
Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2012, Article ID 484805, 11 pages
doi:10.1155/2012/484805

Research Article
Some Results on Equivalence Groups

J. C. Ndogmo

School of Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa

Correspondence should be addressed to J. C. Ndogmo, jean-claude.ndogmo@wits.ac.za

Received 28 August 2012; Accepted 1 October 2012

Academic Editor: Fazal M. Mahomed

Copyright q 2012 J. C. Ndogmo. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

The comparison of two common types of equivalence groups of differential equations is discussed,
and it is shown that one type can be identified with a subgroup of the other type, and a
case where the two groups are isomorphic is exhibited. A result on the determination of the
finite transformations of the infinitesimal generator of the larger group, which is useful for the
determination of the invariant functions of the differential equation, is also given. In addition, the
Levidecomposition of the Lie algebra associated with the larger group is found; the Levi factor of
which is shown to be equal, up to a constant factor, to the Lie algebra associated with the smaller
group.

1. Introduction

An invertible point transformation that maps every element in a family F of differential
equations of a specified form into the same family is commonly referred to as an equivalence
transformation of the equation [1–3]. Elements of the family F are generally labeled by a set
of arbitrary functions, and the set of all equivalence transformations forms, in general, an
infinite dimensional Lie group called the equivalence group of F. One type of equivalence
transformations usually considered [1, 4, 5] is that in which the arbitrary functions are also
transformed. More specifically, if we denote by A = (A1, . . . , Am) the arbitrary functions
specifying the family element in F, then for given independent variables x = (x1, . . . , xp)
and dependent variable y, this type of equivalence transformations takes the form

x = ϕ(z,w, B), (1.1a)

y = ψ(z,w, B), (1.1b)

A = ζ(z,w, B), (1.1c)
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where z = (z1, . . . , zp) is the new set of independent variables,w = w(z) is the new dependent
variable, and B = (B1, . . . , Bm) represents the new set of arbitrary functions. The original
arbitrary functionsAi may be functions of x, y, and the derivatives of y up to a certain order,
although quite often they arise naturally as functions of x alone, and for the equivalence
transformations of the type (1.1a), (1.1b), and (1.1c), the corresponding equivalence group
that we denote by GS is simply the symmetry pseudogroup of the equation, in which the
arbitrary functions are also considered as additional dependent variables.

The other type of equivalence transformations commonly considered [2, 6–8] involves
only the ordinary variables of the equation, that is, the independent and the dependent
variables, and thus with the notation already introduced, it consists of point transformations
of the form

x = ϕ(z,w), (1.2a)

y = ψ(z,w). (1.2b)

If we let G denote the resulting equivalence group, then it follows from a result of Lie [9]
that G induces another group of transformations Gc acting on the arbitrary functions of
the equation. The invariants of the group Gc are what are referred to as the invariants of
the family F of differential equations, and they play a crucial role in the classification and
integrability of differential equations [1, 6, 10–14].

In the recent scientific literature, there has been a great deal of interest for finding
infinitesimal methods for the determination of invariant functions of differential equations
[2, 7, 15–17]. Some of these methods consist in finding the infinitesimal (generic) generator
X of GS, and then using it in one way or another [7, 18] to obtain the infinitesimal generator
X0 of Gc, which gives the determining equations for the invariant functions. Most of these
methods remain computationally demanding and in some cases quite inefficient, perhaps
just because the connection between the three groups G, Gc, and GS does not seem to have
been fully investigated.

We therefore present in this paper a comparison of the groups G and GS and show in
particular that G can be identified with a subgroup of GS, and we exhibit a case where the
two groups are isomorphic. We also show that the generator X of GS admits a simple linear
decomposition of the form X = X1 + X2, where X1 is an operator uniquely associated with
G, and we also give a very simple and systematic method for extracting X1 from X. This
decomposition also turns out to be intimately associated with the Lie algebraic structure of
the equation, as we show that X1 and X2 each generate a Lie algebra, the two of which are
closely related to the components of the Levi decomposition of the Lie algebra of GS.

2. The Relationship between G and GS

We will call type I the equivalence transformations of the form (1.2a) and (1.2b) and type II
those of the form (1.1a), (1.1b), and (1.1c), whose equivalence groups we have denoted by
G and GS, respectively. When the coordinates system in which a vector field is expressed is
clearly understood, it will be represented only by its components, so that a vector field

ω = ξ∂x + η∂y + φ∂A (2.1)
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will be represented simply by ω = {ξ, η, φ}. On the other hand, for a vector a = (a1, . . . , an)
representing a subset of coordinates, the notation f∂a will mean

f∂a = f1∂a1 + · · · + fn∂an ,

f =
(
f1, . . . , fn

)
.

(2.2)

Hence, with the notation introduced in the previous section, we may represent the generator
X of GS as

X =
{
ξ, η, φ

} ≡ ξ∂x + η∂y + φ∂A. (2.3)

Let V = {ξ, η} be the projection of this generator into the (x, y)-space, and let V 0 = {ξ0, η 0} be
the infinitesimal generator of G. Elements of F may be thought of as differential equations of
the form

Δ
(
x, y(n);A1, . . . , Am

)
= 0, (2.4)

where y(n) denotes y and all its derivatives up to the order n. We have the following result.

Theorem 2.1. (a) The group G can be identified with a subgroup of GS.
(b) The component functions ξ0 and η0 are particular values of the functions ξ and η,

respectively.

Proof. Suppose that the action of Gc induced by that of G on the arbitrary functions of the
equation is given by the transformations

Ai = γi(z,w, B1, . . . , Bm), i = 1, . . . , m. (2.5)

Then, since (1.2a) and (1.2b) leave the equation invariant except for the arbitrary functions,
by also viewing the functionsAi as dependent variables, (1.2a) and (1.2b) together with (2.5)
constitute a symmetry transformation of the equation. This is more easily seen if we consider
the inverse transformations of (1.2a) and (1.2b) which may be put in the form

z = ϕ̂
(
x, y

)
, (2.6a)

w = ψ̂
(
x, y

)
. (2.6b)

If we now denote by

Bi = γ̂
(
x, y,A1, . . . , Am

)
, i = 1, . . . , m (2.7)

the resulting arbitrary functions in the transformed equation, it follows that in terms of the
new set of variables z, w, and Bi, any element of F is locally invariant under (2.6a), (2.6b),
and (2.7), and this proves the first part of the theorem. The second part of the theorem is an
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immediate consequence of the first part, for we can associate with any element (ϕ, ψ) of G a
triplet (ϕ, ψ, γ) inGS, where γ is the action in (2.5) induced by (ϕ, ψ) on the arbitrary functions
of the equation. The result thus follows by first recalling that GS has generic generator
X = {ξ, η, φ} and by considering the infinitesimal counterpart of the finite transformations
(ϕ, ψ, γ), which must be of the form {ξ0, η0, ζ0} for a certain function ζ0.

On the basis of Theorem 2.1, it is clear that one can obtain the generator V 0 = {ξ0, η0}
of G by imposing on the projection V = {ξ, η} of X the set of minimum conditions Ω that
reduces it to the infinitesimal generator of the equivalence group G of F, so that V 0 = V|Ω .
It was also observed (see [7]) that in case A is the function of x alone, if we let φ0 denote
the resulting value of φ when these minimum conditions are also imposed on X = {ξ, η, φ},
then the generator X0 of Gc can be obtained by setting X0 = {ξ0, φ0}. However, the problem
that arises is that of finding the simplest and most systematic way of extracting X1 = X|Ω =
{ξ0, η0, φ0} from X = {ξ, η, φ}.

To begin with, we note that the coefficient φ0 is an m-component vector that depends
in general on (p + 1) + m variables, and finding its corresponding finite transformations by
integrating the vector field {ξ0, η0, φ0} can be a very complicated task. Fortunately, once the
finite transformations of the generator V 0 of G which are easier to find are known, we can
easily obtain those associated with φ0 using the following result.

Lemma 2.2. The finite transformations associated with the component φ0 of X1 = {ξ0, η0, φ0} are
precisely given by the action (2.7) of Gc induced by that of (2.6a) and (2.6b).

Proof. Since X1 = X|Ω , where Ω is the set of minimum conditions to be imposed on V = {ξ, η}
to reduce it into an infinitesimal generator V 0 = {ξ0, η0} of G, it first follows that once the
finite transformations (2.6a) and (2.6b) corresponding to V 0 are applied to the equation, the
resulting equation is invariant, except for the expressions of the arbitrary functions which
are now given by (2.7). Thus if (z,w, b) are the new variables generated by the symmetry
operator X1, where b = (b1, . . . , bm), then the only way to have an invariant equation is to set

bi = γ̂
(
x, y,A1, . . . , Am

)
, i = 1, . . . , m, (2.8)

where γ̂ is the same function appearing in (2.7), and this readily proves the lemma.

3. Case of the General Third Order Linear ODE

We will look more closely at the connection between the two operators X and X1 by
considering the case of the family of third-order linear ordinary differential equations (ODEs)
of the form

y(3) + a1(x)y′ + a0(x)y = 0, (3.1)

which is said to be in its normal reduced form. Here, the arbitrary functionsAi of the previous
section are simply the coefficients aj of the equation. This form of the equation is in no
way restricted, for any general linear third order ODE can be transformed into (3.1) by
a simple change of the dependent variable [8, 16]. If we consider the arbitrary functions
aj as additional dependent variables, then by applying known procedures for finding Lie
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point symmetries [19–21], the infinitesimal generator X of the symmetry group GS in the
coordinates system (x, y, a1, a0) is found to be of the form

X =
{
f,
(
k1 + f ′)y + g,−2

(
a1f ′ + f (3)

)
, C4

}
, (3.2a)

where

C4 = − 1
y

(
a0g + a1g ′ + g(3)

)
−
(
3a0f ′ + a1f ′′ + f (4)

)
, (3.2b)

and where f and g are arbitrary functions of x. The projection of X in the (x, y)-space is
therefore

V =
{
f,
(
k1 + f ′)y + g

}
, (3.3)

and a simple observation of this expression shows that due to the homogeneity of (3.1), (3.3)
may represent an infinitesimal generator of the equivalence group G only if g = 0. A search
for the one-parameter subgroup exp(tW), satisfying exp(tW)(x, y) = (z,w) and generated
by the resulting reduced vector fieldW = {f, (k1 + f ′)y}, readily gives

ż = f(z),

ẇ =
(
k1 + f ′(z)

)
w,

(3.4)

where

ż =
dz

dt
, ẇ =

dw

dt
. (3.5)

Integrating these last two equations while taking into account the initial conditions gives

J(z) = t + J(x), (3.6a)

w = ek1t
f(z)
f(x)

y, (3.6b)

where

J(z) =
∫

dz

f(z)
. (3.6c)

Differentiating both sides of (3.6a) with respect to x shows that dz/dx = f(z)/f(x). Thus, if
we assume that z is explicitly given by

z = Ft(x) ≡ F(x), (3.7)
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for some function F, then this leads to

z = F(x), (3.8a)

w = ek1tF ′(x)y, (3.8b)

and we thus recover the well-known equivalence transformation [6, 8, 14] of (3.1). Therefore,
the condition g = 0 is the necessary and sufficient condition for the vector V in (3.3) to
represent the infinitesimal generator ofG. In other words, the setΩ of necessary and sufficient
conditions to be imposed on X to obtain X1 is reduced in this case to setting g = 0. More
explicitly, we have

V 0 =
{
f,
(
k1 + f ′)y} ≡

{
ξ0, η0

}
, (3.9a)

φ0 =
{
−2

(
a1f ′ + f ′′′

)
,−

(
3a0f ′ + a1f ′′ + f (4)

)}
, (3.9b)

X1 =
{
f,
(
k1 + f ′)y,−2

(
a1f ′ + f ′′′

)
,−

(
3a0f ′ + a1f ′′ + f (4)

)}
, (3.9c)

where X1 = X|g=0 .
We would now like to derive some results on the algebraic structure of LS, the Lie

algebra of the group GS related to (3.1), and its connection with that for the corresponding
groupG. Thus, for any generatorX ofGS, setX2 = X−X1, whereX1 = X|g=0 is given by (3.9c),
while X2 takes the form

X2 =
{
0, g, 0,

−1
y

(
a0g + a1g ′ + g(3)

)}
. (3.10)

Since X1 depends on f and k1 while X2 depends on g, we set

X1(f, k1
)
=
{
f,
(
k1 + f ′)y,−2

(
a1f ′ + f ′′′

)
,−

(
3a0f ′ + a1f ′′ + f (4)

)}
, (3.11a)

X2(g) =
{
0, g, 0,

−1
y

(
a0g + a1g ′ + g(3)

)}
, (3.11b)

for any arbitrary functions f and g and arbitrary constant k1. Let L0, L1, and L2 be the vector
spaces generated byX1(f, 0),X1(f, k1), andX2(g), respectively, where f , g, and k1 are viewed
as parameters. Let

LS,0 = L0 � L2 (3.12)

be the subspace of the Lie algebra LS = L1 � L2 of GS. We note that LS,0 is obtained from LS
simply by setting k1 = 0 in the generator X1(f, k1) of GS, which according to (3.8b) amounts
to ignoring the constant factor λ = ek1t in the transformation of the dependent variable under
G. Moreover, we have dimLS,0 = dimLS −1, while LS itself is infinite dimensional, in general.
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Theorem 3.1. (a) The vector spaces L0, L1, and L2 are all Lie subalgebras of LS.
(b) L0 and L2 are the components of the Levi decomposition of the Lie algebra LS,0, that is,

[L0, L2] ⊂ L2, (3.13)

and L2 is a solvable ideal while L0 is semisimple.

Proof. A computation of the commutation relations of the vector fields shows that

[
X1(f1, k1

)
, X1(f2, k2

)]
= X1(−f2f ′

1 + f1f
′
2, 0

)
, (3.14a)

[
X2(g1

)
, X2(g2

)]
= 0, (3.14b)

[
X1(f1, k1

)
, X2(g1

)]
= X2(f1g ′

1 − g1
(
k1 + f ′

1

))
, (3.14c)

where the fj and gj are arbitrary functions, while the kj are arbitrary constants. Consequently,
it readily follows from (3.14a) and (3.14b) that L1 and L2 are Lie subalgebras of LS, while
setting k1 = k2 = 0 in (3.14a) shows that L0 is also a Lie subalgebra, and this proves the first
part of the theorem. Moreover, it follows from the commutation relations (3.14a), (3.14b), and
(3.14c) that [LS, LS] ⊂ LS,0, and hence that LS,0 is an ideal of LS, while (3.14b) and (3.14c) show
that L2 is an abelian ideal in LS, and in particular in LS,0. Thus, we are only left with showing
that L0 is a semisimple subalgebra of LS,0. Clearly, [L0, L0]/= 0, and if L0 had a proper ideal A,
then for a given nonzero operator X1(H, 0) inA, all operators X1(−fH ′ + f ′H, 0)would be in
A for all possible functions f . However, since for every function h of x the equation

−fH ′ + f ′H = h (3.15)

admits a solution in f , it follows that A would be equal to L0. This contradiction shows that
L0 has no proper ideal and is therefore a simple subalgebra of LS,0.

Note that part (b) of Theorem 3.1 can also be interpreted as stating that up to a constant
factor, X1 and X2 generate the components of the Levi decomposition of LS. The theorem
therefore shows that the decomposition X = X1 + X2 is not fortuitous, as it is intimately
associated with the the Levi decomposition of LS, and this decomposition is unique up to
isomorphism for any given Lie algebra.

Although we have stated the results of this theorem only for the general linear third
order equation (3.1) in its normal reduced form, these results can certainly be extended to the
general linear ODE

y(n) + an−1y(n−1) + an−2y(n−2) + · · · + a0y = 0 (3.16)

of an arbitrary order n ≥ 3. We first note that if we write the infinitesimal generator X of the
symmetry group GS of this equation in the form

X =
{
ξ, η, φ

} ≡ ξ∂x + η∂y + φ∂A, (3.17)
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where A = {an−1, an−2, . . . , a0} is the set of all arbitrary functions, then on account of the
linearity of the equation, we must have

η = hy + g (3.18)

for some arbitrary functions h and g. Now, let again X1 = {ξ0, η0, φ0} and X2 be given by

X1 = X|g=0 , X2 = X −X1, (3.19)

and set X0 = {ξ0, φ0}. We have shown in another recent paper [16] that X0 thus obtained
using g = 0 as the minimum set of conditions is the infinitesimal generator of the group Gc

for n = 3, 4, 5. This should certainly also hold for the linear equation (3.16) of a general order,
and we thus propose the following.

Conjecture 3.2. For the general linear ODE (3.16), X0 = {ξ, φ}|g=0 is the infinitesimal generator of
Gc, where X = {ξ, η, φ} is the generator of GS.

As already noted, it has been proved [7] that for any family F of (linear or
nonlinear) differential equations of any order in which the arbitrary functions depend on
the independent variables alone, if X1 = {ξ0, η0, φ0} is obtained by setting X1 = X|Ω for some
setΩ of minimum conditions that reduce V = {ξ, η} into a generator ofG, thenX0 = {ξ0, φ0} is
the generator of Gc. However, the difficulty lies in finding the set Ω of minimum conditions,
and we have proved that for (3.1),Ω is given by {g = 0} and extended this as a conjecture for
a general linear homogeneous ODE.

Moreover, calculations done for equations of low order up to five suggest that all
subalgebras appearing in Theorem 3.1 can also be defined in a similar way for the general
linear equation (3.16) and that all the results of the theorem also hold for this general
equation.

We now wish to pay some attention to the converse of part (a) of Theorem 2.1 which
states that for any given family F of differential equations, the groupG can be identified with
a subgroup of GS. From the proof of that theorem, it appears that the symmetry group GS is
much larger in general, because there are symmetry transformations that do not arise from
type I equivalence transformations. A simple example of such a symmetry is given by the
term X2 appearing in (3.10) of the symmetry generator of (3.1). Indeed, by construction, its
projection X2,0 = {0, g} in the (x, y)-space does not match any particular form of the generic
infinitesimal generator V 0 = {f, (k1 + f ′)y} of G, where f is an arbitrary function and k1 an
arbitrary constant.

Nevertheless, although (3.1) gives an example in which the inclusion G ⊂ GS is strict,
there are equations for which the two groups are isomorphic. Such an equation is given by
the nonhomogeneous version of (3.1) which may be put in the form

y(3) + a1(x)y′ + a0(x)y + r(x) = 0, (3.20)

where r is also an arbitrary function, in addition to a1 and a0. The linearity of this equation
forces its equivalence transformations to be of the form

x = f(z), y = h(z)w + g(z), (3.21)
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and the latter change of variables transforms (3.20) into an equation of the form

w′′′ + B2w
′′ + B1w

′ + B0w + B−1 = 0, (3.22)

where the Bj , for j = −1, . . . , 2 are functions of z and

B2 = 3
(
h′

h
− f ′′

f ′

)
. (3.23)

The required vanishing of B2 shows that the necessary and sufficient condition for (3.21)
to represent an equivalence transformation of (3.20) is to have h = λf ′ for some arbitrary
constant λ. The equivalence transformations of (3.20) are therefore given by

x = f(z), y = λf ′(z)w + g(z). (3.24)

On the other hand, the generator X of the symmetry group GS of the nonhomogeneous
equation (3.20) in the coordinates system (x, y, a1, a0, r) is found to be of the form

X =
{
J,
(
k1 + J ′

)
y + P,−2

(
a1J ′ + J ′′′

)
, C3, φ

4
}
, (3.25a)

where

C3 =
−1
y

(
a0P + φ4 + 2rJ ′ − rk1 + a1P ′ + P (3)

)
−
(
3a0J ′ + a1J ′′ + J(4)

)
, (3.25b)

and where J and P are arbitrary functions of x and k1 is an arbitrary constant, while φ4 is
an arbitrary function of x, y, a1, a0, and r. Thus, X has projection V = {J, (k1 + J ′)y + P} on
(x, y)-space and this is exactly the infinitesimal transformation of (3.24). Consequently, the
minimum setΩ of conditions to be imposed on V to reduce it into the infinitesimal generator
V 0 = {ξ0, η0} of G is void in this case, and hence

X = X1 =
{
ξ0, η0, φ0

}
. (3.26)

It thus follows from Lemma 2.2 that the finite transformations associated with X are given
precisely by (3.24), together with the corresponding induced transformations of the arbitrary
functions a1, a0, and r. Consequently, to each symmetry transformation X in GS, there
corresponds a unique equivalence transformation in G and vice versa. We have thus proved
the following results.

Proposition 3.3. For the nonhomogeneous equation (3.20), the groups G and GS are isomorphic.

This proposition should certainly also hold for the nonhomogeneous version of the
general linear equation (3.16) of an arbitrary order n. In such cases, invariants of the
differential equation are determined simply by searching the symmetry generator X of GS,
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which must satisfy (3.26) and then solving the resulting system of linear first-order partial
differential equations (PDEs) resulting from the determining equation of the form

X0,m · F = 0, (3.27)

where X0,m is the generator X0 = {ξ0, φ0} of Gc prolonged to the desired order m of the
unknown invariants F.

4. Concluding Remarks

Because type I equivalence group G can be identified with a subgroup of type II equivalence
group GS, every function invariant under GS must be invariant under G, and hence G has
much more invariant functions than GS, and functions invariant under G are naturally much
easier to find than those invariant under GS. If we consider for instance the third order linear
equation (3.1), it is well known [6] that its first nontrivial invariant function is given by the
third order differential invariant

Ψ = −
4
(
9a1μ2 + 7μ

′2 − 6μμ′′
)3

μ8
, (4.1)

where μ(x) = −2a0 + a1′, while at order four [16] it has two differential invariants,

Ψ1 = Ψ,

Ψ2 =
−1
18μ4

(
216a0

4 − 324a0
3
a1

′
+ 18a0

2
(
9a1

′2 + 2a1μ′
)
+ 9μ2μ(3)

)

+
−1
18μ4

(
μ′
(
28μ

′2 + 9a1
′(
a1 a1

′ − 4μ′′
))

− 9a0
(
3a1

′3 + 4a1a1
′
μ′ − 8μ′μ′′

))
.

(4.2)

It can be verified on the other hand that GS has no nontrivial differential invariants up
to the order four.
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