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Variational iteration method and homotopy perturbation method are used to solve the fractional
Fredholm integrodifferential equations with constant coefficients. The obtained results indicate
that the method is efficient and also accurate.

1. Introduction

The topic of fractional calculus has attracted many scientists because of its several applica-
tions in many areas, such as physics, chemistry, and engineering. For a detail survey with
collections of applications in various fields, see, for example, [1–3].

Further, the fractional derivatives technique has been employed for solving linear
fractional differential equations including the fractional integrodifferential equations; in this
way, much of the efforts is devoted to searching for methods that generate accurate results,
see [4, 5]. In this work, we present two different methods, namely, homotopy perturbation
method and variational iteration method [6], for solving a fractional Fredholm integro-
differential equations with constant coefficients. There is a vast literature, and we only
mention the works of Liao which treat a homotopy method in [7, 8].

For the nonlinear equations with derivatives of integer order, many methods are used
to derive approximation solution [9–14]. However, for the fractional differential equation,
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there are some limited approaches, such as Laplace transform method [3], the Fourier
transform method [15], the iteration method [16], and the operational calculus method [17].

Recently, there has been considerable researches in fractional differential equations
due to their numerous applications in the area of physics and engineering [18], such as
phenomena in electromagnetic theory, acoustics, electrochemistry, and material science [3,
16, 18, 19]. Similarly, there is also growing interest in the integrodifferential equations which
are combination of differential and Fredholm-Volterra equations. In this work, we study
these kind of equations that have the fractional order usually difficult to solve analytically,
thus a numerical method is required, for example, the successive approximations, Adomian
decomposition, Chebyshev and Taylor collocation, Haar Wavelet, Tau and Walsh series
methods.

This note is devoted to the application of variational iteration method (VIM) and
homotopy perturbation method (HPM) for solving fractional Fredholm integrodifferential
equations with constant coefficients:

∞∑

k=0

PkD
α
∗y(t) = g(x) + λ

∫a

0
H(x, t)y(t)dt, a ≤ x, t ≤ b, (1.1)

under the initial-boundary conditions

Dα
∗y(a) = y(0), (1.2)

Dα
∗y(0) = y′(a), (1.3)

where a is constant and 1 < α < 2 and Dα
∗ is the fractional derivative operator given in the

Caputo sense. For the physical understanding of the fractional integrodifferential equations,
see [20]. Further, we also note that fractional integrodifferential equations were associated
with a certain class of phase angles and suggested a newway for understanding of Riemann’s
conjecture, see [21].

Outline of this paper is as follows. Section 2 contains preliminaries on fractional
calculus. Section 3 is a short review of the homotopy method and Section 4 variational
iteration method. Sections 5 and 6 are devoted to VIM and HPM analysis, respectively.
Concluding remarks with suggestions for future work are listed in Section 7.

2. Description of the Fractional Calculus

In the following, we give the necessary notations and basic definitions and properties of
fractional calculus theory; for more details, see [3, 13, 16, 22].

Definition 2.1. A real function f(x), x > 0, is said to be in the space Cα, α ∈ R if there exists a
real number (p > α), such that f(x) = xpf1(x), where f1(x) = C([0,∞)). Clearly, Cα ⊂ Cβ, if
β ≤ α.

Definition 2.2. A function f(x), x > 0, is said to be in space Cm
α ,m ∈ N, if f (m) ∈ Cα.
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Definition 2.3. The Riemann-Liouville fractional integral of order μ ≥ 0 for a function f ∈
Cα, (α ≥ 1) is defined as

Iμf(t) =
1

Γ
(
μ
)
∫ t

0
(t − τ)μ−1f(τ)dτ, μ > 0, t > 0, (2.1)

in particular I0f(t) = f(t).

Definition 2.4. The Caputo fractional derivative of f ∈ Cm
−1, m ∈ N, is defined as

D
μ
c f(t) =

⎧
⎪⎨

⎪⎩

[
Im−μf (m)(t)

]
, m − 1 < μ ≤ m, m ∈ N,

dm

dtm
f(t), μ = m.

(2.2)

Note that

(i) Iμtγ = (Γ(γ + 1)/Γ(γ + μ + 1))tγ+μ, μ > 0, γ > −1, t > 0,

(ii) Iμ CD
μ

0+f(t) = f(t) −∑m−1
k=0 f (k)(0+)(tk/k!),m − 1 < μ ≤ m,m ∈ N,

(iii) CD
μ

0+f(t) = Dμ(f(t) −∑m−1
k=0 f (k)(0+)(tk/k!)),m − 1 < μ ≤ m, m ∈ N,

(iv)

DβIαf(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Iα−βf(t), if α > β,

f(t), if α = β,

Dβ−αf(t), if α < β,

(2.3)

(v) CD
β

0+D
mf(t) = Dβ+mf(t),m = 0, 1, 2, . . . , n − 1 < β < n.

Definition 2.5 (see [3, 16]). The Riemann-Liouville fractional integral operator of order ρ ≥ 0
for a function f ∈ Cμ, (μ ≥ −1) is defined as

Kρf(x) =
1

Γ
(
ρ
)
∫x

0
(x − t)ρ−1f(t)dt, ρ > 0, x > 0, K0f(x) = f(x), (2.4)

having the properties

KρKβf(x) = Kρ+βf(x),

Kρxβ =
Γ
(
β + 1

)

Γ
(
ρ + β + 1

)xα+β.
(2.5)
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According to the Caputo’s derivatives, we obtain the following expressions:

CDμC = 0, C = constant,

CDμtβ =

⎧
⎪⎨

⎪⎩

Γ
(
β + 1

)

Γ
(
α + β + 1

) tβ−α, β > α − 1,

0, β ≤ α − 1.

(2.6)

Lemma 2.6. Ifm − 1 < α ≤ m, m ∈ N, f ∈ Cm
μ , μ ≥ −1, then the following two properties hold:

(1)DαKαf(t) = f(t), (2) (DαKα)f(t) = f(t) −
m−1∑

k=0

f (k)(0+)
tk

k!
. (2.7)

In fact, Kılıçman and Zhour introduced the Kronecker convolution product and
expanded to the Riemann-Liouville fractional integrals of matrices by using the Block Pulse
operational matrix as follows:

1
Γ(α)

∫ t

0
(t − t1)α−1φm(t1)dt1 	 Fαφm(t), (2.8)

where

Fα =
(

b

m

)α 1
Γ(α + 2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ξ2 ξ3 · · · ξm

0 1 ξ2 · · · ξm−1

0 0 1 · · · ξm−2

0 0 0
. . .

...

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.9)

see [23].
In our work, we consider Caputo fractional derivatives and apply the homotopy

method in order to derive an approximate solutions of the fractional integrodifferential
equations.

3. Homotopy Method

To illustrate the basic ideas of this method, we consider the following nonlinear differential
equation:

A(u) + f(r) = 0, r ∈ Ω, (3.1)



Abstract and Applied Analysis 5

with boundary conditions

B

(
u,

∂u

∂n

)
= 0, r ∈ Γ, (3.2)

whereA is a general differential operator, B is a boundary operator, f(r) is a known analytical
function, and Γ is the boundary of the domain Ω, see [24].

In general, the operator A can be divided into two parts L and N, where L is linear,
whileN is nonlinear. Equation (3.1), therefore, can be rewritten as follows:

L(u) +N(u) − f(r) = 0. (3.3)

By using the homotopy technique that was proposed by Liao in [7, 8], we construct a
homotopy of (3.1) v(r, p) : Ω × [0, 1] → Rwhich satisfies

H(v, p) = (1 − p
)
[L(v) − L(u0)] + p

[
A(v) + f(r)

]
= 0, p ∈ [0, 1], r ∈ Ω, (3.4)

or

H(v, p) = L(v) − L(u0) + pL(u0) + p
[
N(v) − f(r)

]
= 0, (3.5)

where p ∈ [0, 1] is an embedding parameter and u0 is an initial approximation which satisfies
the boundary conditions. By using (3.4) and (3.5), we have

H(v, 0) = L(v) − L(u0) = 0,

H(v, 1) = A(v) − f(r) = 0.
(3.6)

The changing in the process of p from zero to unity is just that of v(r, p) from u0 to
u(r). In a topology, this is also

known deformation, further L(v) − L(u0) and A(v) − f(r) are homotopic.
Now, assume that the solution of (3.4) and (3.5) can be expressed as

v = v + pv1 + p2v2 + · · · . (3.7)

The approximate solution of (3.1), therefore, can be readily obtained:

u = lim
p→ 1

v = v0 + v1 + v2 + · · · . (3.8)

The convergence of the series of (3.8) has been proved in the [25, 26].
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4. The Variational Iteration Method

To illustrate the basic concepts of the VIM, we consider the following differential equation:

Lu +Nu = g(x), (4.1)

where L is a linear operator, N is a nonlinear operator, and g(x) is an nonhomogenous term;
for more details, see [19].

According to the VIM, one construct a correction functional as follows:

un+1(x) = un(x) +
∫x

0
λ
[
Lun(s) +Nũn(s) − g(s)

]
ds, (4.2)

where λ is a general Lagrangemultiplier, which can be identified optimally via the variational
theory, and the subscript n denotes the order of approximation, ũu is considered variation
[6, 27], that is, δũu = 0.

5. Analysis of VIM

To solve the fractional integrodifferential equation (1.1) by using the variational iteration
method, with boundary conditions (1.2), one can construct the following correction
functional:

yk+1(x) = yk(x) +
∫ t

0
μ

∞∑

k=0

PkD
α
∗y(s)ds − μg̃k(x) − λ

∫b

a

μH(x, s)ỹk(s)ds, (5.1)

where μ is a general Lagrange multiplier and g̃k(x) and ỹk(x) are considered as restricted
variations, that is, δg̃k(x) = 0 and δỹk(x) = 0.

Making the above correction functional stationary, the following conditions can be
obtained:

δyk+1(x) = δyk(x) +
∫ t

0

[ ∞∑

k=0

Pkμ(s)δDα
∗y(s) − δg̃k(x) − λ

∫b

a

H(x, s)μ(s)δỹk(s)ds

]
, (5.2)

having the boundary conditions as follows:

1 − μ′(s)|x=s = 0, μ(s)|x=s = 1. (5.3)

The Lagrange multipliers can be identified as follows:

μ(s) =
1
2
(s − x). (5.4)
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Substituting the value of μ from (5.4) into correction functional of (5.1) leads to the
following iteration formulae:

yk+1(x) = yk(x) +
μ

2Γ(α − 1)

∫x

0
(x − s)α−2(s − x)

×
[∫ t

0

∞∑

k=0

PkD
α
∗y(s)ds − g̃k(x) − λ

∫b

a

H(x, s)ỹk(s)

]
ds,

yk+1(x) = yk(x) −
μ(α − 1)
2Γ(α)

∫x

0
(x − s)α−1

×
[∫ t

0

∞∑

k=0

PkD
α
∗y(s)ds − g̃k(x) − λ

∫b

a

H(x, s)ỹk(s)

]
ds,

(5.5)

by applying formulae (2.4), we get

yk+1(x) = yk(x) − (α − 1)Kα

2Γ(α)

[∫ t

0
μ

∞∑

k=0

PkD
α
∗y(v)dv − μg̃k(x) − λ

∫b

a

μH(x, v)ỹk(v)

]
dv.

(5.6)

The initial approximation can be chosen in the following manner which satisfies initial
boundary conditions (1.2)-(1.3):

y0(x) = υ0 + υ1x, where υ1 = Dα
∗y(0), υ0 = Dα

∗y(a). (5.7)

We can obtain the following first-order approximation by substitution of (5.7) into
(5.6)

y1(x) = y0(x) − (α − 1)Kα

2Γ(α)

[∫ t

0
μ

N∑

k=0

PkD
α
∗y(v)dv − μg̃0(x) − λ

∫b

a

μH(x, v)ỹk(v)

]
dv. (5.8)

Substituting the constant value of υ0 and υ1 in the expression (5.8) results in the
approximation solution of (1.1)–(1.3).

6. Analysis of HPM

This section illustrates the basic of HPM for fractional Fredholm integrodifferential equations
with constant coefficients (1.1)with initial-boundary conditions (1.2).

In view of HPM [25, 26], construct the following homotopy for (1.1):

∞∑

k=0

PkD
α
∗y(x) = p

[ ∞∑

k=0

PkD
α
∗y(x) +

(
g(t) − λ

∫b

a

H(x, t)y(x)dx

)]
. (6.1)
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In view of basic assumption of HPM, solution of (1.1) can be expressed as a power
series in p:

y(x) = Dα
∗y0(x) + pDα

∗y1(x) + p2Dα
∗y2(x) + p3Dα

∗y3(x) + · · · . (6.2)

If we put p → 1 in (6.2), we get the approximate solution of (1.1):

y(x) = Dα
∗y0(x) +Dα

∗y1(x) +Dα
∗y2(x) +Dα

∗y3(x) + · · · . (6.3)

The convergence of series (6.3) has been proved in [28].
Now, we substitute (6.2) into (6.1); then equating the terms with identical power of p,

we obtain the following series of linear equations:

p0 :
∞∑

k=0

PkD
α
∗y0(t) = 0,

p1 :
∞∑

k=0

PkD
α
∗y1(t) =

∞∑

k=0

PkD
α
∗y0(t) − λ

∫b

a

H(x, t)y0(x)dx,

p2 :
∞∑

k=0

PkD
α
∗y2(t) =

∞∑

k=0

PkD
α
∗y1(t) + g(x) − λ

∫b

a

H(x, t)y1(x)dx,

p3 :
∞∑

k=0

PkD
α
∗y3(t) =

∞∑

k=0

PkD
α
∗y2(t) − λ

∫b

a

H(x, t)y2(x)dx,

p4 :
∞∑

k=0

PkD
α
∗y4(t) =

∞∑

k=0

PkD
α
∗y3(t) − λ

∫b

a

H(x, t)y3(x)dx,

(6.4)

with the initial-boundary conditions

Dα
∗y(a) = y(0), Dα

∗y(0) = y′(a). (6.5)

We can also take the initial approximation in the following manner which satisfies
initial-boundary conditions (1.2)-(1.3):

y0(x) = υ0 + υ1x, where υ1 = Dα
∗y(0), υ0 = Dα

∗y(a). (6.6)

Note that (6.4) can be solved by applying the operator Kβ, which is the inverse of
operator Dα we approximate the series solution of HPM by the following n-term truncated
series [29]:

χn(x) = Dα
∗y0(x) +Dα

∗y1(x) +Dα
∗y2(x) +Dα

∗y3(x) + · · · +Dα
∗yn−1(x), (6.7)

which results, the approximate solutions of (1.2)-(1.3). For further analysis, the variational
iteration method, see [30] and the algorithm by the homotopy perturbation method, see [31].
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7. Conclusion

The proposed methods are used to solve fractional Fredholm integrodifferential equations
with constant coefficients. Comparison of the results obtained by the present method
with that obtained by other method reveals that the present method is very effective and
convenient. Unfortunately, the disadvantage of the second method is that the embedding
parameter p is quite casual, and often enough the approximations obtained by this method
will not be uniform. So, in our future work we expect to study this kind of equation by using
a combination of the variational iteration method and the homotopy perturbation method
which has shown reliable results in supplying analytical approximation that converges very
rapidly. However, we note that the papers [32, 33] suggest alternative ways for similar
problems.
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