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Soft set theory, initiated by Molodtsov, can be used as a new mathematical tool for dealing
with imprecise, vague, and uncertain problems. In this paper, the concepts of two types of
generalised interval-valued fuzzy soft set are proposed and their basic properties are studied. The
lattice structures of generalised interval-valued fuzzy soft set are also discussed. Furthermore, an
application of the new approach in decision making based on generalised interval-valued fuzzy
soft set is developed.

1. Introduction

Most of our real-life problems in social science, economics, medical science, engineering,
environmental science, and many other fields have various uncertainties. To deal with these
uncertainties, many kinds of theories have been proposed such as theory of probability [1],
fuzzy set theory [2], rough set theory [3], intuitionistic fuzzy set theory [4], and interval
mathematics [5–7]. Unfortunately, each of these theories has its inherent difficulties, which
was pointed out by Molodtsov in [8]. To overcome these difficulties, Molodtsov [8] proposed
the soft set theory, which has become a new completely generic mathematical tool for
modeling uncertainties.

Recently, the soft set theory has been widely focused in theory and application after
Molodtsov’s work. Maji and Biswas [9] first introduced the concepts of soft subset, soft
superset, soft equality, null soft set, and absolute soft set. They also gave some operations on
soft set and verified De Morgan’s laws. Ali et al. [10] corrected some errors of former studies
and defined some new operations on soft sets. Afterwards, Ali et al. [11] further studied some
important properties associated with the new operations and investigated some algebraic
structures of soft sets. Sezgin and Atagün [12] extended the theoretical aspect of operations
on soft sets. Soft mappings, soft equality, kernels and closures of soft set relations, and soft
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set relation mappings were presented in [13–15]. On the other hand, soft set theory has a
rich potential for application in many fields. Especially, it has been successfully applied to
soft decision making [16–18] and some algebra structures such as groups [19, 20], ordered
semigroups [21], rings [22], semirings [23], BCK/BCI-algebras [24–26], d-algebras [27], and
BL-algebras [28].

Clearly, all of these works mentioned above are based on the classical soft set theory.
To improve the capability of soft set theory in dealing with more complex real-life problems,
some fuzzy extensions of soft set theory have been studied by many scholars [29–36].
Particularly, Maji et al. [29] firstly proposed the concept of the fuzzy soft set. Roy and Maji
[30] presented an application of fuzzy soft set in decision making. Yang et al. [31] defined the
interval-valued fuzzy soft set which is based on a combination of the interval-valued fuzzy
set and soft set. Majumdar and Samanta [32] generalized the concept of fuzzy soft sets; that
is, a degree of which is attached with the parameterization of fuzzy sets while defining a
fuzzy soft set.

However, in many practical applications, specially in fuzzy decision-making prob-
lems, the membership functions of objects and parameters are very individual, which are
dependent on evaluation of experts in general and thus cannot be lightly confirmed. For
example, concerning the fuzzy concept “capability”, there are three experts who give their
evaluations to that of someone as 0.6, 0.76, and 0.8, respectively. Clearly, it is more practical
and reasonable to evaluate someone’s capability by an interval-valued data [0.6, 0.8] than
a certain single value. In this case, therefore, we can make use of interval-valued fuzzy
sets which assign to each object or parameter an interval that approximates the “real”
(but unknown) membership degree. This paper aims to further generalize the concept of
generalised fuzzy soft sets by combining the generalised fuzzy soft sets [32] and interval-
valued fuzzy sets [7] and obtain a new soft set model named generalised interval-valued
fuzzy soft set. It can be viewed as an interval-valued fuzzy extension of the generalised fuzzy
soft set theory [32] or a generalization of the interval-valued fuzzy soft set theory [31].

The rest of this paper is organized as follows. In Section 2, the notions of soft set, fuzzy
soft set, generalised fuzzy soft set, and interval-valued fuzzy soft set are recalled. In Section 3,
the concept and operations of generalised interval-valued fuzzy soft sets are proposed and
some of their properties are investigated. Section 4 studies the lattice structures of generalised
interval-valued fuzzy soft set. Section 5 introduces the concept of generalised comparison
table, which is applied to decision making based on generalised interval-valued fuzzy soft
set. Some illustrative examples are also employed to show that the method presented here is
not only reasonable but also more efficient in practical applications. Finally, Section 6 presents
the conclusion.

2. Preliminary

In this section, we briefly review the concepts of soft sets, fuzzy soft sets, generalised fuzzy
soft sets, interval-valued fuzzy soft set, and so on. Further details could be found in [7, 8, 29,
31, 32, 37]. Throughout this paper, unless otherwise stated, U refers to an initial universe, E
is a set of parameters, P(U) is the power set of U, and α, β, γ are fuzzy subset of A,B,C ⊆ E,
respectively.

Definition 2.1 (see [8]). A pair (F,A) is called a soft set over U where F is a mapping given
by F : A → P(U).
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In other words, a soft set over U is a parameterized family of subsets of the universe
U. For ε ∈ A, F(ε) may be considered as the set of ε-elements of the soft set (F,A) or as the
set of ε-approximate elements of the soft set.

Definition 2.2 (see [29]). Let P(U) denote the set of all fuzzy subsets of U. Then a pair ( ˜F,A)
is called a fuzzy soft set over U, where ˜F is a mapping from A to P(U).

From the definition, it is clear that ˜F(e) is a fuzzy set onU for any e ∈ A. The modified
definition of fuzzy soft set by Majumdar and Samanta is as follows.

Definition 2.3 (see [32]). Let U be an initial universal set, E a set of parameters, and the pair
(U,E) a soft universe. Let F : E → P(U) and μ be a fuzzy subset of E; that is, μ : E → [0, 1].
Let Fμ : E → P(U) × [0, 1] be a function defined as follows: Fμ(e) = (F(e), μ(e)), where
F(e) ∈ P(U). Then Fμ is called a generalised fuzzy soft set over (U,E).

Definition 2.4 (see [7]). An interval-valued fuzzy setX on a universeU is a mappingX : U →
Int([0, 1]), where Int([0, 1]) stands for the set of all closed subintervals of [0, 1].

The set of all interval-valued fuzzy sets on U is denoted by F(U). Suppose that
X ∈ F(U), for all h ∈ U, μX(h) = [μ−

X(h), μ
+
X(h)] is called the degree of membership of

an element h to X. And μ−
X(h) and μ+

X(h) are referred to as the lower and upper degrees of
membership of h to X, where 0 ≤ μ−

X(h) ≤ μ+
X(h) ≤ 1.

Definition 2.5 (see [7]). Let X and Y be two interval-valued fuzzy sets on universe U. Then
the union, intersection, and complement of vague sets are defined as follows:

X ∪ Y =

{

h
[

μ−
X(h) ∨ μ−

Y (h), μ
+
X(h) ∧ μ+

Y (h)
] | h ∈ U

}

,

X ∩ Y =

{

h
[

μ−
X(h) ∧ μ−

Y (h), μ
+
X(h) ∨ μ+

Y (h)
] | h ∈ U

}

,

Xc =

{

h
[

1 − μ+
X(h), 1 − μ−

X(h)
] | h ∈ U

}

.

(2.1)

Definition 2.6 (see [31]). Let U be an initial universe, let E be a set of parameters, and let
A ⊆ E. F(U) denotes the set of all interval-valued fuzzy sets ofU.A pair (F,A) is an interval-
valued fuzzy soft set over U, where F is a mapping given by F : A → F(U).

An interval-valued fuzzy soft set is a parameterized family of interval-valued fuzzy
subsets of U. For each parameter e ∈ A, F(e) is actually an interval-valued fuzzy set of U,
and it can be written as F(e) = {(h/μF(e)(h)) : h ∈ U}, where μF(e)(h) is the interval-valued
fuzzy membership degree that object h holds on parameter e.

Definition 2.7 (see [37]). A t-norm is an increasing, associative, and commutative mapping
T : [0, 1] × [0, 1] → [0, 1] that satisfies the boundary condition: T(a, 1) = a for all a ∈ [0, 1].

The commonly used continuous t-norms are T(a, b) = min(a, b), T(a, b) = max{0, a +
b − 1}, and T(a, b) = a · b.
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Definition 2.8 (see [37]). A t-conorm is an increasing, associative, and commutative mapping
S : [0, 1] × [0, 1] → [0, 1] that satisfies the boundary condition: S(a, 0) = a for all a ∈ [0, 1].

The commonly used continuous t-conorms are S(a, b) = max(a, b), S(a, b) = a+b−a ·b,
and S(a, b) = min{1, a + b}.

3. Generalised Interval-Valued Fuzzy Soft Set

Obviously, by combining generalised soft set and the interval-valued fuzzy set, it is natural
to define the generalised interval-valued fuzzy soft set model. We first define two types of
generalised interval-valued fuzzy soft set as follows.

Definition 3.1. Let U be an initial universe and E a set of parameters, A ⊆ E, ˜F : A → F(U),
and let α be a fuzzy sets ofA, that is, α : A → [0, 1]. Define a function ˜Fα : A → F(U)× [0, 1]
as ˜Fα(e) = ( ˜F(e) = {h/μ

˜F(e)(h)}, α(e)), where μ
˜F(e)(h) = [μ−

˜F(e)
(h), μ+

˜F(e)
(h)] is an interval

value is called the degree of membership an element h to ˜F(e), and α(e) is called the degree
of possibility of such belongness. Then ˜Fα is called type 1 generalised interval-valued fuzzy
soft set over the soft universe (U,E).

Here for each parameter e, ˜Fα(e) indicates not only the degree of belongingness of
elements of U in ˜F(e) but also the degree of preference of such belongingness which is
represented by α(e).

Definition 3.2. Let U be an initial universe and E a set of parameters, A ⊆ E, ˜F : A → F(U),
and let α be an interval-valued fuzzy sets of A; that is, α : A → Int([0, 1]), where Int([0, 1])
stands for the set of all closed subintervals of [0, 1]. Define a function ˜Fα : A → F(U) ×
Int([0, 1]) as ˜Fα(e) = ( ˜F(e) = {h/μ

˜F(e)(h)}, α(e)), where μ
˜F(e)(h) = [μ−

˜F(e)
(h), μ+

˜F(e)
(h)] and

α(e) = [α−(e), α+(e)] are interval values. Then ˜Fα is called type 2 generalised interval-valued
fuzzy soft set over the soft universe (U,E).

It is clear that if α−(e) = α+(e) holds for each a ∈ A, then the type 2 generalised interval-
valued fuzzy soft set will degenerate to the type 1 generalised interval-valued fuzzy soft set.
And if μ−

˜F(e)
(h) = μ+

˜F(e)
(h) also holds for each a ∈ A, then type 1 generalised interval-valued

fuzzy soft set will degenerate to generalised fuzzy soft set [32].
In this paper, the type 2 generalised interval-valued fuzzy soft set is denoted by GIVFS

set in short. To illustrate this idea, let us consider the following example.

Example 3.3. Let U = {h1, h2, h3} be a set of mobile telephones and A = {e1, e2, e3} ∈ E a
set of parameters. The ei (i = 1, 2, 3) stand for the parameters “expensive”, “beautiful”, and
“multifunctional”, respectively. Let ˜Fα : A → P(U)×Int([0, 1]) be a function given as follows:

˜Fα(e1) =
({

h1

[0.8, 0.9]
,

h2

[0.6, 0.7]
,

h3

[0.5, 0.6]

}

, [0.7, 0.8]
)

,

˜Fα(e2) =
({

h1

[0.7, 0.8]
,

h2

[0.3, 0.4]
,

h3

[0.5, 0.7]

}

, [0.6, 0.7]
)

,

˜Fα(e3) =
({

h1

[0.5, 0.6]
,

h2

[0.5, 0.7]
,

h3

[0.7, 0.8]

}

, [0.8, 0.9]
)

.

(3.1)

Then ˜Fα is a GIVFS set.
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Definition 3.4. Let ˜Fα and ˜Gβ be GIVFS sets over (U,E). Then ˜Fα is called a GIVFS subset of
˜Gβ if

(1) A ⊆ B;

(2) ˜F(e) is an interval-valued fuzzy subset of ˜G(e) for any e ∈ A; that is, μ−
˜F(e)

(h) ≤
μ−
˜G(e)

(h) and μ+
˜F(e)

(h) ≤ μ+
˜G(e)

(h) for any h ∈ U and e ∈ A;

(3) α is an interval-valued fuzzy subset of β; that is, α−(e) ≤ β−(e) and α+(e) ≤ β+(e) for
any e ∈ A.

In this case, the above relationship is denoted by ˜Fα � ˜Gβ. And ˜Gβ is said to be a GIVFS
superset of ˜Fα.

Definition 3.5. Let ˜Fα and ˜Gβ be GIVFS sets over (U,E). Then ˜Fα and ˜Gβ are said to be GIVFS
equal if and only if ˜Fα � ˜Gβ and ˜Gβ � ˜Fα.

Definition 3.6. The relative complement of a GIVFS set ˜Fα is denoted by ˜Fr
α and is defined

by ˜Fr
α = ( ˜Fr, αr), where ˜Fr : A → F(U) is a mapping given by ˜Fr(e) = {h/μ

˜Fr(e)(h)} and
αr : A → Int([0, 1]) is a mapping given by αr(e) for all h ∈ U, e ∈ A, where μ

˜Fr(e)(h) =
[μ−
˜Fr(e)

(h), μ+
˜Fr(e)

(h)] = [1−μ+
˜F(e)

(h), 1−μ−
˜F(e)

(h)], αr(e) = [αr−(e), αr+(e)] = [1−α+(e), 1−α−(e)].

Example 3.7. We consider the GIVFS set ˜Fα given in Example 3.3 and define a GIVFS set ˜Gβ as
follows:

˜Gβ(e1) =
({

h1

[0.7, 0.8]
,

h2

[0.4, 0.5]
,

h3

[0.4, 0.6]

}

, [0.5, 0.6]
)

,

˜Gβ(e2) =
({

h1

[0.5, 0.6]
,

h2

[0.2, 0.4]
,

h3

[0.5, 0.6]

}

, [0.3, 0.4]
)

.

(3.2)

Then ˜Gβ is a GIVFS subset of ˜Fα, and the relative complement of a GIVFS set ˜Gβ is

˜Gr
β(e1) =

({

h1

[0.2, 0.3]
,

h2

[0.5, 0.6]
,

h3

[0.4, 0.6]

}

, [0.4, 0.5]
)

,

˜Gr
β(e2) =

({

h1

[0.4, 0.5]
,

h2

[0.6, 0.8]
,

h3

[0.4, 0.5]

}

, [0.6, 0.7]
)

.

(3.3)

Definition 3.8. Let 1 = [1, 1]. A GIVFS set ˜Fα over (U,E) is said to be relative absolute GIVFS
set denoted by ˜ΩA, if μ ˜F(e)(h) = 1 and α(e) = 1 for all h ∈ U and e ∈ A.

Definition 3.9. Let 0 = [0, 0]. A GIVFS set ˜Fα over (U,E) is said to be relative null GIVFS set,
denoted by ˜ΦA, if μ ˜F(e)(h) = 0 and α(e) = 0 for all h ∈ U and e ∈ A.
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Definition 3.10. The union of two GIVFS sets ˜Fα and ˜Gβ over (U,E) denoted by ˜Fα ˜∪ ˜Gβ is a
GIVFS set ˜Hγ and defined as ˜Hγ : A ∪ B → F(U) × Int([0, 1]) such that, for all h ∈ U and
e ∈ A ∪ B,

˜Hγ(e) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

({

h

μ
˜F(e)(h)

}

, α(e)

)

, if e ∈ A − B,

({

h

μ
˜G(e)(h)

}

, β(e)

)

, if e ∈ B −A,

({

h

μ
˜H(e)(h)

}

, γ(e)

)

, if e ∈ A ∩ B,

(3.4)

where μ
˜H(e)(h) = S(μ

˜F(e)(h), μ ˜G(e)(h)) = [S(μ−
˜F(e)

(h), μ−
˜G(e)

(h)), S(μ+
˜F(e)

(h), μ+
˜G(e)

(h))] and

γ(e) = S(α(e), β(e)) = [S(α−(e), β−(e)), S(α+(e), β+(e))].

Definition 3.11. The intersection of two GIVFS sets ˜Fα and ˜Gβ over (U,E) denoted by
˜Fα � ˜Gβ is a GIVFS set ˜Hγ and defined as ˜Hγ : A ∩ B → F(U) × Int([0, 1]) such
that, for all h ∈ U and e ∈ A ∩ B, ˜Hγ(e) = ({h/μ

˜H(e)(h)}, γ(e)), where μ
˜H(e)(h) =

T(μ
˜F(e)(h), μ ˜G(e)(h)) = [T(μ−

˜F(e)
(h), μ−

˜G(e)
(h)), T(μ+

˜F(e)
(h), μ+

˜G(e)
(h))] and γ(e) = T(α(e), β(e)) =

[T(α−(e), β−(e)), T(α+(e), β+(e))].

Example 3.12. We consider the GIVFS sets ˜Fα and ˜Gβ given in Examples 3.3 and 3.7,
respectively, and consider S(x, y) = max{x, y} and T(x, y) = min{x, y}. Then

(

˜Fα ˜∪ ˜Gβ

)

(e1) =
({

h1

[0.8, 0.9]
,

h2

[0.6, 0.7]
,

h3

[0.5, 0.6]

}

, [0.7, 0.8]
)

,

(

˜Fα ˜∪ ˜Gβ

)

(e2) =
({

h1

[0.7, 0.8]
,

h2

[0.3, 0.4]
,

h3

[0.5, 0.7]

}

, [0.6, 0.7]
)

,

(

˜Fα ˜∪ ˜Gβ

)

(e3) =
({

h1

[0.5, 0.6]
,

h2

[0.5, 0.7]
,

h3

[0.7, 0.8]

}

, [0.8, 0.9]
)

,

(

˜Fα � ˜Gβ

)

(e1) =
({

h1

[0.7, 0.8]
,

h2

[0.4, 0.5]
,

h3

[0.4, 0.6]

}

, [0.5, 0.6]
)

,

(

˜Fα � ˜Gβ

)

(e2) =
({

h1

[0.5, 0.6]
,

h2

[0.2, 0.4]
,

h3

[0.5, 0.6]

}

, [0.3, 0.4]
)

.

(3.5)

Proposition 3.13. Let ˜Fα be a GIVFS set over (U,E). Then the following holds

(1) ˜Fα � ˜ΩA = ˜Fα,

(2) ˜Fα ˜∪ ˜ΩA = ˜ΩA,

(3) ˜Fα � ˜ΦA = ˜ΦA,

(4) ˜Fα ˜∪ ˜ΦA = ˜Fα.

Proof. It is easily obtained from Definitions 3.8–3.11.
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Theorem 3.14. Let ˜Fα, ˜Gβ, and ˜Hγ be GIVFS sets over (U,E). Then the following holds

(1) ˜Fα � ˜Gβ = ˜Gβ � ˜Fα,

(2) ˜Fα � ( ˜Gβ � ˜Hγ) = ( ˜Fα � ˜Gβ) � ˜Hγ ,

(3) ˜Fα ˜∪ ˜Gβ = ˜Gβ ˜∪ ˜Fα,

(4) ˜Fα ˜∪ ( ˜Gβ ˜∪ ˜Hγ) = ( ˜Fα ˜∪ ˜Gβ) ˜∪˜Hγ .

Proof. It is easily obtained from Definitions 3.10 and 3.11.

Definition 3.15. The restricted union of two GIVFS sets ˜Fα and ˜Gβ over (U,E) denoted
by ˜Fα � ˜Gβ is a GIVFS set ˜Hγ and defined as ˜Hγ : A ∩ B → F(U) × Int([0, 1]) such
that, for all h ∈ U and e ∈ A ∩ B, ˜Hγ(e) = ({h/μ

˜H(e)(h)}, γ(e)), where μ
˜H(e)(h) =

S(μ
˜F(e)(h), μ ˜G(e)(h)) = [S(μ−

˜F(e)
(h), μ−

˜G(e)
(h)), S(μ+

˜F(e)
(h), μ+

˜G(e)
(h))] and γ(e) = S(α(e), β(e)) =

[S(α−(e), β−(e)), S(α+(e), β+(e))].

Definition 3.16. The extended intersection of two GVS sets ˜Fα and ˜Gβ over (U,E), denoted by
˜Fα ˜∩ ˜Gβ, is a GVS set ˜Hγ : A ∪ B → F(U) × Int([0, 1]) which is defined as, for all h ∈ U, e ∈
A ∪ B,

˜Hγ(e) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

({

h

μ
˜F(e)(h)

}

, α(e)

)

, if e ∈ A − B,

({

h

μ
˜G(e)(h)

}

, β(e)

)

, if e ∈ B −A,

({

h

μ
˜H(e)(h)

}

, γ(e)

)

, if e ∈ A ∩ B,

(3.6)

where μ
˜H(e)(h) = T(μ

˜F(e)(h), μ ˜G(e)(h)) = [T(μ−
˜F(e)

(h), μ−
˜G(e)

(h)), T(μ+
˜F(e)

(h), μ+
˜G(e)

(h))] and

γ(e) = T(α(e), β(e)) = [T(α−(e), β−(e)), T(α+(e), β+(e))].

Theorem 3.17. Let ˜Fα, ˜Gβ, and ˜Hγ be three GIVFS sets over (U,E). Then the following holds:

(1) ˜Fα � ˜Gβ = ˜Gβ � ˜Fα,

(2) ˜Fα � ( ˜Gβ � ˜Hγ) = ( ˜Fα � ˜Gβ) � ˜Hγ ,

(3) ˜Fα ˜∩ ˜Gβ = ˜Gβ˜∩ ˜Fα,

(4) ˜Fα ˜∩ ( ˜Gβ ˜∩˜Hγ) = ( ˜Fα ˜∩ ˜Gβ) ˜∩˜Hγ .

Proof. It is easily obtained from Definitions 3.15 and 3.16.

Theorem 3.18. Let ˜Fα and ˜Gβ be two GIVFS sets over (U,E). Then the following holds:

(1) ( ˜Fα � ˜Gβ)
r = ( ˜Fα)

r � ( ˜Gβ)
r ,

(2) ( ˜Fα � ˜Gβ)
r = ( ˜Fα)

r � ( ˜Gβ)
r .
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Proof. (1) Suppose that ˜Fα � ˜Gβ = ˜Hγ , then C = A ∩ B, and, for all e ∈ C, h ∈ U,

μ
˜H(e)(h) = T

(

μ
˜F(e)(h), μ ˜G(e)(h)

)

=
[

T
(

μ−
˜F(e)

(h), μ−
˜G(e)

(h)
)

, T
(

μ+
˜F(e)

(h), μ+
˜G(e)

(h)
)]

,

γ(e) = T
(

α(e), β(e)
)

=
[

T
(

α−(e), β−(e)
)

, T
(

α+(e), β+(e)
)]

.

(3.7)

Moreover, we have ( ˜Fα � ˜Gβ)
r = ˜Hr

γ , C = A ∩ B, and for all e ∈ C, h ∈ U,

μ
˜Hr(e)(h) =

[

1 − T
(

μ+
˜F(e)

(h), μ+
˜G(e)

(h)
)

, 1 − T
(

μ−
˜F(e)

(h), μ−
˜G(e)

(h)
)]

,

γ r(e) =
[

1 − T
(

α+(e), β+(e)
)

, 1 − T
(

α−(e), β−(e)
)]

.

(3.8)

Assume that the parameters set of a GIVFS set ˜Jδ is denoted D, and ˜Fr
α � ˜Gr

β = ˜Jδ. Then
D = A ∩ B. Since

μ
˜Fr(e)(h) =

[

1 − μ+
˜F(e)

(h), 1 − μ−
˜F(e)

(h)
]

, αr(e) =
[

1 − α+(e), 1 − α−(e)
]

,

μ
˜Gr(e)(h) =

[

1 − μ+
˜G(e)

(h), 1 − μ−
˜G(e)

(h)
]

, βr(e) =
[

1 − β+(e), 1 − β−(e)
]

.

(3.9)

Then, for each e ∈ D, h ∈ U,

μ
˜J(e)(h) = S

(

μ
˜Fr(e)(h), μ ˜Gr(e)(h)

)

=
[

S
(

1 − μ+
˜F(e)

(h), 1 − μ+
˜G(e)

(h)
)

, S
(

1 − μ−
˜F(e)

(h), 1 − μ−
˜G(e)

(h)
)]

=
[

1 − T
(

μ+
˜F(e)

(h), μ+
˜G(e)

(h)
)

, 1 − T
(

μ−
˜F(e)

(h), μ−
˜G(e)

(h)
)]

= μ
˜Hr(e)(h),

δ(e) = S
(

αr(e), βr(e)
)

=
[

S
(

1 − α+(e), 1 − β+(e)
)

, S
(

1 − α−(e), 1 − β−(e)
)]

=
[

1 − T
(

α+(e), β+(e)
)

, 1 − T
(

α−(e), β−(e)
)]

= γr(e).

(3.10)

Therefore, ˜Hr
γ and ˜Jδ are the same GIVFS sets. Thus, ( ˜Fα � ˜Gβ)

r = ( ˜Fα)
r � ( ˜Gβ)

r .
(2) The proof is similar to that of (1).

Definition 3.19. The “AND” of two GIVFS sets ˜Fα and ˜Gβ over (U,E), denoted by ˜Fα � ˜Gβ, is
defined as˜Hγ : A×B → F(U)×Int([0, 1]) such that for all h ∈ U and (a, b) ∈ A×B, ˜Hγ(a, b) =
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({h/μ
˜H(a,b)(h)}, γ(a, b)), where μ

˜H(a,b)(h) = T(μ
˜F(a)(h), μ ˜G(b)(h)) = [T(μ−

˜F(a)
(h), μ−

˜G(b)
(h)),

T(μ+
˜F(a)

(h), μ+
˜G(b)

(h))] and γ(a, b) = T(α(a), β(b)) = [T(α−(a), β−(b)), T(α+(a), β+(b))].

Definition 3.20. The “OR” of two GIVFS sets ˜Fα and ˜Gβ over (U,E), denoted by ˜Fα � ˜Gβ, is
defined as˜Hγ : A×B → F(U)×Int([0, 1]) such that for all h ∈ U and (a, b) ∈ A×B,˜Hγ(a, b) =
({h/μ

˜H(a,b)(h)}, γ(a, b)), where μ
˜H(a,b)(h) = S(μ

˜F(a)(h), μ ˜G(b)(h)) = [S(μ−
˜F(a)

(h), μ−
˜G(b)

(h)),

S(μ+
˜F(a)

(h), μ+
˜G(b)

(h))] and γ(a, b) = S(α(a), β(b)) = [S(α−(a), β−(b)), S(α+(a), β+(b))].

Theorem 3.21. Let ˜Fα, ˜Gβ, and ˜Hγ be three GIVFS sets over (U,E). Then the following holds

(1) ˜Fα � ( ˜Gβ � ˜Hγ) = ( ˜Fα � ˜Gβ) � ˜Hγ ,

(2) ˜Fα � ( ˜Gβ � ˜Hγ) = ( ˜Fα � ˜Gβ) � ˜Hγ .

Proof. It is easily obtained from Definitions 3.19 and 3.20.

Theorem 3.22. Let ˜Fα and ˜Gβ be two GIVFS sets over (U,E). Then the following holds

(1) ( ˜Fα � ˜Gβ)
r = ( ˜Fα)

r � ( ˜Gβ)
r ,

(2) ( ˜Fα � ˜Gβ)
r = ( ˜Fα)

r � ( ˜Gβ)
r .

Proof. (1) Suppose that ˜Fα � ˜Gβ = ˜Hγ , then C = A × B, and, for all (a, b) ∈ C, h ∈ U,

μ
˜H(a,b)(h) = S

(

μ
˜F(a)(h), μ ˜G(b)(h)

)

=
[

S
(

μ−
˜F(a)

(h), μ−
˜G(b)

(h)
)

, S
(

μ+
˜F(a)

(h), μ+
˜G(b)

(h)
)]

,

γ(a, b) = S
(

α(a), β(b)
)

=
[

S
(

α−(a), β−(b)
)

, S
(

α+(a), β+(b)
)]

.

(3.11)

Moreover, we have ( ˜Fα � ˜Gβ)
r = ˜Hr

γ , C = A × B, and for all (a, b) ∈ C, h ∈ U,

μ
˜Hr(a,b)(h) =

[

1 − S
(

μ+
˜F(a)

(h), μ+
˜G(b)

(h)
)

, 1 − S
(

μ−
˜F(a)

(h), μ−
˜G(b)

(h)
)]

,

γ r(a, b) =
[

1 − S
(

α+(a), β+(b)
)

, 1 − S
(

α−(a), β−(b)
)]

.

(3.12)

Assume that the parameters set of a GIVFS set ˜Jδ is denoted D, and ˜Fr
α � ˜Gr

β = ˜Jδ. Then
D = A × B. Since for all a ∈ A, b ∈ B, h ∈ U,

μ
˜Fr(a)(h) =

[

1 − μ+
˜F(a)

(h), 1 − μ+
˜F(a)

(h)
]

, αr(a) =
[

1 − α+(a), 1 − α−(a)
]

,

μ
˜Gr(b)(h) =

[

1 − μ+
˜G(b)

(h), 1 − μ−
˜G(b)

(h)
]

, βr(b) =
[

1 − β+(b), 1 − β−(b)
]

,

(3.13)
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then, for each (a, b) ∈ D, h ∈ U,

μ
˜J(a,b)(h) = T

(

μ
˜Fr(a)(h), μ ˜Gr(b)(h)

)

=
[

T
(

1 − μ+
˜F(a)

(h), 1 − μ+
˜G(b)

(h)
)

, T
(

1 − μ−
˜F(a)

(h), 1 − μ−
˜G(b)

(h)
)]

=
[

1 − S
(

μ+
˜F(a)

(h), μ+
˜G(b)

(h)
)

, 1 − S
(

μ−
˜F(a)

(h), μ−
˜G(b)

(h)
)]

= μ
˜Hr(a,b)(h),

δ(a, b) = T
(

αr(a), βr(b)
)

=
[

T
(

1 − α+(a), 1 − β+(b)
)

, T
(

1 − α−(a), 1 − β−(b)
)]

=
[

1 − S
(

α+(a), β+(b)
)

, 1 − S
(

α−(a), β−(b)
)]

= γr(a, b).

(3.14)

Therefore, ˜Hr
γ and ˜Jδ are the same GIVFS sets. Thus, ( ˜Fα � ˜Gβ)

r = ( ˜Fα)
r � ( ˜Gβ)

r .
(2) The proof is similar to that of (1).

4. The Lattice Structures of GIVFS Sets

The lattice structures of soft sets have been studied by Qin and Hong in [14]. In this section,
we will discuss the lattice structures of GIVFS sets. The following proposition shows the
idempotent law with respect to operations ˜∪ and � does not hold in general.

Proposition 4.1. Let ˜Fα be a GIVFS sets over (U,E). Then the following holds

(1) ˜Fα � ( ˜Fα ˜∪ ˜Fα),

(2) ( ˜Fα � ˜Fα) � ˜Fα.

To illuminate the above proposition, we give an example as follows.

Example 4.2. We consider the GIVFS set ˜Fα given in Example 3.3. We have that the following

(1) If S(a, b) = a + b − a · b, then ( ˜Fα ˜∪ ˜Fα)(e1) = ({h1/[0.96, 0.99], h2/[0.84, 0.91],
h3/[0.75, 0.84]}, [0.91, 0.96]) ⊇ ˜Fα(e1), ( ˜Fα ˜∪ ˜Fα)(e2) ⊇ ˜Fα(e2), and ( ˜Fα ˜∪ ˜Fα)(e3) ⊇
˜Fα(e3); that is, ( ˜Fα ˜∪ ˜Fα) ⊇ ˜Fα.

(2) If S(a, b) = min(1, a + b), then ( ˜Fα ˜∪ ˜Fα)(e1) = ({h1/[1.0, 1.0], h2/[1.0, 1.0],
h3/[1.0, 1.0]}, [1.0, 1.0]) ⊇ ˜Fα(e1), ( ˜Fα ˜∪ ˜Fα)(e2) ⊇ ˜Fα(e2), and ( ˜Fα ˜∪ ˜Fα)(e3) ⊇ ˜Fα(e3);
that is, ( ˜Fα ˜∪ ˜Fα) ⊇ ˜Fα.

(3) if T(a, b) = a · b, then ( ˜Fα � ˜Fα)(e1) = ({h1/[0.64, 0.81], h2/[0.36, 0.49],
h3/[0.25, 0.36]}, [0.49, 0.64]) ⊆ ˜Fα(e1), ( ˜Fα � ˜Fα)(e2) ⊆ ˜Fα(e2) and ( ˜Fα � ˜Fα)(e3) ⊆
˜Fα(e3), that is, ( ˜Fα � ˜Fα) � ˜Fα;

(4) If T(a, b) = max(0, a + b − 1), then ( ˜Fα � ˜Fα)(e1) = ({h1/[0.6, 0.8], h2/[0.2, 0.4],
h3/[0.0, 0.2]}, [0.4, 0.6]) ⊆ ˜Fα(e1), ( ˜Fα � ˜Fα)(e2) ⊆ ˜Fα(e2) and ( ˜Fα � ˜Fα)(e3) ⊆ ˜Fα(e3);
that is, ( ˜Fα � ˜Fα) � ˜Fα.
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For convenience, let ˜S(U,E) denote the set of all GIVFS sets over (U,E); that is,
˜S(U,E) = { ˜Fα | A ⊆ E, F : A → F(U), α : A → Int([0, 1])}.

From Proposition 4.1, we can see that ( ˜S(U,E),�, ˜∪) is not a lattice in general.
However, if T(a, b) = min(a, b) and S(a, b) = max(a, b), then the idempotent law and
absorption law with respect to operations ˜∪ and � hold. In the remainder of this section,
we always consider T(a, b) = min(a, b) and S(a, b) = max(a, b).

Theorem 4.3. Let A,B ⊆ E, ˜Fα, and ˜Gβ be GIVFS sets over (U,E). Then the following hold:

(1) ( ˜Fα � ˜Fα) = ˜Fα,

(2) ( ˜Fα ˜∪ ˜Fα) = ˜Fα,

(3) ( ˜Fα ˜∪ ˜Gβ) � ˜Fα = ˜Fα,

(4) ( ˜Fα ˜� ˜Gβ) ˜∪ ˜Fα = ˜Fα.

Proof. (1) and (2) are trivial to prove. We prove only (3) since (4) can be proved similarly.
Suppose that the parameter sets of two GIVFS sets ˜Jδ and ˜Kη are denoted byM andN,

respectively. Let ˜Fα ˜∪ ˜Gβ = ˜Jδ and ( ˜Fα ˜∪ ˜Gβ)� ˜Fα = ˜Kη. ThenM = A∪B,N = (A∪B)∩A = A.
And, for each e ∈ A and h ∈ U,

(i) if e /∈ B, then μ
˜K(e)(h) = T(μ

˜J(e)(h), μ ˜F(e)(h)) = min(μ
˜F(e)(h), μ ˜F(e)(h)) = μ

˜F(e)(h),
and η(e) = T(α(e), α(e)) = min(α(e), α(e)) = α(e),

(ii) if e ∈ B, then μ
˜K(e)(h) = min(μ

˜J(e)(h), μ ˜F(e)(h)) = min(max(μ
˜F(e)(h), μ ˜G(e)(h)),

μ
˜F(e)(h)) = μ

˜F(e)(h), and η(e) = T(S(α(e), β(e)), α(e)) = min(max(α(e), β(e)),
α(e)) = α(e).

Thus ˜Kη = ˜Fα; that is, ( ˜Fα ˜∪ ˜Gβ) � ˜Fα = ˜Fα.

Theorem 4.4. LetA,B,C ⊆ E, ˜Fα, ˜Gβ, and ˜Hγ be GIVFS sets over (U,E). Then the following hold:

(1) ˜Fα � ( ˜Gβ ˜∪˜Hγ) = ( ˜Fα � ˜Gβ) ˜∪ ( ˜Fα � ˜Hγ),

(2) ˜Fα ˜∪ ( ˜Gβ � ˜Hγ) = ( ˜Fα ˜∪ ˜Gβ) � ( ˜Fα ˜∪˜Hγ).

Proof. (1) Suppose that the parameter sets of two GIVFS sets ˜Jδ and ˜Kη are denoted by M

and N, respectively. Let ˜Fα � ( ˜Gβ ˜∪˜Hγ) = ˜Jδ and ( ˜Fα � ˜Gβ) ˜∪ ( ˜Fα � ˜Hγ) = ˜Kη. Then M =
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) = N. And, for each e ∈ M,h ∈ U, it follows that e ∈ A and
e ∈ B ∪ C,

(i) if e ∈ A, e /∈ B, e ∈ C, then μ
˜J(e)(h) = T(μ

˜F(e)(h), μ˜H(e)(h)) = min(μ
˜F(e)(h),

μ
˜H(e)(h)) = μ

˜K(e)(h), and δ(e) = T(α(e), γ(e)) = min(α(e), γ(e)) = η(e),

(ii) if e ∈ A, e ∈ B, e /∈ C, then μ
˜J(e)(h) = T(μ

˜F(e)(h), μ ˜G(e)(h)) = min(μ
˜F(e)(h),

μ
˜G(e)(h)) = μ

˜K(e)(h), and δ(e) = T(α(e), β(e)) = min(α(e), β(e)) = η(e),

(iii) if e ∈ A, e ∈ B, e ∈ C, then μ
˜J(e)(h) = min(μ

˜F(e)(h),max(μ
˜G(e)(h), μ˜H(e)(h))) =

max(min(μ
˜F(e)(h), μ ˜G(e)(h)),min((μ

˜F(e)(h), μ˜H(e)(h))) = μ
˜K(e)(h), and δ(e) =

T(α(e), S(β(e), γ(e))) = min(α(e),max(β(e), γ(e))) = max(min(α(e), β(e)),
min(α(e), γ(e))) = S(T(α(e), β(e)), T(α(e), γ(e))) = η(e).

Thus ˜Jδ = ˜Kη; that is, ˜Fα � ( ˜Gβ ˜∪˜Hγ) = ( ˜Fα � ˜Gβ) ˜∪ ( ˜Fα � ˜Hγ).
(2) The proof is similar to that of (1).
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Theorem 4.5. (1) ( ˜S(U,E),�, ˜∪) is a distributive lattice.
(2) Let ≤1 be the order relation in ˜S(U,E) and ˜Fα, ˜Gβ ∈ ˜S(U,E). One has ˜Fα ≤1 ˜Gβ if and

only if A ⊆ B, μ
˜F(e)(h) ≤ μ

˜G(e)(h) and α(e) ≤ β(e) for all e ∈ A and h ∈ U.

Proof. (1) The proof is straightforward from Theorems 3.14, 4.3, and 4.4.
(2) Suppose that ˜Fα≤1 ˜Gβ. Then ˜Fα ˜∪ ˜Gβ = ˜Gβ. So by Definition 3.10, we haveA∪B = B,

max(μ
˜F(e)(h), μ ˜G(e)(h)) = μ

˜G(e)(h), and max(α(e), β(e)) = β(e) for all e ∈ A and h ∈ U. It
follows that A ⊆ B, μ

˜F(e)(h) ≤ μ
˜G(e)(h) and α(e) ≤ β(e) for all e ∈ A and h ∈ U. Conversely,

suppose thatA ⊆ B, μ
˜F(e)(h) ≤ μ

˜G(e)(h) and α(e) ≤ β(e) for all e ∈ A and h ∈ U. We can easily

verify that ˜Fα ˜∪ ˜Gβ = ˜Gβ. Thus ˜Fα≤1 ˜Gβ.

For operators � and ˜∩, we can obtain similar results as follows.

Theorem 4.6. Let ˜Fα and ˜Gβ be GIVFS sets over (U,E). Then the following hold:

(1) ( ˜Fα � ˜Fα) = ˜Fα,

(2) ( ˜Fα ˜∩ ˜Fα) = ˜Fα,

(3) ( ˜Fα � ˜Gβ) ˜∩ ˜Fα = ˜Fα,

(4) ( ˜Fα ˜∩ ˜Gβ) � ˜Fα = ˜Fα.

Theorem 4.7. Let ˜Fα, ˜Gβ and ˜Hγ be GIVFS sets over (U,E). Then the following hold:

(1) ˜Fα ˜∩ ( ˜Gβ � ˜Hγ) = ( ˜Fα ˜∩ ˜Gβ) � ( ˜Fα ˜∩˜Hγ),

(2) ˜Fα � ( ˜Gβ ˜∩˜Hγ) = ( ˜Fα � ˜Gβ) ˜∩ ( ˜Fα � ˜Hγ).

Theorem 4.8. (1) ( ˜S(U,E),�, ˜∩) is a distributive lattice.
(2) Let ≤2 be the order relation in ˜S(U,E) and ˜Fα, ˜Gβ ∈ ˜S(U,E). ˜Fα ≤2 ˜Gβ if and only if

B ⊆ A,μ
˜F(e)(h) ≤ μ

˜G(e)(h) and α(e) ≤ β(e) for all e ∈ B.

It is worth noting that ( ˜S(U,E),�,�) and ( ˜S(U,E), ˜∩, ˜∪) are not lattices, as the
absorption laws of them do not hold necessarily. To illustrate this, we give an example as
follows.

Example 4.9. LetU = {h1, h2, h3} be the universe,E = {e1, e2, e3} the set of parameters,A = {e1, e2},
B = {e2, e3}. The GIVFS sets ˜Fα and ˜Gβ over (U,E) are given as

˜Fα(e1) =
({

h1

[0.5, 0.7]
,

h2

[0.3, 0.4]
,

h3

[0.6, 0.7]

}

, [0.8, 0.9]
)

,

˜Fα(e2) =
({

h1

[0.6, 0.8]
,

h2

[0.2, 0.3]
,

h3

[0.7, 0.9]

}

, [0.4, 0.5]
)

,

˜Gβ(e2) =
({

h1

[0.1, 0.3]
,

h2

[0.4, 0.5]
,

h3

[0.5, 0.6]

}

, [0.6, 0.8]
)

,

˜Gβ(e3) =
({

h1

[0.3, 0.4]
,

h2

[0.5, 0.8]
,

h3

[0.4, 0.6]

}

, [0.5, 0.7]
)

.

(4.1)
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Suppose that ( ˜Fα � ˜Gβ) � ˜Fα = ˜Hγ . Then C = A ∩ B = {e2}/=A. So ˜Hγ /= ˜Fα, that is,
( ˜Fα � ˜Gβ) � ˜Fα /= ˜Fα.

Again, suppose that the parameters set of a GIVFS set ˜Jδ is denoted by D, and
( ˜Fα ˜∩ ˜Gβ) ˜∪ ˜Fα = ˜Jδ. Then D = A ∪ B = {e1, e2, e3}/=A, Therefore, ˜Jδ /= ˜Fα, that is,
( ˜Fα ˜∩ ˜Gβ) ˜∪ ˜Fα /= ˜Fα.

5. An Application of GIVFS Sets

In this section we present a simple application of GIVFS set in an interval-valued fuzzy
decision making problem. We first give the following definition.

Definition 5.1. Let ˜Fα be a GIVFS set, hi, hj ∈ U, ek ∈ A. One says membership value of hj

lowerly exceeds or equals to the membership value of hi with respect to the parameter ek if
μ−
˜F(ek)

(hi) ≤ μ−
˜F(ek)

(hj). The corresponding characteristic function is defined as follows:

f−
ek

(

hi, hj

)

=

⎧

⎨

⎩

1, if μ−
˜F(ek)

(hi) ≤ μ−
˜F(ek)

(

hj

)

,

0, otherwise.
(5.1)

Definition 5.2. Let ˜Fα be a GIVFS set, hi, hj ∈ U, ek ∈ A. One says membership value of hj

upperly exceeds or equals to the membership value of hi with respect to the parameter ek if
μ+
˜F(ek)

(hi) ≤ μ+
˜F(ek)

(hj). The corresponding characteristic function is defined as follows:

f+
ek

(

hi, hj

)

=

⎧

⎨

⎩

1, if μ+
˜F(ek)

(hi) ≤ μ+
˜F(ek)

(

hj

)

;

0, otherwise.
(5.2)

Remark 5.3. Let ˜Fα be a GIVFS set, hi, hj ∈ U, and ek ∈ A. For convenience, we denote the

vectors (f−
ek(hi, hj), f+

ek(hi, hj)) and (α−(ek), α+(ek)) as
−−−−−−−−−−→
fek(hi, hj) and

−−−−−→
α(ek), respectively.

Now we can define the generalised comparison table about GIVFS set ˜Fα.

Definition 5.4. Let ˜Fα be a GIVFS set. The generalised comparison table about ˜Fα is a square
table in which the number of rows and number of columns are equal. Both rows and columns
are labeled by the object names of the universe such as h1, h2, . . . , hn, and the entries are Cij ,
given as follows:

Cij =
m
∑

k=1

(−−−−−−−−−−→
fek
(

hi, hj

) · −−−−−→α(ek)
)

, i, j = 1, 2, . . . , n. (5.3)

Clearly, for i, j = 1, . . . , n, k = 1, . . . , m, 0 ≤ Cij ≤ 2m, and Cii =
∑m

k=1(α
−(ek) + α+(ek)),

where n andm are the numbers of objects and parameters present in a GIVFS set, respectively.

Remark 5.5. The generalised comparison table is different from the comparison table in [30].
First, the comparison in the generalised comparison table is between two interval values,
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instead of two single values. Second, the entries Cij of the generalised comparison table
are numbers of real interval [0, 1] in general, instead of single values 0 and 1. Hence, the
generalised comparison table is an extension of the comparison table in [30]. If each interval
degenerates to a point and α(e) = 1 for each e ∈ A, then the generalised comparison table
will be degenerate to the comparison table in [30].

In the generalised comparison table, the row sum and the column sum of an object hi

are denoted by pi and qi, respectively, and the score of an object hi is denoted as Si which can
be given by Si = pi − qi. Now we present an algorithm as follows.

Algorithm 5.6. (1) Input the objects set U and the parameter set A ⊆ E.
(2) Consider the GIVFS set ˜Fα in tabular form.
(3) By calculating the entries Cij , construct generalised comparison table.
(4) Compute the score of each hi using row sum and the column sum.
(5) The optimal decision is to select hk if the score of hk is maximum.
(6) If k has more than one value then any one of hk may be chosen.

To illustrate the basic idea of the above algorithm, let us consider the following
example.

Example 5.7. Let us consider a GIVFS set which describes the capability of the candidates
who are wanted to fill a position for a company. Suppose that there are six candidates in
the universe U = {h1, h2, h3, h4, h5, h6} under consideration, and E = {e1, e2, e3, e4, e5, e6}
is the set of decision parameters, where ei (i = 1, 2, 3, 4, 5, 6) stands for the parameters
“experience”, “computer knowledge”, “young age”, “higher education”, “good health”, and
“over-married”, respectively.

Here, the degree of possibility of belongingness of the parameter ei can be interpreted
as the degree of importance of the parameter to the position. Our purpose is to find out
the best candidate for the company based on her expected parameters. Suppose that the
company do not consider the parameter “over-married”; that is, the degree of importance
of parameter e6 is regarded as 0. In this case, let A = {e1, e2, e3, e4, e5} ⊂ E, and let α : A →
Int([0, 1]) be an interval-valued fuzzy subset ofA, which is given by the company as follows:
α(e1) = [0.7, 0.8], α(e2) = [0.5, 0.6], α(e3) = [0.8, 0.9], α(e4) = [0.6, 0.7], α(e5) = [0.4, 0.5].
And consider the GIVFS set ˜Fα as follows:

˜Fα(e1)

=
({

h1

[0.70, 0.85]
,

h2

[0.85, 0.90]
,

h3

[0.65, 0.75]
,

h4

[0.80, 0.90]
,

h5

[0.60, 0.70]
,

h6

[0.65, 0.80]

}

, [0.7, 0.8]
)

,

˜Fα(e2)

=
({

h1

[0.75, 0.80]
,

h2

[0.60, 0.70]
,

h3

[0.60, 0.70]
,

h4

[0.70, 0.75]
,

h5

[0.80, 0.90]
,

h6

[0.70, 0.80]

}

, [0.5, 0.6]
)

,

˜Fα(e3)

=
({

h1

[0.80, 0.90]
,

h2

[0.55, 0.66]
,

h3

[0.65, 0.80]
,

h4

[0.68, 0.75]
,

h5

[0.70, 0.80]
,

h6

[0.75, 0.85]

}

, [0.8, 0.9]
)

,
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Table 1: Tabular representation of the GIVFS set ˜Fα.

e1 e2 e3 e4 e5

h1 [0.70,0.85] [0.75,0.80] [0.80,0.90] [0.70,0.80] [0.65,0.75]
h2 [0.85,0.90] [0.60,0.70] [0.55,0.66] [0.65,0.75] [0.60,0.70]
h3 [0.65,0.75] [0.60,0.70] [0.65,0.80] [0.70,0.78] [0.80,0.90]
h4 [0.80,0.90] [0.70,0.75] [0.68,0.75] [0.62,0.70] [0.60,0.76]
h5 [0.60,0.70] [0.80,0.90] [0.70,0.80] [0.72,0.82] [0.75,0.85]
h6 [0.65,0.80] [0.70,0.80] [0.75,0.85] [0.80,0.90] [0.70,0.75]
α [0.7,0.8] [0.5,0.6] [0.8,0.9] [0.6,0.7] [0.4,0.5]

Table 2: The generalised comparison table about ˜Fα.

h1 h2 h3 h4 h5 h6

h1 6.50 5.00 5.60 4.50 3.20 4.80
h2 1.50 6.50 2.60 3.20 1.50 1.50
h3 1.50 5.00 6.50 3.10 3.30 1.60
h4 2.00 4.50 3.40 6.50 1.50 2.50
h5 3.30 5.00 4.10 5.00 6.50 2.00
h6 2.80 5.00 5.60 4.50 4.50 6.50

Table 3: The score of hi about ˜Fα.

Row sum (pi) Column sum (qi) The score (Si)
h1 29.60 17.60 12.00
h2 16.80 31.00 −14.20
h3 21.00 27.80 −6.80
h4 20.40 26.80 −6.40
h5 25.90 20.50 5.40
h6 28.90 18.90 10.00

˜Fα(e4)

=
({

h1

[0.70, 0.80]
,

h2

[0.65, 0.75]
,

h3

[0.70, 0.78]
,

h4

[0.62, 0.70]
,

h5

[0.72, 0.82]
,

h6

[0.80, 0.90]

}

, [0.6, 0.7]
)

,

˜Fα(e5)

=
({

h1

[0.65, 0.75]
,

h2

[0.60, 0.70]
,

h3

[0.80, 0.90]
,

h4

[0.60, 0.76]
,

h5

[0.75, 0.85]
,

h6

[0.70, 0.75]

}

, [0.4, 0.5]
)

.

(5.4)

The tabular representation of the GIVFS set ˜Fα is given in Table 1.
It is easy to calculate the entries Cij by the formula 5.3. For example, let us calculate

C21. Firstly, we compute
−−−−−−−−−−→
fek(h2, h1) for each ek ∈ A, where

−−−−−−−−−−→
fe1(h2, h1) = (0, 0),

−−−−−−−−−−→
fek(h2, h1) =

(1, 1), k = 2, 3, 4, 5. Secondly, we can obtain C21 = 5.0 by computing
∑m

k=1(
−−−−−−−−−−→
fek(h2, h1) ·

−−−−−→
α(ek)),

where
−−−−→
α(e1) = (0.7, 0.8),

−−−−→
α(e2) = (0.5, 0.6),

−−−−→
α(e3) = (0.8, 0.9),

−−−−→
α(e4) = (0.6, 0.7),

−−−−→
α(e5) = (0.4, 0.5).

And the generalised comparison table about the GIVFS set ˜Fα is given in Table 2.
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Table 4: Tabular representation of the GIVFS set ˜Gβ.

e1 e2 e3 e4 e5

h1 [0.70,0.85] [0.75,0.80] [0.80,0.90] [0.70,0.80] [0.65,0.75]
h2 [0.85,0.90] [0.60,0.70] [0.55,0.66] [0.65,0.75] [0.60,0.70]
h3 [0.65,0.75] [0.60,0.70] [0.65,0.80] [0.70,0.78] [0.80,0.90]
h4 [0.80,0.90] [0.70,0.75] [0.68,0.75] [0.62,0.70] [0.60,0.76]
h5 [0.60,0.70] [0.80,0.90] [0.70,0.80] [0.72,0.82] [0.75,0.85]
h6 [0.65,0.80] [0.70,0.80] [0.75,0.85] [0.80,0.90] [0.70,0.75]
β [0.7,0.8] [0.5,0.6] [0.4,0.5] [0.8,0.9] [0.6,0.7]

Table 5: The generalised comparison table about ˜Gβ.

h1 h2 h3 h4 h5 h6

h1 6.50 5.00 5.20 4.30 2.40 4.20
h2 1.50 6.50 2.60 3.80 1.50 1.50
h3 2.10 5.00 6.50 3.50 3.30 2.00
h4 2.20 4.10 3.00 6.50 1.50 2.70
h5 4.10 5.00 3.70 5.00 6.50 2.40
h6 3.60 5.00 5.20 4.30 4.10 6.50

Table 6: The score of hi about ˜Gβ.

Row sum (pi) Column sum (qi) The score (Si)
h1 27.60 20.00 7.60
h2 17.40 30.60 −13.20
h3 22.40 26.20 −3.80
h4 20.00 27.40 −7.40
h5 26.70 19.30 7.40
h6 28.70 19.30 9.40

From Table 2, we can obtain the row sum and column sum and compute the score of
each hi, which are presented in Table 3.

From Table 3, it is clear that the maximum score is S1 = 12.00. So h1 could be selected
as the optimal alternative.

It is worth noting that, unlike [30], the decision result depends not only on ˜F(e) but
also on α(e). For example, consider the GIVFS set ˜Gβ with data as in Table 4, where B = A

and ˜G(e) = ˜F(e), but β(e)/=α(e) for each e ∈ B.
The generalised comparison table and the score of hi about the GIVFS set ˜Gβ can be

seen in Tables 5 and 6, respectively.
From Table 6, it is clear that the maximum score is S6 = 9.40. Hence, the optimal

alternative is h6, but not h1.

6. Conclusion

This paper can be viewed as a continuation of the study of Majumdar and Samanta [32], Yang
et al. [31], and Roy andMaji [30]. We extended the generalised fuzzy soft set and defined two
types of generalised interval-valued fuzzy soft set and studied some of their properties. We
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also gave the application of GIVFS sets in dealing with some decision-making problems by
defining generalised comparison table.
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