the monitoring information up to that point,
the estimation (expected value) of the ground subsidence amount at the 30th year after being
in service, as well as the upper and lower limits of the 95% credible interval, is shown.
Furthermore, the simulated monitoring information (subsidence amount) at the 30th year
is 39.09 cm. Compared to the Bayesian updating result, with the accumulation of information
the expected path is slightly corrected and the credible interval range is narrower. From this
it can be understood that the estimation accuracy is improved due to Bayesian updating.



20 Journal of Applied Mathematics

6. Conclusion

This paper attempts to propose a methodology of conducting Bayesian updating on ground
subsidence estimation results using continuous monitoring and monitoring information of
ground subsidence, which is an important issue in asset management of airport facilities.
Specifically, using a one-dimensional consolidation model that takes inhomogeneous
subsidence into consideration, sample paths regarding ground subsidence process and a
mixed ground subsidence model that averages the load of the sample paths are calculated.
Furthermore, a methodology of conducting Bayesian updating using MCMC method on
the mixed ground subsidence model, by continuously monitoring the ground subsidence
amount after the airport begins services, is proposed. Furthermore, the applicability of the
methodology proposed in this paper is empirically evaluated through an applied case of
the ground subsidence estimation management of an airport facility. However, in order to
improve the applicability of the Bayesian updating model proposed in this paper, there
are several issues to be studied in the future. First, the applied case in this paper is at the
state where the airport facilities have just begun services. Therefore, monitoring information
is not yet available. Consequently, in the applied case, Bayesian updating of the mixed
ground subsidence model was conducted using simulated monitoring information. In the
future, it is necessary to continuously monitor the ground subsidence process of airports
and use actual monitoring information to evaluate the efficiency of Bayesian updating on
the mixed ground subsidence model. Secondly, in airport pavement management, ground
subsidence estimation management is an important issue for consideration, but for pavement
management, managing deterioration and damage processes of airport pavements is also
important. For this, the deterioration and damage progress of airport pavements as well as
ground subsidence should be modelized. Thirdly, the Bayesian updating model proposed in
this paper is a methodology for conducting Bayesian updating on estimation results based on
monitoring information during the designing phase. This type of Bayesian updating model
has the potential to be applied to a wider range of problems outside of ground subsidence
estimationmanagement. In the future, it is necessary to evaluate the efficiency of the Bayesian
updating model on asset management of public facilities other than airport pavements.
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