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The study of precise large deviations of random sums is an important topic in insurance and finan-
ce. In this paper, extended precise large deviations of random sums in the presence of END struc-
ture and consistent variation are investigated. The obtained results extend those of Chen and
Zhang (2007) and Chen et al. (2011). As an application, precise large deviations of the prospective-
loss process of a quasirenewal model are considered.

1. Introduction

In the risk theory, heavy-tailed distributions are often used to model large claims. They play
a key role in some fields such as insurance, financial mathematics, and queueing theory. We
say that a distribution function F belongs to the class C if

lim
y↘1

lim inf
x→∞

F
(
xy
)

F(x)
= 1 or equivalently lim

y↗1
lim sup
x→∞

F
(
xy
)

F(x)
= 1. (1.1)

Such a distribution function F is usually said to have a consistently varying tail. The heavy-
tailed subclass C was also studied by Cline and Samorodnitsky [1] who called it “intermedi-
ate regular variation.” Another well-known class is called the dominated variation class (de-
noted by D). A distribution function F supported on (−∞,∞) is in D if and only if

lim sup
x→∞

F
(
xy
)

F(x)
< ∞ (1.2)
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for any 0 < y < 1 (or equivalently for some 0 < y < 1). For more details of other heavy-tailed
subclasses (e.g., R,S,L, and so on) and their relations, we refer the reader to [2] or [3].

Throughout this paper, let {Xk, k = 1, 2, . . .} be a sequence of real-valued random varia-
bles with common distribution function 1 − F(x) = F(x) ∈ C and finite mean μ. Let {N(t),
t ≥ 0} be a nonnegative integer valued counting process independent of {Xk, k = 1, 2, . . .}with
mean function λ(t) = EN(t), which tends to infinity as t → ∞. In insurance and finance,
{Xk, k = 1, 2, . . .} and {N(t), t ≥ 0} always denote the claims and claim numbers respectively.
Hence, randomly indexed sums (random sums), which denote the loss process of the insurer
during the period [0, t], can be written as

SN(t) =
N(t)∑

k=1

Xk, t ≥ 0. (1.3)

Recently, for practical reasons, precise large deviations of random sumswith heavy tails
have received a remarkable amount of attention. The study of precise large deviations is
mainly to describe the deviations of a random sequence or a stochastic process away from its
mean. The mainstream research of precise large deviations of SN(t) focuses on the study of the
asymptotic relation

P
(
SN(t) − μλ(t) > x

) ∼ λ(t)F(x), (1.4)

which holds uniformly for some x-region D(t) as t → ∞. The study of precise large devia-
tions of random sums was initiated by Klüppelberg and Mikosch [4], who presented several
applications in insurance and finance. For some latest works, we refer the reader to [2, 3, 5–
11], among others.

In this paper, we are interested in the deviations of random sums SN(t) away from
mλ(t)with any fixed real number m. We aim at proving the following asymptotic relation:

P
(
SN(t) −mλ(t) > x

) ∼ λ(t)F
(
x +
(
m − μ

)
λ(t)
)

(1.5)

and the uniformity of (1.5). That is to say, in which x-region D(t) as t → ∞ (1.5) holds uni-
formly. It is interesting that (1.5) reduces to (1.4)withm replaced by μ. Hence, we call (1.5) the
extended precise large-deviation probabilities. More interestingly, settingm = 0 and replacing
Xk with Xk − (1 + δ)μ in (1.5), where β denotes the safety loading coefficient, now (1.5) re-
duces to precise large-deviation probabilities for prospective-loss process. About precise large
deviations for prospective-loss process, we refer the reader to [5].

The basic assumption of this paper is that {Xk, k = 1, 2, . . .} is extended negatively de-
pendent (END). The END structure was firstly introduced by Liu [12].

Definition 1.1. One calls random variables {Xk, k = 1, 2, . . .} END if there exists a constant
M > 0 such that

P(X1 ≤ x1, . . . , Xn ≤ xn) ≤ M
n∏

i=1

P(Xi ≤ xi), (1.6)

P(X1 > x1, . . . , Xn > xn) ≤ M
n∏

i=1

P(Xi > xi) (1.7)

hold for each n = 1, 2, . . . , and all x1, . . . , xn.
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Recall that {Xk, k = 1, 2, . . .} are called ND if both (1.6) and (1.7) hold withM = 1; they
are called positively dependent (PD) if inequalities (1.6) and (1.7) hold both in the reverse dir-
ection with M = 1. According to Liu’s [12] interpretation, an ND sequence must be an END
sequence. On the other hand, for some PD sequences, it is possible to find a corresponding
positive constant M such that (1.6) and (1.7) hold. Therefore, the END structure is substan-
tially more comprehensive than the ND structure in that it can reflect not only a negative de-
pendence structure but also a positive one to some extent.

Under the assumption that {Xk, k = 1, 2, . . .} is an ND sequence, Liu [6] and Chen and
Zhang [7] investigated precise large deviations of random sums SN(t) of nonnegative ran-
dom variables and real-valued random variables, respectively. For a slightly more general de-
pendence of END structure, Chen et al. [11] obtained precise large deviations of random sums
SN(t) of nonnegative random variables and random sums SNt,c =

∑N(t)
k=1 (Xk + c) of real-valued

random variables with mean zero centered by a constant c. Up to now, to the best of our
knowledge, little is known about extended precise large deviations of random sums in the
presence of END structure and heavy tails. Our obtained results extend those of Chen and
Zhang [7] and Chen et al. [11].

The rest of this paper is organized as follows. Section 2 gives some preliminaries. Pre-
cise large deviations of random sums in the presence of END real-valued random variables
are presented in Section 3. In Section 4 we consider precise large deviations of the
prospective-
loss process of a quasirenewal model as an application of our main results.

2. Preliminaries

Throughout this paper, by convention, we denote Sn =
∑n

k=1 Xk. For two positive infinitesi-
mals f(·) and g(·) satisfying

a ≤ lim inf
f(·)
g(·) ≤ lim sup

f(·)
g(·) ≤ b, (2.1)

we write f(·) = O(g(·)) if b < ∞; f(·) = o(g(·)) if b = 0; f(·) � g(·) if b = 1; f(·) � g(·) if a = 1;
f(·) ∼ g(·) if both and write f(·) 
 g(·) if 0 < lim inf(f(·)/g(·)) ≤ lim sup(f(·)/g(·)) < ∞. For
theoretical and practical reasons, we usually equip themwith certain uniformity. For instance,
for two positive bivariate functions f(t, x) and g(t, x), we say that f(t, x) ∼ g(t, x) holds as
t → ∞ uniformly for all x ∈ D(t)/=φ in the sense that

lim
t→∞

sup
x∈D(t)

∣∣∣∣
f(t, x)
g(t, x)

− 1
∣∣∣∣ = 0. (2.2)

For a distribution, set

J+F := inf

{

− logF∗
(
y
)

logy
, y > 1

}

, (2.3)

where F∗(y) = lim infx→∞(F(xy))/F(x)). In the terminology of Tang and Tsitsiashvili [13],
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J+F is called the upper Matuszewska index of F. Clearly, if F ∈ C, then J+F < ∞. It holds for
every p > J+F that

x−p = o
(
F(x)

)
, x −→ ∞. (2.4)

Moreover, J+F ≥ 1 if the distribution F(x) = F(x)1{x≥0} has a finite mean. See [11].
Next we will need some lemmas in the proof of our theorems. From Lemma 2.3 of

Chen et al. [11]with a slight modification, we have the following lemma.

Lemma 2.1. Let {Xk, k = 1, 2, . . .} be a sequence of real-valued END random variables with common
distribution function F. If 0 < μ+ = EX11{X1≥0} < ∞, then, for every fixed ν > 0 and some C =
C(ν) > 0, the inequality

P(Sn > x) ≤ nF

(
x

ν

)
+ C
(n
x

)ν
(2.5)

holds for all n = 1, 2, . . . , and x > 0.

Lemma 2.2 below is a reformulation of Theorem 2.1 of [12], which is one of the main
results in [12].

Lemma 2.2. Let {Xk, k = 1, 2, . . .} be a sequence of real-valued END random variables with common
distribution function F(x) ∈ C and finite mean μ, satisfying

F(−x) = o
(
F(x)

)
as x −→ ∞, E|X1|r1{X1≤0} < ∞ for some r > 1. (2.6)

Then, for any fixed γ > 0, relation

P
(
Sn − nμ > x

) ∼ nF(x), as n −→ ∞, (2.7)

holds uniformly for all x ≥ γn.

3. Main Results and Their Proofs

In this sequel, all limiting relationships, unless otherwise stated, are according to t → ∞. To
state the main results, we need the following two basic assumptions on the counting process
{N(t), t ≥ 0}.

Assumption 3.1. For any δ > 0 and some p > J+F ,

ENp(t)1(N(t)>(1+δ)λ(t)) = O(λ(t)). (3.1)

Assumption 3.2. The relation

P(N(t) ≤ (1 − δ)λ(t)) = o
(
λ(t)F(λ(t))

)
(3.2)

holds for all 0 < δ < 1.
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Remark 3.3. One can easily see that Assumption 3.1 or Assumption 3.2 implies that

N(t)
λ(t)

P−→ 1. (3.3)

See [5, 11].

Theorem 3.4. Let {Xk, k = 1, 2, . . .} be a sequence of END real-valued random variables with com-
mon distribution function F(x) ∈ C having finite mean μ ≥ 0 and satisfying (2.6), and let {N(t), t ≥
0} be a nonnegative integer-valued counting process independent of {Xk, k = 1, 2, . . .} satisfying
Assumption 3.1. Let m be a real number; then, for any γ > (μ − m) ∨ 0, the relation (1.5) holds
uniformly for x ≥ γλ(t).

Theorem 3.5. Let {Xk, k = 1, 2, . . .} be a sequence of END real-valued random variables with com-
mon distribution function F(x) ∈ C having finite mean μ < 0 and satisfying (2.6), and let {N(t), t ≥
0} be a nonnegative integer valued counting process independent of {Xk, k = 1, 2, . . .}.

(i) Assume that {N(t), t ≥ 0} satisfies Assumption 3.1 and m is a real number (regardless of
m ≥ 0 or m < 0), then for any fixed γ > −m ∨ 0, the relation (1.5) holds uniformly for
x ≥ γλ(t).

(ii) Assume that {N(t), t ≥ 0} satisfies Assumption 3.2 andm is a negative real number; then,
for any fixed γ ∈ (μ −m ∨ 0,−m], the relation (1.5) holds uniformly for x ≥ γλ(t).

Remark 3.6. One can easily see that Theorem 3.4 extends Theorem 3.1 of [11]withm replaced
by μ. On the other hand, replacing Xk with Xk − μ + c, setting m = 0, and noticing that
E(Xk − μ + c) = c, (3.4) yields Theorem 4.1(i) of [11].

Remark 3.7. Under the conditions of Theorem 3.5, choosing m = μ, one can easily see that the
relation (1.4) holds uniformly over the x-region x ≥ γλ(t) for arbitrarily fixed γ > 0. Hence,
Theorem 3.5 extends Theorem 1.2 of [7].

Proof of Theorem 3.4. We use the commonly used method with some modifications to prove
Theorem 3.4. The starting point is the following standard decomposition:

P
(
SN(t) −mλ(t) > x

)
=

∞∑

n=1

P(Sn −mλ(t) > x)P(N(t) = n)

=

⎛

⎝
∑

n<(1−δ)λ(t)
+

∑

(1−δ)λ(t)≤n≤(1+δ)λ(t)
+

∑

n>(1+δ)λ(t)

⎞

⎠

× P(Sn −mλ(t) > x)P(N(t) = n)

:= I1(x, t) + I2(x, t) + I3(x, t),

(3.4)

where we choose 0 < δ < 1 such that (γ +m)/(1 + δ) − μ > 0.
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We first deal with I1(x, t). Note that x +mλ(t) − nμ ≥ ((γ +m)/(1 − δ) − μ)n. Thus, as
t → ∞ and uniformly for x ≥ γλ(t), it follows from Lemma 2.2 that

I1(x, t) ∼
∑

n<(1−δ)λ(t)
nF
(
x +mλ(t) − nμ

)
P(N(t) = n)

≤
∑

n<(1−δ)λ(t)
F
(
x +mλ(t) − (1 − δ)μλ(t)

)
nP(N(t) = n)

≤ (1 − δ)λ(t)F
(
x +
(
m − μ

)
λ(t)
)
P(N(t) < (1 − δ)λ(t))

= o
(
λ(t)F

(
x +
(
m − μ

)
λ(t)
))

.

(3.5)

Next, for I2(x, t), noticing that x+mλ(t)−nμ ≥ ((γ+m)/(1+δ)−μ)n, as t → ∞ and uni-
formly for x ≥ γλ(t), Lemma 2.2 yields that

I2(x, t) ∼
∑

(1−δ)λ(t)≤n≤(1+δ)λ(t)
nF
(
x +mλ(t) − nμ

)
P(N(t) = n)

≤ (1 + δ)λ(t)F
(
x +mλ(t) − μ(1 + δ)λ(t)

)
P

(∣∣∣∣
N(t)
λ(t)

− 1
∣∣∣∣ < δ

)

∼ (1 + δ)λ(t)F
(
x +
(
m − μ

)
λ(t) − δμλ(t)

)

≤ (1 + δ)λ(t)F
((

1 − δμ

γ +m − μ

)
(
x +
(
m − μ

)
λ(t)
)
)
.

(3.6)

On the other hand,

I2(x, t) ∼
∑

(1−δ)λ(t)≤n≤(1+δ)λ(t)
nF
(
x +mλ(t) − nμ

)
P(N(t) = n)

≤ (1 − δ)λ(t)F
(
x +mλ(t) − μ(1 − δ)λ(t)

)
P

(∣∣∣∣
N(t)
λ(t)

− 1
∣∣∣∣ < δ

)

∼ (1 − δ)λ(t)F
(
x +
(
m − μ

)
λ(t) + δμλ(t)

)

≤ (1 − δ)λ(t)F
((

1 +
δμ

γ +m − μ

)
(
x +
(
m − μ

)
λ(t)
)
)
.

(3.7)

Finally, to deal with I3(x, t), we formulate the remaining proof into two parts according
to m ≥ 0 and m < 0. In the case of m ≥ 0, setting ν = p in Lemma 2.1 with p > J+F ≥ 1, for suf-
ficiently large t and x ≥ γλ(t), there exists some constant C1 > 0 such that

I3(x, t) ≤
∑

n>(1+δ)λ(t)

P(Sn > x)P(N(t) = n)

≤
∑

n>(1+δ)λ(t)

(
nF

(
x

p

)
+ C1

(n
x

)p)
P(N(t) = n).

(3.8)
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In the case of m < 0, note that 1 +m/γ > 0 since γ > μ −m ≥ −m > 0. Similar to (3.8), for suf-
ficiently large t and x ≥ γλ(t), there exists some constant C2 > 0 such that

I3(x, t) ≤
∑

n>(1+δ)λ(t)

P
(
Sn >

(
1 +m/γ

)
x
)
P(N(t) = n)

≤
∑

n>(1+δ)λ(t)

(

nF

((
1 +m/γ

)
x

p

)

+ C2

(
n

(
1 +m/γ

)
x

)p)

P(N(t) = n).

(3.9)

As a result, by (2.4), as t → ∞ and uniformly for x ≥ γλ(t), both (3.8) and (3.9) yield that

I3(x, t) � F(x)EN(t)1{N(t)>(1+δ)λ(t)} + x−pENp(t)1{N(t)>(1+δ)λ(t)}

≤ o(1)F(x)ENp(t)1{N(t)>(1+δ)λ(t)}

≤ o(1)λ(t)F
(
x +
(
m − μ

)
λ(t)
)
,

(3.10)

where in the last step, we used

F
(
x +
(
m − μ

)
λ(t)
) ≥ F

((

1 +

∣∣m − μ
∣∣

γ

)

x

)

� F(x). (3.11)

Substituting (3.5), (3.6), (3.7), and (3.10) into (3.4), one can see that relation (1.5) holds
by the condition F ∈ C and the arbitrariness of δ.

Proof of Theorem 3.5. (i)We also start with the decomposition (3.4).
For I1(x, t) and I2(x, t), note that x + mλ(t) − nμ ≥ ((γ + m)/(1 + δ) − μ)n since n ≤

(1 + δ)λ(t). Hence, mimicking the proof of Theorem 3.4, we obtain, as t → ∞ and uniformly
for x ≥ γλ(t),

I1(x, t) ∼
∑

n<(1−δ)λ(t)
nF
(
x +mλ(t) − nμ

)
P(N(t) = n)

≤ F(x +mλ(t))
∑

n<(1−δ)λ(t)
nP(N(t) = n)

= o
(
λ(t)F

(
x +
(
m − μ

)
λ(t)
))

,

(3.12)

where, in the last step, we used the relation

F(x +mλ(t)) ≤ F

((
1 +

m

γ

)
x

)
� F(x), (3.13)

F
(
x +
(
m − μ

)
λ(t)
) ≥ F

((

1 +

∣∣m − μ
∣∣

γ

)

x

)

� F(x). (3.14)
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Again, as t → ∞ and uniformly for x ≥ γλ(t),

I2(x, t) ∼
∑

(1−δ)λ(t)≤n≤(1+δ)λ(t)
nF
(
x +mλ(t) − nμ

)
P(N(t) = n)

≤ (1 + δ)λ(t)F
(
x +mλ(t) − μ(1 − δ)λ(t)

)
P

(∣∣
∣∣
N(t)
λ(t)

− 1
∣
∣
∣∣ < δ

)

� (1 + δ)λ(t)F
((

1 +
δμ

γ +m − μ

)
(
x +
(
m − μ

)
λ(t)
)
)
,

I2(x, t) � (1 − δ)λ(t)F
((

1 − δμ

γ +m − μ

)
(
x +
(
m − μ

)
λ(t)
)
)
.

(3.15)

Finally, in I3(x, t), setting ν = p in Lemma 2.1 with p > J+F ≥ 1, by (2.4) and
Assumption 3.1, as t → ∞ and uniformly for x ≥ γλ(t), there exists a constant C2 > 0 such
that

I3(x, t) ≤
∑

n>(1+δ)λ(t)

P
(
Sn >

(
1 +m/γ

)
x
)
P(N(t) = n)

≤
∑

n>(1+δ)λ(t)

(

nF

((
1 +m/γ

)
x

p

)

+ C2

(
n

(
1 +m/γ

)
x

)p)

P(N(t) = n)


 F(x)EN(t)1{N(t)>(1+δ)λ(t)} + x−pENp(t)1{N(t)>(1+δ)λ(t)}

≤ o(1)λ(t)F
(
x +
(
m − μ

)
λ(t)
)
,

(3.16)

where in the last step we also used (3.14). Combining (3.12), (3.15), and (3.16), relation (1.5)
holds by the condition F ∈ C and the arbitrariness of δ.

(ii) We also start with the representation (3.4) in which we choose 0 < δ < 1 such that
(γ +m)/(1 − δ) − μ > 0.

To deal with I1(x, t), arbitrarily choosing γ1 > −m, we split the x-region into two dis-
joint regions as

[
γλ(t),∞) = [γ1λ(t),∞

) ∪ [γλ(t), γ1λ(t)
)
. (3.17)

For the first x-region x ≥ γ1λ(t), noticing that x + mλ(t) − nμ > |μ|n, by Lemma 2.2, it holds
uniformly for all x ≥ γ1λ(t) that

I1(x, t) ∼
∑

n<(1−δ)λ(t)
nF
(
x +mλ(t) − nμ

)
P(N(t) = n)

≤ (1 − δ)λ(t)F(x +mλ(t))P(N(t) ≤ (1 − δ)λ(t))

≤ (1 − δ)λ(t)F(x)P(N(t) ≤ (1 − δ)λ(t))
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≤ (1 − δ)λ(t)F
(
x
(
m − μ

)
λ(t)
)
P(N(t) ≤ (1 − δ)λ(t))

= o
(
λ(t)F

(
x +
(
m − μ

)
λ(t)
))

,

(3.18)

where the second step and the before the last before the step can be verified, respectively, as

F(x +mλ(t)) ≤ F

((
1 +

m

γ1

)
x

)
� F(x),

F
(
x +
(
m − μ

)
λ(t)
) ≥ F

((

1 +

∣
∣m − μ

∣
∣

γ1

)

x

)

� F(x).

(3.19)

For the second x-region γλ(t) ≤ x < γ1λ(t), note that

F
(
x +
(
m − μ

)
λ(t)
) ≥ F

((

1 +

∣∣m − μ
∣∣

γ

)

x

)


 F(x) ≥ F
(
γ1λ(t)

) 
 F(λ(t)). (3.20)

Hence, by Assumption 3.2, we still obtain

I1(x, t) ≤ P(N(t) ≤ (1 − δ)λ(t)) = o(1)λ(t)F(λ(t)) � o
(
λ(t)F

(
x +
(
m − μ

)
λ(t)
))

(3.21)

uniformly for all γλ(t) ≤ x < γ1λ(t). As a result, the relation

I1(x, t) = o
(
λ(t)F

(
x +
(
m − μ

)
λ(t)
))

(3.22)

holds uniformly for all x ≥ γλ(t).
For I2(x, t), since γ ∈ (μ −m ∨ 0,−m], it holds that

x +mλ(t) − nμ ≥ (γ +m
)
λ(t) − μn ≥

(
γ +m

1 − δ
− μ

)
n. (3.23)

It follows from Lemma 2.2 that for all x ≥ γλ(t)

I2(x, t) ∼
∑

(1−δ)λ(t)≤n≤(1+δ)λ(t)
nF
(
x +mλ(t) − nμ

)
P(N(t) = n)

≤ (1 + δ)λ(t)F
(
x +mλ(t) − μ(1 − δ)λ(t)

)
P

(∣∣∣∣
N(t)
λ(t)

− 1
∣∣∣∣ < δ

)

∼ (1 + δ)λ(t)F
(
x +
(
m − μ

)
λ(t) + δμλ(t)

)

≤ (1 + δ)λ(t)F
((

1 +
δμ

γ +m − μ

)
(
x +
(
m − μ

)
λ(t)
)
)
.

(3.24)
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Symmetrically,

I2(x, t) � (1 − δ)λ(t)F
((

1 − δμ

γ +m − μ

)
(
x +
(
m − μ

)
λ(t)
)
)
. (3.25)

Finally, in I3(x, t), note that x +mλ(t) − nμ ≥ (γ +m)λ(t) − μn ≥ ((γ +m)/(1 + δ) − μ)n.
Therefore, Lemma 2.2 implies, as t → ∞ and uniformly for x ≥ γλ(t), that

I3(x, t) ∼
∑

n>(1+δ)λ(t)

nF
(
x +mλ(t) − nμ

)
P(N(t) = n)

≤ F
(
x +mλ(t) − μ(1 + δ)λ(t)

) ∑

n>(1+δ)λ(t)

nP(N(t) = n)

≤ F
(
x +
(
m − μ

)
λ(t)
)
EN(t)1(N(t)>(1+δ)λ(t))

= o
(
λ(t)F

(
x +
(
m − μ

)
λ(t)
))

.

(3.26)

Substituting (3.22), (3.24), (3.25), and (3.26) into (3.4) and letting δ ↓ 0, the proof of (ii)
is now completed.

4. Precise Large Deviations of the Prospective-Loss Process of
a Quasirenewal Model

In this section we consider precise large deviations of the prospective-loss process of a quasi-
renewal model, where the quasi-renewal model was first introduced by Chen et al. [11]. It is a
nonstandard renewal model in which innovations, modeled as real-valued random variables,
are END and identically distributed, while their interarrival times are also END, identically
distributed, and independent of the innovations.

Let {Xk, k = 1, 2, . . .} be a sequence of END real-valued random variables with com-
mon distribution function F(x) ∈ C and finite mean μ, satisfying (2.7). Let {N(t), t ≥ 0} be a
quasi-renewal process defined by

N(t) = #

{

n = 1, 2, . . . :
n∑

k=1

Yk ≤ t

}

, t ≥ 0, (4.1)

where {Yk, k = 1, 2, . . .}, independent of {Xk, k = 1, 2, . . .}, form a sequence of END nonneg-
ative random variables with common distribution G nondegenerate at zero and finite mean
1/λ > 0. By Theorem 4.2 of [11], as t → ∞,

N(t)
λt

−→ 1, almost surely. (4.2)
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By Chen et al. [11], for any δ > 0, p > 0, and some b > 1,

ENp(t)1(N(t)>(1+δ)λt) =
∑

n>(1+δ)λt

npP(N(t) = n)

= o(1)
∑

n>(1+δ)λt

bnP(N(t) ≥ n) = o(1),
(4.3)

where in the last step we use (4.10) in [11]. Thus, one can easily see that {N(t), t ≥ 0} satisfies
Assumption 3.1. Assume that {N(t), t ≥ 0} also satisfies Assumption 3.2. Let β > 0 be
the safety loading coefficient. Replacing Xk with Xk − (1 + β)μ and settingm = 0 in Theorems
3.4 and 3.5, then, for any fixed γ > 0, the relation

P

(
N(t)∑

k=1

(
Xk −

(
1 + β

)
μ
)
> x

)

∼ λtF
(
x + βμλt

)
(4.4)

holds uniformly for x ≥ γλt.
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