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In this study, fractional Rosenau-Hynam equations is considered. We implement relatively new
analytical techniques, the variational iteration method and the homotopy perturbation method,
for solving this equation. The fractional derivatives are described in the Caputo sense. The two
methods in applied mathematics can be used as alternative methods for obtaining analytic and
approximate solutions for fractional Rosenau-Hynam equations. In these schemes, the solution
takes the form of a convergent series with easily computable components. The present methods
perform extremely well in terms of efficiency and simplicity.

1. Introduction

Recent advances of fractional differential equations are stimulated by new examples of
applications in fluid mechanics, viscoelasticity, mathematical biology, electrochemistry, and
physics. For example, the nonlinear oscillation of earthquake can be modeled with fractional
derivatives [1], and the fluid-dynamic traffic model with fractional derivatives [2] can
eliminate the deficiency arising from the assumption of continuum traffic flow. Based on
experimental data fractional partial differential equations for seepage flow in porous media
are suggested in [3], and differential equations with fractional order have recently proved
to be valuable tools to the modeling of many physical phenomena [4]. Fractional partial
differential equations also have studied and successfully solved such as the space-time
fractional diffusion-wave equation [5–7], the fractional advection-dispersion equation [8, 9],
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the fractional KdV equation [10], and the linear inhomogeneous fractional partial differential
equations [11].

Most nonlinear differential equations are usually arising frommathematical modeling
of many physical systems. In most cases, it is very difficult to achieve analytic solutions
of these equations. Perturbation techniques are widely used in science and engineering to
handle nonlinear problems and do great contribution to help us understand many nonlinear
phenomena. However, perturbation techniques are based on the existence of small/large
parameter. Therefore, these techniques are not valid for strongly nonlinear problems.

The homotopy perturbation method (HPM) is the new approach for finding the
approximate analytical solution of linear and nonlinear problems. The method was first
proposed byHe [12, 13] andwas successfully applied to solve nonlinear wave equation byHe
[14–16]. The convergence of Homotopy perturbation series to the exact solution is considered
in [17]. Similarly, applying the variational iteration method, created by He [3, 18, 19],
consists in constructing the appropriate correction functional connected with the considered
equation. The correction functional contains a Lagrange multiplier, the determination of
which leads to a recurrence formula. Convergence of the VIM method is discussed by Tatari
and Dehghan in [20]. Both of the methods examined have found application in determining
the approximate solutions of different technical problems [21]. Adaptation of the VIM
method for solving fractional heat-wave-like equation and fractional Zakharov-Kuznetsov
equation were discussed by Yulita and colleagues in [22, 23]. Whereas, Chun [24] obtained
the numerical solution of heat conduction problem by VIM. Recently, the application of the
VIMmethod for solving kuramoto and Sivashinsky equations was presented by Porshokouhi
and Ghanbari in [25]. For the application of HPM, this method used for solving fractional
vibration equation [26] and partial differential equations of fractional order in finite domains
[27].

In the present paper, VIM andHPMwill be applied for solving fractional Rosenau-Hay
nam equation which written as

Dα
t u = uDxxx(u) + uDx(u) + 3Dx(u)Dxx(u), t > 0, (1.1)

subject to the initial condition

u(x, 0) = −8
3
c cos2

(x
4

)
, (1.2)

where u = u(x, t), α is a parameter describing the order of the fractional derivative (0 < α ≤
1), t is the time, and x is the spatial coordinate. Fractional RH equation when α = 1.0 has
appeared in the study of the formation of patterns in liquid drops [28].

2. Basic Definitions

Fractional calculus unifies and generalizes the notions of integer-order differentiation and n-
fold integration [4, 29]. We give some basic definitions and properties of fractional calculus
theory which will be used in this paper:
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Definition 2.1. A real function f(x), x > 0 is said to be in the space Cμ, μ ∈ R if there exists
a real number p(> μ), such that f(x) = xpf1(x), where f1(x) ∈ C[0,∞), and it is said to be in
the space Cm

μ if and only if f (m) ∈ Cm, m ∈ N.

The Riemann-Liouville fractional integral operator is defined as follows.

Definition 2.2. The Riemann-Liouville fractional integral operator of order α ≥ 0, of a function
f ∈ Cμ, μ ≥ −1, is defined as

Jαf(x) =
1

Γ(α)

∫x

0
(x − t)α−1f(t)dt, α > 0, x > 0,

J0f(x) = f(x)

(2.1)

In this paper only real and positive values of α will be considered.
Properties of the operator Jα can be found in [29] and we mention only the following:

for f ∈ Cμ, μ ≥ −1, α, β ≥ 0, and γ ≥ −1:

(1) JαJβf(x) = Jα+βf(x),

(2) JαJβf(x) = JβJαf(x),

(3) Jαxγ = (Γ(γ + 1)/Γ(α + γ + 1))xα+γ .

The Reimann-Liouville derivative has certain disadvantages when trying to model real-
world phenomena with FDEs. Therefore, we will introduce a modified fractional differential
operator Dα

∗ proposed by Caputo in his work on the theory of viscoelasticity [30].

Definition 2.3. The fractional derivative of f(x) in Caputo sense is defined as

Dα
∗f(x) = Jm−αDm

∗ f(x) =
1

Γ(m)

∫x

0
(x − s)m−α−1f (m)(s)ds,

for m − 1 < α ≤ m,m ∈ N, x > 0, f ∈ Cm
−1.

(2.2)

In addition, we also need the following property.

Lemma 2.4. Ifm − 1 < α ≤ m, m ∈ N and f ∈ Cm
μ , μ ≥ −1, then

Dα
∗ J

αf(x) = f(x),

JαDα
∗f(x) = f(x) −

m−1∑
i=0

f (i)(0+)
xi

i!
, x > 0.

(2.3)

The Caputo differential derivative is considered here because the initial and boundary conditions can
be included in the formulation of the problems [4]. The fractional derivative is taken in the Caputo
sense as follows.
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Definition 2.5. Form to be the smallest integer that exceeds α, the Caputo fractional derivative
operator of order α > 0 is defined as

Dα
t u(x, t) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1
Γ(m − α)

∫ t

0
(t − s)m−α−1(∂mu(x,s)/∂sm)ds, for m − 1 < α ≤ m,

∂mu(x, t)
∂tm

, for α = m ∈ N.

(2.4)

For more information on the mathematical properties of fractional derivatives and integrals,
one can consult [4, 29].

3. Basic Idea of He’s Variational Iteration Method

To clarify the basic ideas of VIM, we consider the following differential equation:

Dα
∗t(u) = f(u, ux, uxx) + g(x, t), m − 1 < α < m, (3.1)

where u = u(x, t), Dα
∗t = ∂α/∂tα is the Caputo fractional derivative of order α, m ∈ N, f is

a nonlinear function, and g is the source function. According to VIM, we can write down a
correction functional as follows:

un+1(x, t) = un(x, t) +
∫ t

0
λ(s)

[
∂m

∂sm
(un) − f(ũn, ũn,x, ũn,xx) − g(x, s)

]
ds, (3.2)

where λ(s) is a general Lagrangian multiplier which can be optimally identified via the
variational theory [31]. ũn is considered as a restricted variation [32], that is, δũn = 0 and
the subscript n indicates the nth approximation. We have

δun+1 = δun + δ

∫ t

0
λ(s)

[
∂m

∂sm
(un) − f(ũn, ũn,x, ũn,xx) − g(x, s)

]
ds, (3.3)

where ũn is considered as restricted variations, that is, δũn = 0. For m = 1, we have

δun+1 = δun + δ

∫ t

0
λ(s)

[
∂

∂s
un

]
ds,

δun+1 =
[
1 − λ′(t)

]
δun + δλ(t)

∂

∂t
un +

∫1

0
δλ′′(s)unds.

(3.4)

Thus, we obtain the following stationary conditions:

δun(t) :
[
1 − λ′(t)

]|s=t = 0,

δu′
n(t) : λ(t)|s=t = 0,

δun(s) : λ′′(t) = 0.

(3.5)
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Solving this system of equations yields

λ(s) = −1. (3.6)

Furthermore, substituting (3.6) to (3.2), the iteration formula of VIM can be written as
follows:

un+1 = un −
∫ t

0

[
∂m

∂sm
(un) − f(un, un,x, un,xx) − g(x, s)

]
ds. (3.7)

In this case, we begin with the initial approximation:

u0(x, t) = h(x). (3.8)

The correction functional (3.8) will give several approximations, and therefore the exact
solution is obtained as

u(x, t) = lim
n→∞

un(x, t). (3.9)

4. Basic Idea of Homotopy Perturbation Method

Consider the following nonlinear differential equation:

A(u) − f(r) = 0, (4.1)

with boundary conditions

B

(
u,

∂u

∂n

)
= 0, r ∈ Γ, (4.2)

where A is a general differential operator, B is a boundary operator, f(r) is a known analytic
function, and Γ is the boundary of the domain Ω.

The operator A can, generally speaking, be divided into two parts, L and N, where L
is linear and N is nonlinear, therefore (4.1) can be written as

L(u) +N(u) − f(r) = 0. (4.3)

By using homotopy technique, one can construct a homotopy v(r, p) : Ω × [0, 1] → 	 which
satisfies

H
(
v, p

)
=
(
1 − p

)
[L(v) − L(u0)] + p

[
A(v) − f(r)

]
= 0, (4.4)

or

H
(
v, p

)
= L(v) − L(u0) + pL(u0) + p

[
N(v) − f(r)

]
= 0, (4.5)
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where p ∈ [0, 1] is an embedding parameter, and u0 is the initial approximation of (4.1)which
satisfies the boundary conditions. Clearly, we have

H(v, 0) = L(v) − L(u0) = 0, (4.6)

or

H(v, 1) = A(v) − f(r) = 0, (4.7)

the changing process of p from zero to unity is just that of v(r, p) changing from u0(r) to
u(r). This is called deformation, and also, L(v) − L(u0) and A(v) − f(r) are called homotopic
in topology. If the embedding parameter p(0 ≤ p ≤ 1) is considered as a small parameter,
applying the classical perturbation technique, we can assume that the solution of (4.3) and
(4.4) can be given as a power series in p, that is,

v = v0 + pv1 + p2v2 + · · · , (4.8)

and setting p = 1 results in the approximate solution of (4.1) as

u = lim
p→ 1

v = v0 + v1 + v2 + · · · . (4.9)

5. Application of HPM and VIM Methods

We consider the application of VIM to fractional Rosenau-Hynam equations which is
rewritten as follows:

Dα
t u = uDxxx(u) + uDx(u) + 3Dx(u)Dxx(u), (5.1)

where u = u(x, t) with the initial conditions of

u(x, 0) = −8
3
c cos2

(x
4

)
. (5.2)

5.1. VIM Implement for Fractional Rosenau-Hynam Equation

According to the formula (3.8), the iteration formula for (4.9) is given by

un+1 = un −
∫ t

0
[Dα

s (un) − unDxxx(un) − unDx(un) − 3Dx(un)Dxx(un)]ds. (5.3)
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Table 3: Errors of the approximate solution of fractional Rosenau-Hynam equation using using fifth term
of HPM and fifth iterate of VIM when α = 1.0 and c = 0.5.

t
x = π/2 x = π x = 3π/2

VIM HPM VIM HPM VIM HPM
0.1 1.0000E − 11 1.0000E − 11 5.0000E − 10 1.0000E − 11 2.0000E − 10 1.0000E − 11
0.2 1.0000E − 11 1.2173E − 09 5.0000E − 10 1.7360E − 09 3.0000E − 10 1.2378E − 09
0.3 1.0000E − 11 9.2044E − 09 5.0000E − 10 1.3182E − 08 3.0000E − 10 9.4375E − 09
0.4 1.0000E − 10 3.8620E − 08 1.0000E − 10 5.5542E − 08 9.0000E − 10 3.9929E − 08
0.5 3.0000E − 10 1.1734E − 07 4.0000E − 10 1.6948E − 07 1.9000E − 09 1.2233E − 07
0.6 1.0000E − 09 2.9070E − 07 7.0000E − 10 4.2165E − 07 6.1000E − 09 3.0561E − 07
0.7 2.6000E − 09 6.2550E − 07 1.2000E − 09 9.1117E − 07 1.8300E − 08 6.6309E − 07
0.8 5.4000E − 09 1.2140E − 06 2.1000E − 09 1.7761E − 06 3.9300E − 08 1.2978E − 06
0.9 1.1110E − 07 2.1777E − 06 4.0000E − 09 3.1998E − 06 8.2200E − 08 2.3474E − 06
1.0 2.1110E − 07 3.6709E − 06 8.6000E − 09 5.4173E − 06 1.5230E − 07 3.9903E − 06

Table 4: Errors of the approximate solution of fractional Rosenau-Hynam equation using fifth term of HPM
and fifth iterate of VIM when α = 1.0 and c = 0.5.

t
x = π/2 x = π x = 3π/2

VIM HPM VIM HPM VIM ADM
0.1 1.0000E − 11 2.4346E − 09 5.0000E − 10 3.4720E − 09 2.0000E − 10 2.4756E − 09
0.2 1.0000E − 11 7.7240E − 08 5.0000E − 10 1.1109E − 07 3.0000E − 10 7.9858E − 08
0.3 1.0000E − 11 5.8140E − 07 5.0000E − 10 8.4330E − 07 3.0000E − 10 6.1121E − 07
0.4 1.0000E − 10 2.4280E − 06 1.0000E − 10 3.5522E − 06 9.0000E − 10 2.5955E − 06
0.5 3.0000E − 10 7.3419E − 06 4.0000E − 10 1.0835E − 05 1.9000E − 09 7.9805E − 06
0.6 1.0000E − 09 1.8100E − 05 7.0000E − 10 2.6942E − 05 6.1000E − 09 2.0004E − 05
0.7 2.6000E − 09 3.8743E − 05 1.2000E − 09 5.8188E − 05 1.8300E − 08 4.3547E − 05
0.8 5.4000E − 09 7.4800E − 05 2.1000E − 09 1.1335E − 04 3.9300E − 08 8.5496E − 05
0.9 1.1110E − 07 1.3340E − 04 4.0000E − 09 2.0405E − 04 8.2200E − 08 1.5512E − 04
1.0 2.1110E − 07 2.2370E − 04 8.6000E − 09 3.4516E − 04 1.5230E − 07 2.6444E − 04

The iteration starts with an initial approximation which is initial condition in (5.2).
Furthermore, using the iteration formula in (5.3), we can directly obtain other components as

u1(x, t) = − 2
3
c2 sin

(x
2

)
t − 4

3
c
[
1 + cos

(x
2

)]
,

u2(x, t) = − 4
3
c2 sin

(x
2

)
+
[
1
6
c2 +

4
3
c

](
1 + cos

(x
2

))

− 1
6
c3t2 +

2
3
c2 sin

(x
2

) t(2−α)

Γ(3 − α)
,

u3(x, t) =
7
6
c3t3 cos

(x
2

)
− 96
36

ccos2
(x
4

)
− 48
36

c2t sin
(x
2

)
− 2
3
cos

(x
2

) t3−α

Γ(4 − α)

+ (6 − 2α)c2 sin
(x
2

) t2−α

Γ(4 − α)
− 2
3
c2 sin

(x
2

) t3−2α

Γ(4 − 2α)
,

(5.4)

and so on.
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Figure 1: The approximate solution of fractional Rosenau-Hynam equation when α = 1.0 and c = 0.5 using
such method: (a) HPM, (b) VIM and (c) Exact.

The exact solution of this equation is given by [33]

u(x, t) = −8
3
c cos2

(
1
4
(x − ct)

)
, |x − ct| ≤ 2π, (5.5)

where c is arbitrary constant [28].

6. Analysis of the Homotopy Perturbation Method (HPM)

Now applying the classical perturbation technique for solving (5.1) with initial condition
in (5.2). To solve (5.1) by the homotopy perturbation method, we construct the following
homotopy:

(
1 − p

)
Dα

t u(x, t) + p
[
Dα

t u(x, t) − (u(x, t)Dxxxu(x, t) + u(x, t)Dxu(x, t)

+3Dxu(x, t)Dxxu(x, t))
]
= 0,

(6.1)

or

Dα
t u(x, t) = p[u(x, t)Dxxxu(x, t) + u(x, t)Dxu(x, t) + 3Dxu(x, t)Dxxu(x, t)], (6.2)

where p ∈ [0, 1] is an embedding parameter. If p = 0, then (6.2) becomes a linear equation,

Dα
t u(x, t) = 0. (6.3)
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Figure 2: The approximate solution of fractional Rosenau-Hynam equation when α = 1.0 and c = 1.0 using
such method: (a) HPM, (b) VIM, and (c) Exact.

And when p = 1, then (6.2) turns out to be (5.1). Assume the solution of (6.2) to be in the
form

u(x, t) = v0 + pv1 + p2v2 + p3v3 + · · · . (6.4)

Substituting (6.4) into (6.2) and equating the terms with identical powers of p, we obtain the
following set of linear differential equations:

p0 : Dα
t u0 = 0, (6.5)

p1 : Dα
t u1 = v0

∂v0

∂x
+ 3

∂v0

∂x

∂2v0

∂x2
+ v0

∂3v0

∂x3
, (6.6)

p2 : Dα
t u2 = v1

∂v0

∂x
+ v0

∂v1

∂x
+ 3

∂v1

∂x

∂2v0

∂x2
+ 3

∂v0

∂x

∂2v1

∂x2
+ v1

∂3v0

∂x3
+ v0

∂3v1

∂x3
, (6.7)

and so on. Equations (6.6) and (6.7) can be solved by applying the operator Jα, which is
the inverse of the operator Dα and then by simple computation, Thus, the solution reads as
follows

v1(x, t) = − 2c2tα sin(x/4)
3Γ(1 + α)

,

v2(x, t) = − c3

3π
t2α cos

(x
2

)
Γ(−2α) sin 1πα,
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v3(x, t) = − c4πt3α csc πα sin(x/2)
6Γ(1 − α)Γ(α)Γ(1 + 3α)

,

v4(x, t) = − c5πt4α cos(x/2) csc απ
12Γ(1 − α)Γ(α)Γ(1 + 4α)

,

(6.8)

and so on.
In this manner, the rest of the components of the homotopy perturbation series can be

obtained. Finally, we approximate the analytical solutions of u(x, t) by the truncated series

u(x, t) = lim
N→∞

u5(x, t), (6.9)

where u5(x, t) =
∑4

n=0 vk(x, t).

7. Numerical Results and Discussion

Tables 1 and 2 show the approximate solutions for (5.1) obtained for different values of α
using the decomposition method and the variational iteration method in different values of
c, that is, c = 1 and c = 0.5, respectively. Tables 3 and 4 show the absolute error of (5.1)when
α = 1.0 in different value of c, that is, c = 1.0 and c = 0.5, respectively. Figures 1 and 2 show
the approximate solutions for (5.1) in different values of c using the fifth iterates of VIM, the
fifth terms of HPM when α = 1, and exact solution, respectively. From Tables 3 and 4 show
that the approximate solution using the VIM is more accurate than the approximate solution
obtained using the HPM. It is to be noted that only the fifth iterates of the variational iteration
solution and only fifth terms of the homotopy perturbation series were used in evaluating.

8. Conclusions

The fundamental goal of this work has been to construct an approximate solution of nonlinear
partial differential equations of fractional order. For computations and plots, theMathematica
andMaple packages were used. The goal has been achieved by using the variational iteration
method (VIM) and the homotopy perturbation method (HPM). The methods were used in a
direct way without using linearization or restrictive assumptions. There are four important
points that were gotten. First, the VIM and the HPM provide the solutions in terms of
convergent series with easily computable components. Second, the approximate solution in
(5.1) using the VIM converges faster than the approximate solution using the HPM. Third,
the variational iteration method handles nonlinear equations without any need for the so-
called He’s polynomials. Finally, the recent appearance of fractional differential equations as
models in some fields of applied mathematics makes it necessary to investigate methods of
solution for such equations (analytical and numerical) and we hope that this work is a step
in this direction.
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