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The delay-dependent stability problem is studied for Markovian jump neutral systems with
partial information on transition probabilities, and the considered delays are mixed and model
dependent. By constructing the new stochastic Lyapunov-Krasovskii functional, which combined
the introduced free matrices with the analysis technique of matrix inequalities, a sufficient
condition for the systems with fully known transition rates is firstly established. Then, making
full use of the transition rate matrix, the results are obtained for the other case, and the uncertain
neutral Markovian jump system with incomplete transition rates is also considered. Finally, to
show the validity of the obtained results, three numerical examples are provided.

1. Introduction

A switched system is a dynamic system consisted of a number of subsystems and a rule that
manages the switching between these subsystems. In the past, a large number of excellent
papers andmonographs on the stability of switched systems have been published such as [1–
7] and the references cited therein. Among the results for switched systems, the stabilization
problem of switched neutral systems has also been explored by some researchers [8–22],
and mainly two kinds of switching rule are designed in these articles. Some state-dependent
switching rules are obtained assuming the convex combination of the systems matrix, see,
for example, [8, 10, 20]. To reduce the conservative, the authors in [11] have investigated
the stabilization for switched neutral systems without the assumption that the restraint of
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the convex combination on systems matrices, the dwell time, and state-dependent rules were
designed. Similarly, the authors in [12] have also studied the problem of the BIBO stability
for switched neutral systems. Using the Razumikhin-like approach [13] and the Leibniz-
Newton formula, the global exponential stability for a class of switched neutral systems with
interval-time-varying state delay and two classes of perturbations is investigated in [14], with
arbitrary switching signal. Moreover, with the constructed state-dependent switching rule,
the authors in [15] have investigated the global exponential stability of switched neutral
systems. With the dwell time approach, the improved stability conditions for a class of
switched neutral systems with mixed time-varying delays have also been obtained in [16],
and the upper bound of derivative of the discrete time-varying delay is not restricted to
one. In [17], the robust reliable stabilization of uncertain switched neutral systems with
delayed switching has been considered. The H∞ fault estimator for switched nonlinear
systems of neutral type has been designed in [9]. In [18], the authors have studied the
problem of exponential stability for neutral switched systems with interval time-varying
mixed delays and nonlinear perturbations, obtaining the less conservative conditions based
on the introduced free matrices. More recently, the markovian jump parameters have been
considered for the analysis of switched neutral systems in [19].

In the past few decades, as a special switched system, markovian jump systems (MJSs)
have been widely studied due to the fact that many dynamical systems subject to random
abrupt variations can bemodeled byMJSs such asmanufacturing systems, networked control
systems, and fault-tolerant control systems. There are a lot of useful results that have been
presented in the literature, such as [23–29], and the references therein. For the analysis of
MJSs, the transition probabilities in the jumping process determine the system behavior to
a large extent. However, the likelihood of obtaining such available knowledge is actually
questionable, and the cost is probably expensive. Rather than having a large complexity
to measure or estimate all the transition probabilities, it is significant and necessary, from
control perspectives, to further study more general jump systems with partly unknown
transition probabilities. Recently, many results on the Markovian jump systems with partly
unknown transition probabilities are obtained [30–37]. By introducing the free matrices
based on the property of transition rate matrix, [32] gave less conservative conditions than
that in [30] for Markovian jump systems with partial information on transition probability.
And [33] provided with a new approach to obtain the necessary and sufficient conditions
for markovian jump linear systems with incomplete transition probabilities, which may be
appropriate to discuss the counterpart of delay systems. Most of these improved results
just require some free matrices or the knowledge of the known elements in transition rate
matrix, such as the bounds or structures of uncertainties, and some else of the unknown
elements need not be considered. It is a great progress on the analysis of markovian
jump systems. However, a few of these papers have considered the effect of delay on the
stability or stabilization for the corresponding neutral systems, except for [19]. The global
exponential stability of the markovian jumping neutral systems with interval time-varying
delays has been studied by [19]; however, the transition probabilities are fully known, and
the constructed Lyapunov did not fully consider the effect of the transition probabilities on
the integrand. To the best of the authors’ knowledge, the markovian jump neutral systems
have not been fully investigated, and it is very challenging. All of these motivate this paper.

In this paper, the delay-dependent stability problem of neutral Markovian jump linear
systems with partly unknown transition probabilities is investigated. The obtained results
are presented in the form of linear matrix inequalities, which is easily computed by the
Matlab toolbox. The considered systems are more general than the systems with completely
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known or completely unknown transition probabilities, which can be viewed as two special
cases of the ones tackled here. Moreover, in contrast with the recent research on uncertain
transition probabilities, our proposed concept of the partly unknown transition probabilities
does not require any knowledge of the unknown elements, such as the bounds or structures
of uncertainties. In addition, the relationship between the stability criteria currently obtained
for the usual MJLS and switched linear system under arbitrary switching is exposed by our
proposed systems. Furthermore, the number of matrix inequalities conditions obtained in
this paper is much more than some existing results due to the introduced free matrices based
on the system itself and the information of transition probabilities in this paper, which may
increase the complexity of computation. However, it would decrease the conservativeness
for the delay-dependent stability conditions. Finally, two numerical examples are provided
to illustrate the effectiveness of our results.

2. Problem Statement and Preliminaries

Consider the following neutral system with markovian jump parameters:

ẋ(t) − C(rt)ẋ(t − τ2(rt)) = A(rt)x(t) + B(rt)x(t − τ1(rt)),
x(t0 + θ) = ϕ(θ), ∀θ ∈ [−τ, 0], (2.1)

where {rt}, t ≥ 0 is a right-continuous Markov process on the probability space taking values
in a finite state space, ℘ = {1, 2, . . . ,N}with generator I = (λij), i, j ∈ ℘ given by

Pr
{
rt+Δ = j | rt = i

}
=

{
λijΔ + o(Δ), j /= i,
1 + λiiΔ + o(Δ), j = i,

(2.2)

whereΔ > 0, limΔ→ 0 (o(Δ)/Δ) = 0, λij ≥ 0, for j /= i, is the transition rate frommode i at time
t to mode j at time t+Δ, λii = −∑N

j=1 λij .A(rt), B(rt), and C(rt) are known matrix functions of
the markovian process, x(t) ∈ Rn is the state vector, and ϕ(θ) is the initial condition function.
τ1(rt) and τ2(rt) are mode-dependent delays, when rt = i ∈ ℘, τ1(rt) = τ1i, τ2(rt) = τ2i, and
τ = max(τ1i, τ2i).

Since the transition probability depends on the transition rates for the continuous-time
MJSs, the transition rates of the jumping process are considered to be partly accessible in this
paper. For instance, the transition rate matrix I with N operation modes may be expressed as

I =

⎛

⎜⎜⎜
⎝

λ11 ? λ13 · · · ?
? ? ? ? λ2N
...

...
...

. . .
...

? λN2 λN3 · · · λNN

⎞

⎟⎟⎟
⎠
, (2.3)

where ? represents the unknown transition rate. For notational clarity, for all i ∈ ℘, the
set Ui denotes Ui = Ui

k

⋃
Ui
uk with Ui

k � {j : λij is known for j ∈ ℘}, Ui
uk � {j : λij

is unknown for j ∈ ℘}, and λi
k

�∑j∈Ui
k
λij .
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Moreover, ifUi
k /= ∅, it is further described as

Ui
k =
{
ki1, k

i
2, . . . , k

i
m,
}
, (2.4)

where m is a nonnegation integer with 1 ≤ m ≤ N, and kij ∈ Z+, 1 ≤ kij ≤ N j = 1, 2, . . . , m
represent the jth known element of the setUi

k in the ith row of the transition rate matrix I.

Remark 2.1. It is worthwhile to note that if Ui
k

= ∅, Ui = Ui
uk

which means that any
information between the ith mode and the otherN−1modes is not accessible, thenMJSs with
N modes can be regarded as ones withN − 1 modes. It is clear that when Ui

uk = ∅, Ui = Ui
k,

the system (2.1) becomes the usual assumption case.

For the sake of simplicity, the solution x(t, ϕ(θ), r0) with r0 ∈ ℘ is denoted by x(t). It
is known from [38] that {x(t), t} is a Markov process with an initial state {ϕ(θ), r0}, and its
weak infinitesimal generator, acting on function V , is defined in [39]:

LV (x(t), t, i) = lim
Δ→ 0+

1
Δ
[ε(V (x(t + Δ), t + Δ, rt+Δ) | x(t), rt = i) − V (x(t), t, i)]. (2.5)

Throughout this paper, the following definition is necessary. More details refer to [23].

Definition 2.2 (see, [32]). The system (2.1) is said to be stochastically stable if the following
holds:

ε

{∫∞

0
‖x(t)‖2dt | ϕ, r0

}
<∞, (2.6)

for every initial condition ϕ ∈ Rn and r0 ∈ ℘.

3. Stability Analysis for Neutral Markovian Jump Systems

The purpose of this section is to state the stability analysis for neutral markovian jump
systems with partly unknown transition rates. Throughout the paper, the matrix C(rt) is
assumed to be ρ(C(rt)) < 1. Before giving the stability result of systems (2.1) with a
partly unknown transition rate matrix (2.3), the stability of neutral markovian jump systems
(2.1) with all transition probabilities known is firstly investigated. With the introduced free
matrices and the novel analysis technique of matrix, the stability conditions are presented in
this section.
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Theorem 3.1. The system (2.1) with a fully known transition rate matrix is stochastically stable
if there exist matrices Pi > 0, Q1i > 0, Q2i > 0, R1 > 0, and R2 > 0 and any matrices
N1, N2, N3, and N4 with appropriate dimensions satisfying the following linear matrix inequalities:

ϕi =

⎛

⎜
⎜
⎝

ϕi11 ϕi12 ϕi13 ϕi14
	 ϕi22 ϕi23 ϕi24
	 	 ϕi33 ϕi34
	 	 	 ϕi44

⎞

⎟
⎟
⎠ < 0, (3.1)

N∑

j=1

λijQ1j +
N∑

j=1

λijτ1jR1 − R1 ≤ 0, (3.2)

N∑

j=1

λijQ2j +
N∑

j=1

λijτ2jR2 − R2 ≤ 0, (3.3)

with

ϕi11 = PiAi +AT
i Pi +

N∑

j=1

λijPj +Q1i +N1Ai +AT
i N

T
1 + τ1iR1,

ϕi12 = −N1 +AT
i N

T
2 ,

ϕi13 =N1Bi +AT
i N

T
3 + PiBi,

ϕi14 =N1Ci +AT
i N

T
4 + PiCi,

ϕi22 = −N2 −NT
2 +Q2i + τ2iR2,

ϕi23 =N2Bi −NT
3 , ϕi24 =N2Ci −NT

4 ,

ϕi33 =N3Bi + BTi N
T
3 −Q1i +

N∑

j=1

λijτ1jQ1i,

ϕi34 =N3Ci + BTi N
T
4 ,

ϕi44 =N4Ci + CT
i N

T
4 −Q2i +

N∑

j=1

λijτ2jQ2i.

(3.4)

Proof. Construct a stochastic Lyapunov functional candidate as

V (xt, t, rt) =
5∑

i=1

Vi(xt, t, rt), (3.5)
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where

V1(xt, t, rt) = xT (t)P(rt)x(t),

V2(xt, t, rt) =
∫ t

t−τ1(rt)
xT (s)Q1(rt)x(s)ds,

V3(xt, t, rt) =
∫ t

t−τ2(rt)
ẋT (s)Q2(rt)ẋ(s)ds,

V4(xt, t, rt) =
∫0

−τ1(rt)

∫ t

t+θ
xT (s)R1x(s)dsdθ,

V5(xt, t, rt) =
∫0

−τ2(rt)

∫ t

t+θ
ẋT (s)R2ẋ(s)dsdθ,

(3.6)

where P(rt), Q1(rt), Q2(rt), R1, R2, and rt ∈ ℘ are all positive definite matrices with
appropriate dimensions to be determined. Then, for given rt = i ∈ ℘, P(rt) = Pi, Q1(rt) =
Q1i, Q2(rt) = Q2i, and the weak infinitesimal operator L of the stochastic process x(t) along
the evolution of Vk(xt, t, i)(k = 1, . . . , 7) are given as

LV1(xt, t, i) = 2xT (t)Piẋ(t) + xT (t)
N∑

j=1

λijPjx(t)

= 2xT (t)Pi(Aix(t) + Bix(t − τ1i) + Ciẋ(t − τ2i)) + xT (t)
N∑

j=1

λijPjx(t).

(3.7)

According to the definition of the weak infinitesimal operator L and the expression (2.2), it
can be shown that

LV2(xt, t, i)

= lim
Δ→ 0+

1
Δ

[

ε

(∫ t+Δ

t+Δ−τ1(rt+Δ)
xT (s)Q1(rt+Δ)x(s)ds

)

|x(t), rt = i) − V2(x(t), t, i)

]

= lim
Δ→ 0+

1
Δ

⎡

⎣
∫ t+Δ

t+Δ−τ1(rt+Δ)
xT (s)

N∑

j=1

Pr
{
rt+Δ = j | rt = i

}
Q1jx(s)ds − V2(x(t), t, i)

⎤

⎦

= lim
Δ→ 0+

1
Δ

⎡

⎣
∫ t+Δ

t+Δ−τ1i−
∑N

j=1(λijΔ+O(Δ))τ1j
xT (s)

⎡

⎣Q1i +
N∑

j=1

(
λijΔ +O(Δ)

)
Q1j

⎤

⎦x(s)ds

−
∫ t

t−τ1i
xT (s)Q1ix(s)ds

⎤

⎦

= lim
Δ→ 0+

1
Δ

[∫ t+Δ

t+Δ−τ1i−
∑N

j=1(λijΔ+O(Δ))τ1j
xT (s)Q1ix(s)ds −

∫ t

t−τ1i
xT (s)Q1ix(s)ds

]
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+ lim
Δ→ 0+

1
Δ

⎡

⎣
∫ t+Δ

t+Δ−τ1i−
∑N

j=1(λijΔ+O(Δ))τ1j
xT (s)

⎛

⎝
N∑

j=1

(
λijΔ +O(Δ)

)
Q1j

⎞

⎠x(s)ds

⎤

⎦

= lim
Δ→ 0+

1
Δ

∫ t+Δ

t

xT (s)Q1ix(s)ds

+ lim
Δ→ 0+

1
Δ

∫ t−τ1i

t+Δ−τ1i−
∑N

j=1(λijΔ+O(Δ))τ1j
xT (s)Q1ix(s)ds

+ lim
Δ→ 0+

1
Δ

∫ t−τ1i

t+Δ−τ1i−
∑N

j=1(λijΔ+O(Δ))τ1j
xT (s)

N∑

j=1

(
λijΔ +O(Δ)

)
Q1jx(s)ds

= xT (t)Q1ix(t) −
⎛

⎝1 −
N∑

j=1

λijτ1j

⎞

⎠xT (t − τ1i)Q1ix(t − τ1i)

+
∫ t

t−τ1i
xT (s)

N∑

j=1

λijQ1jx(s)ds,

LV4(xt, t, i)

= lim
Δ→ 0+

1
Δ

[

ε

(∫0

−τ1(rt+Δ)

∫ t+Δ

t+Δ+θ
xT (s)R1x(s)ds

)

|x(t), rt = i) −
∫0

−τ1i

∫ t

t+θ
xT (s)R1x(s)ds

]

= lim
Δ→ 0+

1
Δ

[

ε

(∫0

−τ1i−
∑N

j=1(λijΔ+O(Δ))τ1j

∫ t+Δ

t+Δ+θ
xT (s)R1x(s)ds

)

|x(t), rt = i)

−
∫0

−τ1i

∫ t

t+θ
xT (s)R1x(s)ds

]

= lim
Δ→ 0+

1
Δ

[

ε

(∫−τi

−τ1i−
∑N

j=1(λijΔ+O(Δ))τ1j

∫ t+Δ

t+Δ+θ
xT (s)R1x(s)ds

)

|x(t), rt = i)

+
∫0

−τ1i

∫ t+Δ

t+Δ+θ
xT (s)R1x(s)ds −

∫0

−τ1i

∫ t

t+θ
xT (s)R1x(s)ds

]

= τ1ixT (t)R1x(t) −
∫ t

t−τ1i
xT (s)R1x(s)ds +

∫ t

t−τ1i
xT (s)

N∑

j=1

λijτ1jR1x(s)ds.

(3.8)

Similar to the above, we can obtain

LV3(xt, t, i) = ẋT (t)Q2iẋ(t) −
⎛

⎝1 −
N∑

j=1

λijτ2j

⎞

⎠ẋT (t − τ2i)Q2iẋ(t − τ2i)
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+
∫ t

t−τ2i
ẋT (s)

N∑

j=1

λijQ2j ẋ(s)ds,

LV5(xt, t, i) = τ2iẋ
T (t)R2ẋ(t) −

∫ t

t−τ2i
ẋT (s)R2ẋ(s)ds

+
∫ t

t−τ2i
ẋT (s)

N∑

j=1

λijτ2jR2ẋ(s)ds.

(3.9)

Moreover, there exist matrices Nk(k = 1, . . . , 4) with appropriate dimensions, such that the
following equality holds according to (2.1):

2ξT (t)N(−ẋ(t) +Aix(t) + Bix(t − τ1i) + Ciẋ(t − τ2i)) = 0, (3.10)

where

NT =
(
NT

1 NT
2 NT

3 NT
4

)
,

ξT (t) =
(
xT (t) ẋT (t) xT (t − τ1i) ẋT (t − τ2i)

)
.

(3.11)

From (3.7)–(3.10) and with (3.2)-(3.3), one can obtain that

LV (xt, t, i) =
4∑

j=1

LVj(xt, t, i) = xT (t)ϕix(t) < 0, (3.12)

where ϕi are defined in this theorem. Therefore,

ε

{∫∞

0
‖x(t)‖2dt | ϕ, r0

}
<∞, (3.13)

which means that systems (2.1) are stochastic stability. The proof is completed.

Based on the result of Theorem 3.1, the next theorem will relate to the stability
condition of systems (2.1)with partially known transition probabilities.

Theorem 3.2. The system (2.1) with a partly unknown transition rate matrix (2.4) is stochastically
stable if there exist matrices Pi > 0, Q1i > 0, Q2i > 0(i = 1, 2, . . . ,N), R1 > 0, and R2 > 0 and
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any matricesNk(k = 1, . . . , 4),Wi =WT
i with appropriate dimensions satisfying the following linear

matrix inequalities:

φi =

⎛

⎜
⎜
⎝

φi11 φi12 φi13 φi14
	 φi22 φi23 φi24
	 	 φi33 φi34
	 	 	 φi44

⎞

⎟
⎟
⎠ < 0, ∀j ∈ Ui

uk if i ∈ Ui
k, (3.14)

ψi =

⎛

⎜
⎜
⎝

ψi11 ψi12 ψi13 ψi14
	 ψi22 ψi23 ψi24
	 	 ψi33 ψi34
	 	 	 ψi44

⎞

⎟
⎟
⎠ < 0, ∀j ∈ Ui

uk if i ∈ Ui
uk, (3.15)

∑

j∈Ui
k

λijQ1j +
∑

j∈Ui
k

λijτ1jR1 − R1 − λikQ1j − λikτ1jR1 ≤ 0, ∀j ∈ Ui
uk if i ∈ Ui

k, (3.16)

∑

j∈Ui
k

λijQ1j +
∑

j∈Ui
k

λijτ1jR1 − R1 + λidQ1i − λidQ1j − λikQ1j + λidτ1iR1

− λidτ1jR1 − λikτ1jR1 ≤ 0, ∀j ∈ Ui
uk if i ∈ Ui

k,

(3.17)

∑

j∈Ui
k

λijQ2j +
∑

j∈Ui
k

λijτ2jR2 − R2 − λikQ2j − λikτ2jR2 ≤ 0, ∀j ∈ Ui
uk if i ∈ Ui

k, (3.18)

∑

j∈Ui
k

λijQ2j +
∑

j∈Ui
k

λijτ2jR2 − R2 + λidQ2i − λidQ2j − λikQ2j + λidτ2iR2

− λidτ2jR2 − λikτ2jR2 ≤ 0, ∀j ∈ Ui
uk if i ∈ Ui

k,

(3.19)

Pj −Wi ≤ 0, j ∈ Ui
uk, j /= i, (3.20)

Pj −Wi ≥ 0, j ∈ Ui
uk, j = i, (3.21)

with

φi11 = PiAi +AT
i Pi +

∑

j∈Ui
k

λij
(
Pj −Wi

)
+Q1i +N1Ai +AT

i N
T
1 + τ1iR1,

φi12 = −N1 +AT
i N

T
2 ,

φi13 =N1Bi +AT
i N

T
3 + PiBi,
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φi14 =N1Ci +AT
i N

T
4 + PiCi,

φi22 = −N2 −NT
2 +Q2i + τ2iR2,

φi23 =N2Bi −NT
3 ,

φi24 =N2Ci −NT
4 ,

φi33 =N3Bi + BTi N
T
3 −Q1i +

∑

j∈Ui
k

λijτ1jQ1i − λikτ1jQ1i,

φi34 =N3Ci + BTi N
T
4 ,

φi44 =N4Ci + CT
i N

T
4 −Q2i +

∑

j∈Ui
k

λijτ2jQ2i − λikτ2jQ2i.

ψi33 =N3Bi + BTi N
T
3 −Q1i +

∑

j∈Ui
k

λijτ1jQ1i + λidτ1iQ1i − λidτ1jQ1i − λikτ1jQ1i,

ψi44 =N4Ci + CT
i N

T
4 −Q2i +

∑

j∈Ui
k

λijτ2jQ2i + λidτ2iQ2i − λidτ2jQ2i − λikτ2jQ2i,

ψi11 = φi11, ψi12 = φi12, ψi13 = φi13, ψi14 = φi14,

ψi22 = φi22, ψi23 = φi23, ψi24 = φi24, ψi34 = φi34,

(3.22)

and λid is a given lower bound for the unknown diagonal element.

Proof. For the case of the systems (2.1) with partly unknown transition probabilities, and
taking into account the situation that the information of transition probabilities is not
accessible completely, due to

∑N
j=1 λij = 0, the following zero equation holds for arbitrary

matricesWi =WT
i is satisfied:

−xT (t)
⎛

⎝
N∑

j=1

λijWi

⎞

⎠x(t) = 0, ∀i ∈ ℘, (3.23)

and the inequality (3.12) can be rewritten as

LV (xt, t, i) = xT (t)
∑

j∈Ui
uk

λij
(
Pj −Wi

)
x(t) + ξT (t)ϕ̃iξ(t) < 0, (3.24)

where ξ(t) has already been defined on the above

ϕ̃i =

⎛

⎜⎜
⎝

ϕ̃i11 ϕ̃i12 ϕ̃i13 ϕ̃i14
	 ϕ̃i22 ϕ̃i23 ϕ̃i24
	 	 ϕ̃i33 ϕ̃i34
	 	 	 ϕ̃i44

⎞

⎟⎟
⎠, i = 1, . . . ,N, (3.25)
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with the elements are the same as those in ϕi, except for

ϕ̃i11 = PiAi +AT
i Pi +

∑

j∈Ui
k

λij
(
Pj −Wi

)
+Q1i +N1Ai +AT

i N
T
1 , (3.26)

and note that λii = −∑j∈Ui
k
λij and λij ≥ 0 for all j /= i, namely, λii < 0 for all i ∈ ℘. Therefore,

it follows from easy computation that if i ∈ Ui
k
, inequalities (3.20) and the formula (3.25) less

than 0 imply that

LV (xt, t, i) < 0. (3.27)

On the other hand, for the same reason, if i ∈ Ui
uk
, inequalities (3.20)-(3.21) and the formula

(3.25) less than 0 also imply that inequality (3.27) holds. Therefore,

ε

{∫∞

0
‖x(t)‖2dt | ϕ, r0

}
<∞, (3.28)

which means that systems (2.1) with partly unknown transition probabilities are stochasti-
cally stable.

Note that the formula (3.25) less than 0 can be represented as follows:

ϕ̃i = Φi +
∑

j∈Ui
uk

λij diag
(
0, 0, τ1jQ1i, τ2jQ2i

)
< 0, (3.29)

where λij is an unknown element in transition probabilities matrix, and

Φi =

⎛

⎜⎜
⎝

Φi11 Φi12 Φi13 Φi14

	 Φi22 Φi23 Φi24

	 	 Φi33 Φi34

	 	 	 Φi44

⎞

⎟⎟
⎠, (3.30)

with

Φi11 = ϕ̃i11, Φi12 = ϕ̃i12, Φi13 = ϕ̃i13, Φi14 = ϕ̃i14,

Φi22 = ϕ̃i22, Φi23 = ϕ̃i23, Φi24 = ϕ̃i24, Φi34 = ϕ̃i34,

Φi33 =N3Bi + BTi N
T
3 −Q1i +

∑

j∈Ui
k

λijτ1jQ1i,

Φi44 =N4Ci + CT
i N

T
4 −Q2i +

∑

j∈Ui
k

λijτ2jQ2i.

(3.31)

One can note that (3.29) can be separated into two cases, i ∈ Ui
k
and i ∈ Ui

uk
.
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Case I (i ∈ Ui
k): it should be first noted that in this case one has λik < 0. In fact, we only

need to consider λi
k
< 0 because λi

k
= 0 means all the elements in the i throw of the transition

rate matrix.
Now the formula (3.29) can be rewritten as

ϕ̃i = Φi +
∑

j∈Ui
uk

λij diag
(
0, 0, τ1jQ1i, τ2jQ2i

)
= Φi − λik

∑

j∈Ui
uk

λij

−λi
k

diag
(
0, 0, τ1jQ1i, τ2jQ2i

)
< 0.

(3.32)

It follows from 0 ≤ λij/ − λi
k
≤ 1 and

∑
j∈Ui

uk
(λij/ − λi

k
) = 1 that

ϕ̃i =
∑

j∈Ui
uk

λij

−λik

(
Φi − λik diag

(
0, 0, τ1jQ1i, τ2jQ2i

))
< 0. (3.33)

Similar to the above proof, (3.2) and (3.3) can be rewritten as (3.16) and (3.18), respectively,
for this case. Accordingly, for 0 ≤ λij ≤ λi

k
, ϕ̃i < 0 is equivalent to (3.14) which is satisfied

for all j ∈ Ui
uk
, which also implies that, in the presence of unknown elements λij , the system

stability is ensured if (3.14), (3.16), (3.18), and (3.20) hold.
Case II (i ∈ Ui

uk
): for the sake of simple expression, let Ψj = diag(0, 0, τ1jQ1i, τ2jQ2i).

In this case, λii is unknown, λi
k
≥ 0, and λii ≤ 0, and following the same analysis of the

above case, we just consider λii < −λi
k
. And now the formula (3.29) can be rewritten as

ϕ̃i = Φi + λii diag(0, 0, τ1iQ1, τ2iQ2) +
∑

j∈Ui
uk
,j /= i

λij diag
(
0, 0, τ1jQ1i, τ2jQ2i

)

= Φi + λii diag(0, 0, τ1iQ1i, τ2iQ2i) +
(
−λii − λik

) ∑

j∈Ui
uk
,j /= i

λij

−λii − λik
Ψj .

(3.34)

Similarly, since we have

0 ≤ λij

−λii − λik
≤ 1,

∑

j∈Ui
uk
,j /= i

λij

−λii − λik
= 1, (3.35)

one can know that

ϕ̃i =
∑

j∈Ui
uk

λij

−λii − λik

(
Φi + λiiΨi +

(
−λii − λik

)
Ψj

)
, (3.36)

which means that ϕ̃i < 0 is equivalent to all j ∈ Ui
uk
, j /= i,

Φi + λiiΨi +
(
−λii − λik

)
Ψj < 0, (3.37)
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and from the defined λid in Theorem 3.2, we have that λid ≤ λii < −λik, which means that λii
may take any value between [λid,−λik + ε] for some ε < 0 arbitrarily small. Then, λii can be
further written as a convex combination

λii = α
(
−λik + ε

)
+ (1 − α)λid, (3.38)

where α takes value arbitrarily in [0, 1]. So, (3.37) holds if and only if for all j ∈ Ui
uk
, j /= i,

Φi − λikΨi + ε
(
Ψi −Ψj

)
< 0, (3.39)

Φi + λidΨi − λidΨj − λikΨi < 0 (3.40)

simultaneously hold. Since ε is arbitrarily small, (3.39) holds if and only if

Φi − λikΨi < 0, (3.41)

which is the case in (3.40) when j = i for all j ∈ Ui
uk
. Hence, (3.37) is equivalent to (3.15).

Furthermore, following the same line of this proof, (3.2) and (3.3) can be represented as (3.17)
and (3.19), respectively, in this case.

Therefore, from the above discussion, in the presence of unknown elements in the
transition probabilities matrix, we can readily draw a conclusion that the system (2.1) with
partly known transition rates is stable if the inequalities in Theorem 3.2 are satisfied. It
completes this proof.

Remark 3.3. In order to obtain the less conservative stability criterion of MJSs with partial
information on transition probabilities, similar to [32], the free-connectionweightingmatrices
are introduced by making use of the relationship of the transition rates among various
subsystems, that is,

∑N
j=1 λij = 0 for all i ∈ ℘, which overcomes the conservativeness of using

the fixed-connection weighting matrices. However, it is difficult to decrease the conservative
using free-connection matrices only based on the above equalities, but not on the systems and
the themselves Newton-Leibniz formula. Moreover, this paper is inspired by [30], and the
delay-dependent stability results in this theorem are the extension of [30] to delay systems to
some extent. Although the large number of introduced free weighting matrices may increase
the complexity of computation, using the technique of free weighting matrices would reduce
the conservativeness, which would be reflected in the fifth section.

Remark 3.4. It should be noted that the more known elements are there in (2.3), the lower the
conservative of the condition will be. In other word, the more unknown elements are there in
(2.3), the lower the maximum of time delay will be in Theorem 3.2. Actually, if all transition
probabilities are unknown, the corresponding system can be viewed as a switched linear
system under arbitrary switching. Thus, the conditions obtained in Theorem 3.2 will thereby
cover the results for arbitrary switched linear system with mixed delays. In that case, one
can see that the stability condition in Theorem 3.2 becomes seriously conservative, for many
constraints. Fortunately, we can use the common Lyapunov functional method to analyze the
stability for the system under the assumption that all transition probabilities are not known.
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For the stability analysis of the neutral markovian jump systems with all transition
probabilities is not known, one can construct the following common Lyapunov functional:

V (xt, t, rt) = xT (t)Px(t) +
∫ t

t−τ1(rt)
xT (s)Q1x(s)ds +

∫ t

t−τ2(rt)
ẋT (s)Q2ẋ(s)ds

+
∫0

−τ1(rt)

∫ t

t+θ
xT (s)R1x(s)dsdθ +

∫0

−τ2(rt)

∫ t

t+θ
ẋT (s)R2ẋ(s)dsdθ,

(3.42)

and following a similar line as in the proof of Theorem 3.1, we can obtain the following
corollary.

Corollary 3.5. The system (2.1) with all elements unknown in transition rate matrix (2.3) is
stochastically stable if there exist positive definite matrices P, Q1, Q2, R1 > 0, and R2 > 0 and
any matrices Nk(k = 1, . . . , 4) with appropriate dimensions satisfying the following linear matrix
inequalities:

χi =

⎛

⎜⎜
⎝

χi11 χi12 χi13 χi14
	 χi22 χi23 χi24
	 	 χi33 χi34
	 	 	 χi44

⎞

⎟⎟
⎠ < 0, (3.43)

with

χi11 = PAi +AT
i P +Q1 +N1Ai +AT

i N
T
1 + τ1iR1,

χi12 = −N1 +AT
i N

T
2 ,

χi13 =N1Bi +AT
i N

T
3 + PBi,

χi14 =N1Ci +AT
i N

T
4 + PCi,

χi22 = −N2 −NT
2 +Q2 + τ2iR2,

χi23 =N2Bi −NT
3 ,

χi24 =N2Ci −NT
4 ,

χi33 =N3Bi + BTi N
T
3 −Q1,

χi34 =N3Ci + BTi N
T
4 ,

χi44 =N4Ci + CT
i N

T
4 −Q2.

(3.44)



Abstract and Applied Analysis 15

4. Extension to Uncertain Neutral Markov Jump Systems

In this section, we will consider the uncertain neutral Markov jump systems with partially
unknown transition probabilities as follows:

ẋ(t) − C(rt)ẋ(t − τ2(rt)) = (A(rt) + ΔA(rt))x(t) + (B(rt) + ΔB(rt))x(t − τ1(rt)). (4.1)

A(rt), B(rt) are known mode-dependent constant matrices with appropriate dimensions,
while ΔA(rt), ΔB(rt) are the time-varying but norm-bounded uncertainties satisfying

(
ΔA(rt) ΔB(rt)

)
= LrtFrt(t)

(
H1(rt) H2(rt)

)
, (4.2)

where Lrt ,H1(rt), and H2(rt) are known mode-dependent matrices with appropriate
dimensions, and Frt(t) is the time-varying unknown matrix function with Lebesgue norm
measurable elements satisfying FTrt(t)Frt(t) ≤ I.

Theorem 4.1. The uncertain neutral markovian jump system (4.1) with a partly unknown transition
rate matrix (2.3) is stochastically stable if there exist matrices P̃i > 0, Q̃1i > 0, Q̃2i > 0, R̃1 > 0, and
R̃2 > 0 and any matrices W̃i = W̃T

i , M̃i = M̃T
i , S̃i = S̃Ti , F̃k, G̃k, and Ñk(k = 1, . . . , 6) with

appropriate dimensions satisfying the following linear matrix inequalities:

φ̃i =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

φ̃i11 φ̃i12 φ̃i13 φ̃i14 HT
1i P̃iLi + Ñ1Li

	 φ̃i22 φ̃i23 φ̃i24 0 Ñ2Li
	 	 φ̃i33 φ̃i34 HT

2i Ñ3Li
	 	 	 φ̃i44 0 Ñ4Li
	 	 	 	 −I 0
	 	 	 	 	 −I

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

< 0, ∀j ∈ Ui
uk if i ∈ Ui

k, (4.3)

ψ̃i =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

ψ̃i11 ψ̃i12 ψ̃i13 ψ̃i14 HT
1i P̃iLi + Ñ1Li

	 ψ̃i22 ψ̃i23 ψ̃i24 0 Ñ2Li
	 	 ψ̃i33 ψ̃i34 HT

2i Ñ3Li
	 	 	 ψ̃i44 0 Ñ4Li
	 	 	 	 −I 0
	 	 	 	 	 −I

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

< 0, ∀j ∈ Ui
uk if i ∈ Ui

uk, (4.4)
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∑

j∈Ui
k

λijQ̃1j +
∑

j∈Ui
k

λijτ1j R̃1 − R̃1 − λikQ̃1j − λikτ1j R̃1 ≤ 0, ∀j ∈ Ui
uk if i ∈ Ui

k, (4.5)

∑

j∈Ui
k

λijQ̃1j +
∑

j∈Ui
k

λijτ1j R̃1 − R̃1 + λidQ̃1i − λidQ̃1j − λikQ̃1j

+ λidτ1iR̃1 − λidτ1j R̃1 − λikτ1j R̃1 ≤ 0, ∀j ∈ Ui
uk if i ∈ Ui

k,

(4.6)

∑

j∈Ui
k

λijQ̃2j +
∑

j∈Ui
k

λijτ2j R̃2 − R̃2 − λikQ̃2j − λikτ2j R̃2 ≤ 0, ∀j ∈ Ui
uk if i ∈ Ui

k, (4.7)

∑

j∈Ui
k

λijQ̃2j +
∑

j∈Ui
k

λijτ2j R̃2 − R̃2 + λidQ̃2i − λidQ̃2j − λikQ̃2j

+ λidτ2iR̃2 − λidτ2j R̃2 − λikτ2j R̃2 ≤ 0, ∀j ∈ Ui
uk if i ∈ Ui

k,

(4.8)

P̃j − W̃i ≤ 0, j ∈ Ui
uk, j /= i, (4.9)

P̃j − W̃i ≥ 0, j ∈ Ui
uk, j = i, (4.10)

with

φ̃i11 = P̃iAi +AT
i P̃i +

∑

j∈Ui
k

λij
(
P̃j −Wi

)
+ Q̃1i + Ñ1Ai +AT

i Ñ
T
1 + τ1iR̃1,

φ̃i12 = −Ñ1 +AT
i Ñ

T
2 ,

φ̃i13 = Ñ1Bi +AT
i Ñ

T
3 + P̃iBi,

φ̃i14 = Ñ1Ci +AT
i Ñ

T
4 + P̃iCi,

φ̃i22 = −Ñ2 − ÑT
2 + Q̃2i + τ2iR̃2,

φ̃i23 = Ñ2Bi − ÑT
3 ,

φ̃i24 = Ñ2Ci − ÑT
4 ,

φ̃i33 = Ñ3Bi + BTi Ñ
T
3 − Q̃1i +

∑

j∈Ui
k

λijτ1j Q̃1i − λikτ1j Q̃1i,

φ̃i34 = Ñ3Ci + BTi Ñ
T
4 ,

φ̃i44 = Ñ4Ci + CT
i Ñ

T
4 − Q̃2i +

∑

j∈Ui
k

λijτ2j Q̃2i − λikτ2j Q̃2i,

ψ̃i33 = Ñ3Bi + BTi Ñ
T
3 − Q̃1i +

∑

j∈Ui
k

λijτ1j Q̃1i + λidτ1iQ̃1i − λidτ1j Q̃1i − λikτ1j Q̃1i,

ψ̃i44 = Ñ4Ci + CT
i Ñ

T
4 − Q̃2i +

∑

j∈Ui
k

λijτ2j Q̃2i + λidτ2iQ̃2i − λidτ2j Q̃2i − λikτ2j Q̃2i,
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ψ̃i11 = φ̃i11, ψ̃i12 = φ̃i12, ψ̃i13 = φ̃i13, ψ̃i14 = φ̃i14,

ψ̃i22 = φ̃i22, ψ̃i23 = φ̃i23, ψ̃i24 = φ̃i24, ψ̃i34 = φ̃i34,

(4.11)

and λi
d
is a given lower bound for the unknown diagonal element.

Proof. φ̃i < 0 can be written as

φ̃i = φi + D
T
i Fi(t)G

T
i + GiF

T
i (t)Di < 0, (4.12)

where

G
T
i =
(
LTi Pi + L

T
i N

T
1 LTi N

T
2 LTi N

T
3 LTi N

T
4

)
,

Di =
(
H1i 0 H2i 0

)
,

(4.13)

and φi are defined in Theorem 3.2. According to the approach in [40]with Lemma 2.4 in [41],
there exists a scalar ε such that (4.12) are equivalents to

ϕ̃i = εϕi + ε2DT
i Di + GiG

T
i < 0. (4.14)

Introducing new variables P̃i = εPi, Q̃1i = εQ1i, Q̃2i = εQ2i, R̃1 = εR1, R̃2 = εR2,
W̃i = εWi, and Ñk = εNk(k = 1, . . . , 4), and with Schur’s complement [42], yields inequalities
(4.3). Similarly, it concludes (4.4) with the same proof. On the other hand, with the same
variables substitution, we note that pre- and postmultiplying, respectively, (3.16)–(3.21) by a
scalar ε yield (4.5)–(4.10), which completes this proof.

Remark 4.2. It should be mentioned that Theorem 4.1 is an extension of (2.1) to uncertain
neutral markovian jump systems (4.1) with incomplete transition descriptions. In fact, this
technology is frequently adopted in dealing with the robust stability analysis of uncertain
systems.

5. Examples

In order to show the effectiveness of the approaches presented in the above sections, two
numerical examples are provided.

Example 5.1. Consider the MJLS (2.1) with four operation modes whose state matrices are
listed as follows:

A1 =
(−1.15 0

0 −1.5
)
, A2 =

(−3.15 0
0 −7.1

)
,
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A3 =
(−1.38 0

0 −1.8
)
, A4 =

(−2.95 0
0 −3.65

)
,

B1 =
(
0.02 −0.02
0.04 −0.05

)
, B2 =

(−0.05 −0.06
0.07 −0.07

)
,

B3 =
(

0.08 −0.08
−0.03 0.06

)
, B4 =

(
0.07 −0.05
0.09 0.03

)
,

C1 =
(
0.29 0
0 0.36

)
, C2 =

(
0.35 0
0 −0.07

)
,

(5.1)

C3 =
(
0.03 0
0 0.06

)
, C4 =

(
0.28 0.01
0.02 0.07

)
. (5.2)

The partly transition rate matrix Π is considered as

Case I : Π =

⎡

⎢⎢
⎣

−1.3 0.2 ? ?
? ? 0.3 0.3
0.6 ? −1.5 ?
0.4 ? ? ?

⎤

⎥⎥
⎦, Case II : Π =

⎡

⎢⎢
⎣

−1.3 0.2 0.6 0.5
0.2 −0.8 0.3 0.3
0.6 0.7 −1.5 0.2
0.4 0.1 0.4 −0.9

⎤

⎥⎥
⎦. (5.3)

Our purpose here is to check the stability of the above system for the two different
cases of transition probabilities. For Case I, it is clear to see that λ22 and λ44 are not valued,
one can set λ2

d
= −0.8, λ2

d
= −0.9, and let τ12 = 1.1000, τ13 = 0.8000, τ14 = 0.9900, τ21 =

τ11, τ22 = τ12, τ23 = τ13, and τ24 = τ14. Solving the inequalities in Theorem 3.2 using LMI
toolbox, the maximum of the time delay τ11 can be computed as τ11 = 1.1210. However, in
Case II, the maximum of the time delay τ11 can be computed as τ11 = 2.0530 by Theorem 3.1.
It is easily seen that the more transition probabilities knowledge we have, the larger the
maximum of delay can be obtained for ensuring stability. This shows the trade-off between
the cost of obtaining transition probabilities and the system performance.

Furthermore, when the transition probabilities are not fully known, as the delay for
one of the subsystems decreases, the maximum of other delays may increase. However, when
all transition probabilities are fully known, the conclusion may be on the opposite in some
interval. In fact, the above observation is in accordance with the actual. Then, we assume
that λ2

d
= −0.8, λ2

d
= −0.9, and let τ12 = 1.1000, τ14 = 0.9900, τ21 = τ11, τ22 = τ12, τ23 = τ13, and

τ24 = τ14, τ13 be different with τ11, andwith the same computation in Theorem 3.1, as shown in
Table 1. However, just according to the approach of Theorem 3 in [32], not introducing some
other free matrices and some other skills, we cannot find the feasible solutions which contain
time delay to verify the stability of the system. Therefore, this example shows that the stability
criterion in this paper gives much less conservative delay-dependent stability conditions.
This example also shows that the approach presented in this paper is effectiveness.
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Table 1: The maximal allowable delays τ11 of Example 5.1 for different values of τ12 in a different case.

Case I II
τ13 0.80 0.75 0.70 0.65 0.60 0.75 0.80 0.85 0.90 0.95
τ11 1.1210 1.1960 1.2710 1.3460 1.4210 1.9280 2.0530 2.1780 2.3030 2.4279

Example 5.2. Consider the above MJLS in Example 5.1 with partially unknown transition
probabilities of Case I, and the uncertain structure matrices are described by (4.2) where

L1 =
(
0.1
0.2

)
, L2 =

(
0.2
−0.4
)
, L3 =

(
0.4
0.3

)
, L4 =

(
0.25
0.27

)
,

H11 =
(
0.72 1.14

)
, H12 =

(
1.22 1.66

)
, H13 =

(
1.41 −1.13), H14 =

(−1.39 1.63
)
,

H21 =
(−1.11 1.32

)
, H22 =

(
1.31 1.14

)
, H23 =

(
1.27 1.15

)
, H24 =

(−1.26 1.37
)
.

(5.4)

In this case, we check the robust stability result provided by Theorem 4.1. One can also set
λ2
d
= −0.8, λ2

d
= −0.9, and let τ12 = 1.1000, τ13 = 0.7500, τ14 = 0.9900, τ21 = τ11, τ22 = τ12, τ23 = τ13,

and τ24 = τ14. Solving the inequalities in Theorem 4.1 by using LMI toolbox, the maximum
of the time delay τ11 can be computed as τ11 = 1.0892. Some of the feasible solutions can be
obtained as follows:

P1 =
(

6.6762 −1.8338
−1.8338 9.5418

)
, P2 =

(
6.6930 −1.8283
−1.8283 9.5446

)
,

P3 =
(
10.7916 −5.0166
−5.0166 12.0252

)
, P4 =

(
10.7923 −5.0178
−5.0178 12.0274

)
,

W1 =
(

10.7928 −270.5249
260.4880 12.0285

)
, W2 =

(
6.6915 371.7539

−375.4115 9.5439

)
,

W3 =
(

10.7943 82.9434
−92.9861 12.0338

)
, W4 =

(
10.7920 −212.1720
202.1374 12.0265

)
,

(5.5)

N4 =
(−0.3069 0.1342

0.0548 0.1402

)
. (5.6)

In a word, this example shows that the robust stability condition of Theorem 4.1 is feasible. It
is also approved that the approach provided in this paper is effectiveness.

Example 5.3. Consider the MJLS (2.1) with two operation modes whose state matrices are
listed as follows:

A1 =
(−2.16 0.05
−0.15 −1.35

)
, A2 =

(−3.13 −0.19
0.21 −2.21

)
, B1 =

(
0.22 −0.02
0.54 −0.05

)
,

B2 =
(
0.43 −0.16
0.27 1.07

)
, C1 =

(−0.08 −0.06
0.03 0.04

)
, C2 =

(
0.05 0.31
0.23 −0.06

)
.

(5.7)
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The partly transition rate matrix Π is considered as

Π =
[
? ?
? ?

]
. (5.8)

The above matrix (5.8) implies that systems (2.1) with all transition probabilities are
not known, which viewed the systems as switched systems with arbitrary switching. Given
that τ11 = 2.4279, τ12 = 1.1000, τ13 = 0.95, τ14 = 0.9900, τ21 = τ11, τ22 = τ12, τ23 = τ13, and
τ24 = τ14, according to the approach of Theorem 3.2, we cannot find the feasible solutions.
However, using the Matlab LMI toolbox, we solve the LMI in Corollary 3.5, and the feasible
solutions can be obtained as follows:

P =
(
15.9364 0.7491
0.7491 11.2785

)
, R1 =

(
2.7619 0.2382
0.2382 1.5829

)
,

R2 =
(
0.9940 0.0974
0.0974 0.5010

)
, Q1 =

(
6.8645 0.3173
0.3173 7.3064

)
, Q2 =

(
4.3109 0.1752
0.1752 3.8836

)
.

(5.9)

For the case of all transition probabilities that are unknown, this example also shows that
Corollary 3.5 is less conservative than Theorem 3.2 on the stability analysis for the neutral
markovian jump system.

6. Conclusion

The delay-dependent stability for neutral markovian jump systems with partly known
transition probabilities has been investigated. Based on a new class of stochastic Lyapunov-
Krasovskii functionals constructed, and combined with the technique of analysis for matrix
inequalities, some new stability criteria are obtained. The main contribution of this paper
contains the following two-fold: one is the extension of delay-dependent stability conditions
for markovian jump delay systems to markovian neutral jump systems; the other is the new
method presented to decrease the conservative brought by the markovian jump with partly
known transition probabilities. The future work is to investigate the systems with mode-
dependent interval mixed time delays and the systems with unsynchronised control input.
Three examples have shown the effectiveness of the conditions presented in this paper.

Nomenclature

Rn: n-dimensional real space
Rm×n: Set of all realm by nmatrices
xT or AT : Transpose of vector x (or matrix A)
P > 0: (P < 0, resp.) Matrix P is symmetric positive (negative, resp.) definite
P ≥ 0: (P ≤ 0, resp.)Matrix P is symmetric positive (negative, resp.) semidefinite
	: The elements below the main diagonal of a symmetric block matrix
xt(θ): x(t + θ), θ ∈ [−τ, 0].
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