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Image interpolation, as a method of obtaining a high-resolution image from the corresponding
low-resolution image, is a classical problem in image processing. In this paper, we propose a novel
energy-driven interpolation algorithm employing Gaussian process regression. In our algorithm,
each interpolated pixel is predicted by a combination of two information sources: first is a statistical
model adopted to mine underlying information, and second is an energy computation technique
used to acquire information on pixel properties. We further demonstrate that our algorithm can
not only achieve image interpolation, but also reduce noise in the original image. Our experiments
show that the proposed algorithm can achieve encouraging performance in terms of image
visualization and quantitative measures.

1. Introduction

Image interpolation is a very important aspect of image processing and involves the use
of a known pixel set to produce an unknown pixel set, resulting in an image of higher
resolution [1, 2]. This technique is widely used in remote sensing, aerospace, infrared
imaging, low-light level night imagery, and other fields [3–5]. However, maintaining image
quality during image interpolation is still a difficult issue [6]. To address this, many image
interpolation methods have been proposed. For example, traditional bilinear interpolation
computes the unknown pixel value using the location information between the adjacent
pixels. This technique does not consider the contents of the image, so edge blurring will
occur in the interpolated image [7, 8]. In order to capture image details more clearly, an
artifact-free image upscaling method called ICBI [9] has recently been proposed, which uses



2 Journal of Applied Mathematics

Training Prediction

Statistical
characteristic

Processing
unit

Property

Structure
similarity

Low-resolution
images

High-resolution
images

Energy-driven interpolation using GPR

Energy computationGaussian process
regression

Curvature
continuity

Curvature
enhancement

Isolevel curves smoothing

Adjacent pixels

Figure 1: Overview of our approach for image interpolation.

iterative curvature-based interpolation to obtain a high image quality, but does not take
into account underlying local information between image patches. Local image information
can be mined according to its structural redundancy characteristic, as proposed by Glasner
et al. [10]. This characteristic can lay the foundations for the training and predicting of a
statistical model [11, 12]. A statistical model known as Gaussian process regression (GPR)
was first applied in the reconstruction of high-resolution images in 2011 and has been
shown to be capable of generating an image with sharp edges by extracting the necessary
information from a low-resolution image [13]. However, it should be noted that this method
only uses the local structural information for each pixel’s neighborhood, so it can still generate
unexpected details. To develop the above techniques, we propose here a novel energy-
driven interpolation algorithm employing Gaussian process regression (EGPR) (Figure 1).
This algorithm not only emphasizes the influence of adjacent pixel properties on interpolated
values, but also brings into full play the role of the statistical model.

Our contribution is twofold. Firstly, we propose a framework for both magnification
and deblurring in order to fulfill the interpolation task for low-resolution images with low
noise. Secondly, we demonstrate an energy-driven approach based on the properties of
adjacent pixels within this framework. In addition, we define the processing unit and its
properties for better implementation of the EGPR algorithm.

The rest of the paper is structured as follows. Section 2 discusses GPR. Section 3
illustrates the proposed EGPR algorithm. Section 4 presents experimental work carried out
to demonstrate the effectiveness of our algorithm. Section 5 concludes the paper.

2. Gaussian Process Regression

In recent years, GPR has become a hot issue in the field of machine learning and has attracted
great academic interest [14–16]. It has many advantages, including its rigorous underlying
statistical learning theory, easy regression process implementation, few parameters, and
improved model interpretability [17–19]. As a result of these benefits, it has been used in
many areas [20–23]; however, to the best of our knowledge, it has not yet been fully utilized
in image interpolation. Rasmussen andWilliams [24] defined the Gaussian process and noted
in particular that a Gaussian process is completely specified by its mean and covariance
functions ((2.1) and (2.2), resp.):

μ(x) = E[Y (x)], (2.1)

COV
(
x, x′) = E

[(
Y (x) − μ(x))(Y(x′) − μ(x′))], (2.2)
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where x and x′ are any random variables. In particular, they could represent n-dimensional
input or output vectors. The Gaussian process can be written as follows:

g(x) ∼ GP(μ(x),COV
(
x, x′)). (2.3)

There are a variety of covariance functions, of which one of the most commonly used
is the squared exponential (SE) covariance function

COV
(
g
(
xp
)
, g
(
xq
))

= exp
(
−1
2
∣
∣xp − xq

∣
∣2
)
. (2.4)

In Gaussian processes, the marginal likelihood p(y | X) at a point is very useful and is the
integral of the likelihood multiplied by the prior probability

p
(
y | X) =

∫
p
(
y | g,X)p(g | X)dg. (2.5)

We can rewrite (2.5) as follows:

log p
(
g | X) = −1

2
gTCOV−1g − 1

2
log|COV| − n

2
log 2π. (2.6)

We can make use of Gaussian identities to obtain (2.7), in order to compute the log
marginal likelihood. The conjugate gradients method has been applied to solve this equation.
Using this approach, we can obtain the hyperparameters of the covariance function. Further
details of GPR can be found in [24] as follows:

log p
(
g | X) = −1

2
yT
(
COV(X,X) + σ2

nI
)−1

y − 1
2
log
∣∣∣COV(X,X) + σ2

nI
∣∣∣ − n

2
log 2π. (2.7)

3. The Proposed Algorithm

In this paper, we combine the energy-driven approach with GPR to accomplish the task of
image interpolation. The proposed algorithmmodels low-resolution image data as a function
of a probability distribution that satisfies a local static Gaussian process. This algorithm
framework is shown in Figure 2 and is broadly divided into the training process and
prediction process. Firstly, the GPR model can be established using the low-resolution image
data. Next, this model is used to predict the unknown pixel values of a high-resolution image
by adopting an energy computation approach. Through the above two steps, we produce a
high-quality enlarged image. The process is further clarified by the following:

L′ = d ∗ L, H ′ = L′↑s, H = f ∗H ′, (3.1)

where L andH denote the input low-resolution image with a little noise and the output high-
resolution image, respectively, L′ denotes the noise-free low-resolution image,H ′ denotes the
initial high-resolution image, sdenotes the upsampling factor, and d and f denote the clear
transfer function and energy transfer function, respectively.
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Figure 2: Architecture of the proposed algorithm.

3.1. Training

The following definitions are used in the EGPR algorithm.

Definition 3.1. A given image L is divided into many regions of equal size, and each region
is defined as a processing unit (PU). Each PU is also divided into 3 × 3 overlapping image
patches (the total number isM). The center of each patch is defined as an output vector YTR
of PU, where YTR = (y1, y2, . . . yM)T , while the nearest eight values are defined as an input
vector XTR of PU, where

XTR =

⎧
⎪⎪⎨

⎪⎪⎩

x11, x12 . . . , x18
x21, x22 . . . , x28

. . . .
xM1, xM2 . . . , xM8

⎫
⎪⎪⎬

⎪⎪⎭
. (3.2)

Definition 3.2. Given a total of N pixels in each PU, the pixels are sorted and denoted as
I1, I2 . . . IN . Imax ave, Imin ave, and Iave are defined using the following formulae:

Imax ave =
Top∑

i=1

Ii
Top

, Imin ave =
Below∑

i=1

Ii
Below

, Iave =
N∑

i=1

Ii
N
, (3.3)

where top represents the number of the largest pixels used and below the number of the
smallest pixels used. Then Imax ave, Imin ave, and Iave are called basic properties of PU.

To facilitate the operation of the PU, it is necessary to introduce some properties in
advance.
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Property 1. Given a numberN in each PU, if Imax ave = 0, then pixel value Ii = 0, where i ≤N.

Property 2. Given xij , if xij = a, then its corresponding output vector value is yij = a, where
yij ∈ YTR, i ∈M, j = 1.

Denoising is the first step in the EGPR algorithm, and we use the following formula
(3.4) to obtain noise-free images:

Ii =

{
Ineighbor, (Imax ave − Imin ave)〈θ&Ii〉(Iave + B),
Ii, otherwise,

(3.4)

where θ and B represent empirical values, and Ineighbor represents the adjacent pixel value.
Before applying GPR, we can obtain the particular relationship between the input and

output vectors of PU according to Properties 1 and 2. Pixels with this relationship need not
be included in the following GPR training, so the predicted values can be directly obtained,
saving time and speeding up the EGPR algorithm.

Training plays an important role in the EGPR algorithm, and we adopt a different
approach from that used in [13]. Our algorithm contains two processes: training domain
establishment and GPR model foundation. In the first stage, we search possible training
domains along the four directions of each specific PU. Next, we compute the structural
similarity between directions to determine the definite training domain. Inspired by the
concept of image SSIM, we define the PU structural similarity as follows.

Definition 3.3 (PU structural similarity). Given two processing units P and Q, their structural
similarity is defined as

S(P,Q) =

(
2mPmQ + C1

)(
2ψPQ + C2

)

(
m2
P +m2

Q + C1

)(
ψ2
P + ψ2

Q + C2

) , (3.5)

where C1 and C2 are constants, and the other components are calculated as follows:

mP =
1
N

N∑

i=1

pi, pi ∈ P, mQ =
1
N

N∑

i=1

qi, qi ∈ Q, ψP =

(
1

N − 1

N∑

i=1

(
pi −mp

)2
)1/2

,

ψQ =

(
1

N − 1

N∑

i=1

(
qi −mq

)2
)1/2

, ψPQ =
1

N − 1

N∑

i=1

(
pi −mp

)(
qi −mq

)
.

(3.6)

When the search step count reaches the predefined number, or if the PU structure
similarity falls below a certain value, the first stage is complete. In the second stage, we apply
a Gaussian process prior probability and establish the GPR model with Gaussian noise γ (see
(3.7) below) using the image data from training domains. In (3.7), “GP” denotes a Gaussian
process

y = g(X) + γ, γ ∼ GP
(
0, σ2

n

)
. (3.7)
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(a) Iteration= 50 (b) Iteration= 100

Figure 3: Images obtained after adaptation with different numbers of iterations. In (a), many black points
are observed, each indicating a zero prediction for the pixels. In (b), the black points have been eliminated.

When aiming to achieve high-quality images, the conjugate gradients method is
chosen to obtain the model hyperparameters, including mean, variance, and log marginal
likelihood. Notice that different iteration numbers in the conjugate gradients method may
lead to different prediction accuracies. Figure 3 shows the interpolation images obtained after
50 iterations and 100 iterations, where it can be seen that the latter is better than the former.

3.2. Prediction

Inspired by the ICBI algorithm, we firstly compute the initial pixel value H ′(2x + 1, 2y + 1)
according to the following formulae:

τ1 = I
(
2x + 4, 2y

)
+ I
(
2x + 2, 2y − 2

)
+ I
(
2x, 2y + 4

)
+ I
(
2x − 2, 2y + 2

)
,

τ2 = I
(
2x + 4, 2y + 2

)
+ I
(
2x + 2, 2y + 4

)
+ I
(
2x, 2y − 2

)
+ I
(
2x − 2, 2y

)
,

(3.8)

d1
(
2x + 1, 2y + 1

)
= τ1 + I

(
2x + 2, 2y + 2

)
+ I
(
2x, 2y

) − 3
(
I
(
2x, 2y + 2

)
+ I
(
2x + 2, 2y

))
,

d2
(
2x + 1, 2y + 1

)
= τ2 + I

(
2x + 2, 2y

)
+ I
(
2x, 2y + 2

) − 3
(
I
(
2x, 2y

)
+ I
(
2x + 2, 2y + 2

))
,

(3.9)

H ′(2x + 1, 2y + 1
)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2
(
I
(
2x, 2y

)
+ I
(
2x + 2, 2y + 2

))
, d1
(
2x + 1, 2y + 1

)
< d2

(
2x + 1, 2y + 1

)
,

1
2
(
I
(
2x + 2, 2y

)
+ I
(
2x, 2y + 2

))
, d1
(
2x + 1, 2y + 1

) ≥ d2
(
2x + 1, 2y + 1

)
.

(3.10)
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However, the pixel value obtained is only a roughly estimated value and needs further
refinement. Following [9], we establish (3.11) to calculate the energy of each interpolated
pixel, and the initial estimate can be modified accordingly,

E
(
2x + 1, 2y + 1

)
= cEc

(
2x + 1, 2y + 1

)
+ eEe

(
2x + 1, 2y + 1

)
+ iEi

(
2x + 1, 2y + 1

)
, (3.11)

where c, e, and i are chosen to adjust the energy contributions from the three parts.
Ec represents the curvature continuity energy and can be computed with the following

formulae:

σ1 =
∣∣d1
(
2x, 2y

) − d1
(
2x + 1, 2y + 1

)∣∣ +
∣∣d2
(
2x, 2y

) − d2
(
2x + 1, 2y + 1

)∣∣,

σ2 =
∣∣d1
(
2x, 2y

) − d1
(
2x + 1, 2y − 1

)∣∣ +
∣∣d2
(
2x, 2y

) − d2
(
2x + 1, 2y − 1

)∣∣,

σ3 =
∣∣d1
(
2x, 2y

) − d1
(
2x − 1, 2y + 1

)∣∣ +
∣∣d2
(
2x, 2y

) − d2
(
2x − 1, 2y + 1

)∣∣,

σ4 =
∣∣d1
(
2x, 2y

) − d1
(
2x − 1, 2y − 1

)∣∣ +
∣∣d2
(
2x, 2y

) − d2
(
2x − 1, 2y − 1

)∣∣,

Ec
(
2x + 1, 2y + 1

)
= α1σ1 + α2σ2 + α3σ3 + α4σ4,

(3.12)

where αi(i = 1 . . . 4) are weight values (see (3.13)), and d1 and d2 have the same meanings as
above. θ is set as the threshold

αi =

{
1 ifσi < θ,
0, otherwise.

(3.13)

The second energy term Eb represents the curvature enhancement energy and can be
computed by

Ee
(
2x + 1, 2y + 1

)
=
∣∣d2
(
2x + 1, 2y + 1

)∣∣ − ∣∣d1
(
2x + 1, 2y + 1

)∣∣. (3.14)

The third energy term, Ei, represents the isolevel curves smoothing energy and can be
computed with

Ei
(
2x + 1, 2y + 1

)
= D
(
2x + 1, 2y + 1

)
I
(
2x + 1, 2y + 1

)
, (3.15)
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where D(2x + 1, 2y + 1) can be computed as follows:

D
(
2x + 1, 2y + 1

)
=

2d3
(
2x + 1, 2y + 1

)
d4
(
2x + 1, 2y + 1

)
d5
(
2x + 1, 2y + 1

)

d3
(
2x + 1, 2y + 1

)2 + d4
(
2x + 1, 2y + 1

)2

+
−d3
(
2x + 1, 2y + 1

)2
d2 − d22d3

(
2x + 1, 2y + 1

)

d3
(
2x + 1, 2y + 1

)2 + d4
(
2x + 1, 2y + 1

)2 ,

d3
(
2x + 1, 2y + 1

)
=

1
2
(
I
(
2x, 2y

) − I(2x + 2, 2y + 2
))
,

d4
(
2x + 1, 2y + 1

)
=

1
2
(
I
(
2x, 2y + 2

) − I(2x + 2, 2y
))
,

d5
(
2x + 1, 2y + 1

)
=

1
2
(
I
(
2x + 1, 2y − 1

)
+ I
(
2x + 1, 2y + 3

)

−I(2x − 1, 2y + 1
) − I(2x + 3, 2y + 1

))
.

(3.16)

Suppose that the low-resolution image Lij is of sizem × n and that it is changed to the
corresponding interpolated imageHij ′ of size ((m× 2scale)− (2scale − 1))× ((n× 2scale)− (2scale −
1)), where “scale” denotes the magnification factor. Then we use the nearest interpolation
algorithm for the missing pixels in order to obtain the image Hij ′ of size (m × 2scale) × (n ×
2scale).

Similarly, we partitionHij ′ into overlapping processing units. The eight adjacent pixels
of each pixel are treated as GPR model test input data based on the model M which was
obtained from the training process. Note that if PU has Property 1 or Property 2, then we
can directly obtain the corresponding pixel values. Otherwise, we capture the prediction
distribution of unknown pixels in the initial high-resolution image. The joint distribution
of the training domain output y and the test output f

′
is given by the following equation:

[
y
g ′

]
∼ GP

(
0,
[
COV(X,X) + σ2

nI,COV(X,X′)
COV(X′, X),COV(X′, X′)

])
, (3.17)

where X denotes the GPR training data matrix, X′ is the test matrix, and COV(X,X′) is the
n× nmatrix of covariances. Therefore, we can derive the predictive distribution based on the
obtained modelM:

g ′ | X, y,X′ ∼ GP
(
g ′, V

(
g ′
))
,

g ′ = COV
(
X′, X

)[
COV(X,X) + σ2

nI
]−1

y,

V
(
g ′
)
= COV

(
X′, X′) − COV

(
X′, X

)[
COV(X,X) + σ2

nI
]−1

COV
(
X,X′).

(3.18)

During the prediction of high-resolution image pixels, two rules should be obeyed.
Firstly, the PU divided by the initial high-resolution image should correspond to that divided
by the low-resolution image. Secondly, the gradient algorithm should satisfy the common
positive definite matrix. If not, it will lead to a zero prediction, and the prediction value
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(a) Bilinear (b) GPR (c) ICBI (d) EGPR

(e) Bilinear (f) GPR (g) ICBI (h) EGPR

Figure 4: Comparison of images obtained using four methods, with scale= 1. Parts (a)–(d) show image 1.
Parts (e)–(h) show image 2.

will need modifying. The modification method can be utilized to maintain the original
interpolated pixel value. Finally, we combine all the processing units together in a smooth
manner to obtain the high-resolution images without noise.

4. Experimental Results and Discussion

In this section, we compare the experimental results obtained using the proposed algorithm
with those obtained using the bilinear algorithm, GPR algorithm [13], and ICBI algorithm
[9]. Each algorithm was run in MATLAB. In order to evaluate algorithm performance, we
first downsampled original high-quality images to acquire low-resolution images. Then we
enlarged these low-resolution images by utilizing the different interpolation algorithms and
compared the enlarged images with the original high-quality images. In all experiments,
we set the PU size to 30 × 30, but this may be increased according to the magnification
factor. At the same time, we used zero mean and square exponential functions as the
respective mean and covariance functions in the EGPR. The covariance function required two
hyperparameters: a characteristic length scale, the default value of which was 0.21, and the
standard deviation of the signal, the default value of which was 0.08. In addition, to achieve
color image interpolation, we trained and predicted the GPRmodel separately for each of the
R, G, and B channels.

Figure 4 shows the interpolation results from the four algorithms when “scale” was set
as 1. Figures 4(a)–4(d) are comparisons of image 1, and Figures 4(e)–4(h) are comparisons
of image 2. In the enlarged red-bordered region, it can be seen that the bilinear method
introduces jaggy effects, the GPR method reduces these jaggy effects, and the ICBI method
achieves a clear edge but is still a little blurry. By employing the energy computation based
on properties of adjacent pixels, our new method generates a clearer image without noise.

Similarly, Figures 5 and 6 demonstrate the interpolation results with scales of 2 and
3, respectively. From these figures, it can be seen that our method achieved the clearest
and smoothest enlarged image of the four methods tested, for example, along edges on the
root hand in Figure 6(h). Moreover, the advantages of our proposed algorithm become more
enhanced at greater enlargement factors.
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(a) Bilinear (b) GPR (c) ICBI (d) EGPR

(e) Bilinear (f) GPR (g) ICBI (h) EGPR

Figure 5: Comparison of images obtained using four methods, with scale= 2. Parts (a)–(d) show image 3.
Parts (e)–(h) show image 4.

(a) Bilinear (b) GPR (c) ICBI (d) EGPR

(e) Bilinear (f) GPR (g) ICBI (h) EGPR

Figure 6: Comparison of images obtained using four methods, with scale= 3. Parts (a)–(d) show image 5.
Parts (e)–(h) show image 6.

Table 1: Comparison of PSNR for the four interpolation methods when applied to test images.

Image Scale Bilinear GPR ICBI EGPR
Image 1 1 32.9940 33.2792 33.3456 33.3986
Image 2 1 30.6314 30.7861 31.3684 31.4594
Image 3 2 29.5738 29.4194 29.7173 29.7213
Image 4 2 27.7717 27.4767 27.8485 27.8625
Image 5 3 23.4038 24.4366 24.7153 24.7171
Image 6 3 24.3122 25.1477 25.6880 25.6909

Table 2: Comparison of RMS for the four interpolation methods when applied to test images.

Image Scale Bilinear GPR ICBI EGPR
Image 1 1 16.4437 15.8419 15.7032 15.6004
Image 2 1 21.1046 20.3410 19.1890 18.9614
Image 3 2 24.9225 24.8861 24.4329 24.4191
Image 4 2 31.0516 32.1427 30.6882 30.6118
Image 5 3 50.8161 44.8762 43.3017 43.2633
Image 6 3 45.9833 41.5720 39.0571 39.0412
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Table 3: Comparison of MSSIM for the four interpolation methods when applied to test images.

Image Scale Bilinear GPR ICBI EGPR
Image 1 1 0.936 0.937 0.938 0.940
Image 2 1 0.946 0.947 0.953 0.955
Image 3 2 0.905 0.906 0.909 0.910
Image 4 2 0.812 0.808 0.815 0.816
Image 5 3 0.818 0.837 0.850 0.851
Image 6 3 0.857 0.865 0.878 0.879

To further validate our algorithm, we also provide objective measurements. Peak
signal-to-noise ratio (PSNR) and root mean square (RMS) error are traditional quantitative
measures of accuracy, and by comparing their values for the above images, we can conclude
that the proposed EGPR algorithm yields interpolated pixel values that are much closer
to their original high-quality values than those obtained with the bilinear algorithm, GPR
algorithm, and ICBI algorithm. Tables 1 and 2 summarize the PSNR and RMS values for
each algorithm at different magnification factors and for each image. It can be observed that
the PSNR values for images obtained using the EGPR algorithm are the highest, and those
using the bilinear algorithm are the lowest. Further, RMS values for images obtained using
the EGPR algorithm are the lowest, and those using the bilinear algorithm are the highest.
Overall, it can be clearly demonstrated that our new method outperforms the other three
algorithms.

MSSIM [25] is an image quality assessment index which assesses the image visibility
quality from an image formation point of view under the assumption of the correlation
between human visual perception and image structural information. We compared the
MSSIM obtained using the EGPR algorithm at different scale values with the corresponding
values obtained using the bilinear, GPR, and ICBI algorithms, as shown in Table 3. It is noted
that our new algorithm achieves a greater MSSIM than the other three algorithms, and the
results show that the images obtained using our algorithm are closer to the original high-
resolution images in terms of image structure similarity.

In addition, Figure 7 clearly demonstrates the quantitative assessment results for each
image at different magnification levels. In this figure, the blue dots represent the quality
scores of the images obtained using the comparison algorithms, and the red dots represent
those obtained using our algorithm. Our interpolation algorithm is notably superior to the
other algorithms, according to all three objective measurements. The proposed algorithm
therefore yielded encouraging performance in terms of image visualization and quantitative
quality assessment, making it a competitive image interpolation algorithm.

5. Conclusions

In this paper, we have presented a novel EGPR method for image interpolation. The main
feature of this new algorithm is its ability to obtain relatively high prediction accuracy of the
unknown pixels by fully utilizing underlying image patch information. The implementation
process involves two steps: training and prediction. The former creates a GPR model using
only single-image data as the training set, and the latter combines energy computation
with the acquired model to produce a high-resolution image. Experiments have shown that
our algorithm can yield encouraging performance not only in terms of image visualization
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Figure 7: Quantitative quality assessment results for the four interpolation methods.

but also in terms of PSNR, RMS, and MSSIM quality measures. However, better image
interpolation comes at the expense of greater algorithm complexity. Methods of improving
the algorithm efficiency need further investigation. In future, we can improve this algorithm
to address the problem of the interpolation of image sequences. Images in the same sequence
are also subject to the recurrence phenomenon, whereby images contain spatial-temporal
correlation [26]. We believe that this problem can be addressed using the improved EGPR
algorithm by finding an appropriate energy-driven computation and training mode.
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