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By using minimax methods in critical point theory, a new existence theorem of infinitely many
periodic solutions is obtained for a class of second-order p-Laplacian systems with impulsive
effects. Our result generalizes many known works in the literature.

1. Introduction

Consider the following p-Laplacian system with impulsive effects:

d

dt

(
|u̇(t)|p−2u̇(t)

)
− L(t)|u(t)|p−2u(t) +∇F(t, u(t)) = 0, a.e. t ∈ R,

u(0) − u(T) = u̇(0) − u̇(T) = 0,

Δ
(∣∣u̇(tj

)∣∣p−2u̇(tj
))

=
∣∣∣u̇
(
t+j

)∣∣∣
p−2
u̇
(
t+j

)
−
∣∣∣u̇
(
t−j
)∣∣∣

p−2
u̇
(
t−j
)
= ∇Ij

(
u
(
tj
))
, j = 1, 2, . . . , m,

(1.1)

where p > 1, T > 0, 0 = t0 < t1 < t2 < · · · < tm < tm+1 = T , and ∇Ij : R
N → R

N (j = 1, 2, . . . , m)
are continuous and F : R×R

N → R is T -periodic in t for all u ∈ R
N ,∇F(t, u) is the gradient of

F(t, u)with respect to u. L ∈ C(R,RN×N) is a T -periodic positive definite symmetric matrix.
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Throughout this paper, we always assume the following condition holds.

(A) F(t, x) is measurable in t for all x ∈ R
N and continuously differentiable in x for a.e.

t ∈ [0, T], and there exist a ∈ C(R+,R+), b ∈ L1([0, T];R+) such that

|F(t, x)| ≤ a(|x|)b(t), |∇F(t, x)| ≤ a(|x|)b(t) (1.2)

for all x ∈ R
N and a.e. t ∈ [0, T].

For the sake of convenience, in the sequel, we define B = {1, 2, . . . , m}.
When p = 2, ∇Ij ≡ 0, j ∈ B, problem (1.1) becomes the following second-order

Hamiltonian system:

ü(t) − L(t)u(t) +∇F(t, u(t)) = 0, a.e. t ∈ R. (1.3)

There are many papers concerning the existence of periodic solutions or homoclinic
solutions for problem (1.3) byminimaxmethods. Here for identifying a few, we only mention
[1–8].

For ∇Ij /= 0, j ∈ B, problem (1.1) involves impulsive effects. Impulsive differential
equations are suitable for the mathematical simulation of evolutionary processes in which
the parameters undergo relatively long periods of smooth variation followed by a short-term
rapid change (that is jumps) in their values. Since these processes are subject to short-term
perturbations whose duration is negligible in comparison with the duration of the processes,
it is natural to suppose that these perturbations act instantaneously, that is, in the form
of impulse. Processes of this type are often investigated in various fields of science and
technology, for example, many biological phenomena involving thresholds, bursting rhythm
models in medicine and biology, optimal control models in economics, pharmacokinetics and
frequencymodulated systems, and so on. Formore details of impulsive differential equations,
we refer the readers to the books [9, 10].

There are many methods for finding periodic solutions of impulsive differential
equations, such as the monotone-iterative technique, a numerical-analytical method, the
method of upper and lower solutions, and the method of bilateral approximations. For more
information about periodic solutions of impulsive differential equations, one can refer to
the papers [11–18]. However, there are few papers [19–25] concerning periodic solutions
of impulsive differential equations by variational methods. So it is a novel method to
employ variational methods to investigate the existence of periodic solutions for impulsive
differential equations.

Motivated by the above papers, we study the existence of subharmonic solutions for
problem (1.1) by applying minimax methods in critical point theory. Our result is new, which
seems not to be found in the literature.

Throughout this paper, let q ∈ (1,+∞) satisfy 1/p + 1/q = 1.

2. Preliminaries

In this section, we recall some basic facts which will be used in the proofs of our main results.
In order to apply the critical point theory, we construct a variational structure. With this
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variational structure, we can reduce the problem of finding solutions of problem (1.1) to that
of seeking the critical points of the corresponding functional.

Let k be a positive integer andW1,p
kT

the Sobolev space defined by

W
1,p
kT =

{
u : R → R

N | u is absolutely continuous, u(t) = u(t + kT), u̇ ∈ Lp
(
[0, kT];RN

)}

(2.1)

with the norm

‖u‖ =

(∫kT

0
|u(t)|pdt +

∫kT

0
|u̇(t)|pdt

)1/p

. (2.2)

Take v ∈W1,p
kT

and multiply the two sides of the equality

d

dt

(
|u̇(t)|p−2u̇(t)

)
− L(t)|u(t)|p−2u(t) +∇F(t, u(t)) = 0 (2.3)

by v and integrate from 0 to kT ; we have

∫kT

0

((
|u̇(t)|p−2u̇(t)

)′
, v(t)

)
dt =

∫kT

0

(
L(t)|u(t)|p−2u(t), v(t)

)
dt −

∫kT

0
(∇F(t, u(t)), v(t))dt.

(2.4)

Moreover, by u̇(0) = u̇(T), one has

∫kT

0

((
|u̇(t)|p−2u̇(t)

)′
, v(t)

)
dt

= k
∫T

0

((
|u̇(t)|p−2u̇(t)

)′
, v(t)

)
dt

= k
m∑
j=0

∫ tj+1

tj

((
|u̇(t)|p−2u̇(t)

)′
, v(t)

)
dt

= k
m∑
j=0

[∣∣∣u̇
(
t−j+1

)∣∣∣
p−2
u̇
(
t−j+1

)
v
(
t−j+1

)
−
∣∣∣u̇
(
t+j

)∣∣∣
p−2
u̇
(
t+j

)
v
(
t+j

)
−
∫ tj+1

tj

(
|u̇(t)|p−2u̇(t), v̇(t)

)
dt

]

= k
m∑
j=0

(∣∣∣u̇
(
t−j+1

)∣∣∣
p−2
u̇
(
t−j+1

)
v
(
t−j+1

)
−
∣∣∣u̇
(
t+j

)∣∣∣
p−2
u̇
(
t+j

)
v
(
t+j

))
−
∫kT

0

(
|u̇(t)|p−2u̇(t), v̇(t)

)
dt

= k|u̇(T)|p−2u̇(T)v(T) − k|u̇(0)|p−2u̇(0)v(0) − k
m∑
j=1

∇Ij
(
u
(
tj
))
v
(
tj
)
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−
∫kT

0

(
|u̇(t)|p−2u̇(t), v̇(t)

)
dt

= −k
m∑
j=1

∇Ij
(
u
(
tj
))
v
(
tj
) −

∫kT

0

(
|u̇(t)|p−2u̇(t), v̇(t)

)
dt.

(2.5)

Together with (2.4), we get

∫kT

0

(
|u̇(t)|p−2u̇(t), v̇(t)

)
dt + k

m∑
j=1

∇Ij
(
u
(
tj
))
v
(
tj
)
+
∫kT

0

(
L(t)|u(t)|p−2u(t), v(t)

)
dt

=
∫kT

0
(∇F(t, u(t)), v(t))dt.

(2.6)

Definition 2.1. We say that a function u ∈ W
1,p
kT

is a weak solution of problem (1.1) if the
identity

∫kT

0

(
|u̇(t)|p−2u̇(t), v̇(t)

)
dt + k

m∑
j=1

∇Ij
(
u
(
tj
))
v
(
tj
)
+
∫kT

0

(
L(t)|u(t)|p−2u(t), v(t)

)
dt

=
∫kT

0
(∇F(t, u(t)), v(t))dt

(2.7)

holds for any v ∈W1,p
kT .

Define the functional φk onW
1,p
kT

by

φk(u) =
1
p

∫kT

0

[
|u̇(t)|p +

(
L(t)|u(t)|p−2u(t), u(t)

)]
dt −

∫kT

0
F(t, u(t))dt + k

m∑
j=1

Ij
(
u
(
tj
))

= ϕk(u) + ψk(u), u ∈W1,p
kT
,

(2.8)

where

ϕk(u) =
1
p

∫kT

0

[
|u̇(t)|p +

(
L(t)|u(t)|p−2u(t), u(t)

)]
dt −

∫kT

0
F(t, u(t))dt,

ψk(u) = k
m∑
j=1

Ij
(
u
(
tj
))
.

(2.9)

It follows from assumption (A) that the functional ϕk is continuously differentiable on
W

1,p
kT

and

〈
ϕ′
k(u), v

〉
=
∫kT

0

[(
|u̇(t)|p−2u̇(t), v̇(t)

)
+
(
L(t)|u(t)|p−2u(t), v(t)

)
− (∇F(t, u(t)), v(t))

]
dt

(2.10)
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for u, v ∈ W
1,p
kT

. By the continuity of ∇Ij , j ∈ B, one has that ψk ∈ (W1,p
kT
,R). Hence, φk(u) ∈

(W1,p
kT
,R). For any v ∈W1,p

kT
, we have

〈
φ′
k(u), v

〉
=
∫kT

0

[(
|u̇(t)|p−2u̇(t), v̇(t)

)
+
(
L(t)|u(t)|p−2u(t), v(t)

)
− (∇F(t, u(t)), v(t))

]
dt

+ k
m∑
j=1

∇Ij
(
u
(
tj
))
v
(
tj
)
.

(2.11)

By Definition 2.1, the weak solutions of problem (1.1) correspond to the critical points
of the functional φk.

For u ∈ W
1,p
kT

, let u = (1/kT)
∫kT
0 u(t)dt and ũ(t) = u(t) − u; then it follows from

Proposition 1.1 in [26] that

‖u‖∞ := max
t∈[0,kT]

|u(t)| ≤
(
(kT)−1/p + (kT)1/q

)
‖u‖ = dk‖u‖, (2.12)

where dk = (kT)−1/p + (kT)1/q, and if (1/kT)
∫kT
0 u(t)dt = 0, then

‖ũ‖∞ := max
t∈[0,kT]

|ũ(t)| ≤ (kT)1/q‖u̇‖Lp , (2.13)

‖ũ‖pLp ≤ (kT)p‖u̇‖pLp , (2.14)

where 1/p + 1/q = 1. Let W̃1,p
kT

= {u ∈ W
1,p
kT

| u = 0}; thenW1,p
kT

= W̃
1,p
kT

⊕ R
N . We will use the

following lemma to prove our main results.

Lemma 2.2 (see [27]). Let E be a real Banach space with E = X1⊕X2, whereX1 is finite dimensional.
Suppose that ϕ ∈ C1(E,R) satisfies the (PS) condition, and

(a) there exist constants ρ, α > 0 such that ϕ|∂Bρ ⋂X2 ≥ α, where Bρ := {u ∈ E | ‖u‖ ≤ ρ}, and
∂Bρ denotes the boundary of Bρ;

(b) there exists an e ∈ ∂B1
⋂
X2 and L > ρ such that if Q ≡ (BL

⋂
X1) ⊕ {re | 0 ≤ r ≤ L},

then ϕ|∂Q ≤ 0.

Then ϕ possesses a critical value c ≥ α which can be characterized as c = infh∈Γmaxu∈Qϕ(h(u)),
where Γ = {h ∈ C(Q,E) | h = id on ∂Q}.

It is well known that a deformation lemma can be proved with the weaker
condition (C) replacing the usual (PS) condition. So Lemma 2.2 holds true under condition
(C).
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3. Main Result and Proof

Theorem 3.1. Assume that (A) holds and F, Ij satisfy the following conditions:

(I1) there exists cj > 0 such that

0 ≤ Ij(x) ≤
cj

k
|x|p, j ∈ B, ∀x ∈ R

N ; (3.1)

(I2) for any j ∈ B,

∇Ij(x)x ≤ pIj(x), ∀x ∈ R
N ; (3.2)

(H1)
∫T
0 F(t, x)dt ≥ 0, for all x ∈ R

N ;

(H2) lim|x|→ 0(F(t, x)/|x|p) = 0 uniformly for a.e. t ∈ [0, T];

(H3) lim|x|→∞(F(t, x)/|x|p) = +∞ uniformly for a.e. t ∈ [0, T];

(H4) there exists a positive constant M such that lim sup|x|→∞(F(t, x)/|x|r) ≤ M uniformly
for a.e. t ∈ [0, T];

(H5) there existsM1 > 0 such that lim inf|x|→∞((∇F(t, x), x)−pF(t, x))/|x|μ ≥M1 uniformly
for a.e. t ∈ [0, T],

where r > p and μ > r−p. Then problem (1.1) has a sequence of distinct periodic solutions with period
kjT satisfying kj ∈ N and kj → ∞ as j → ∞.

Remark 3.2. As far as we know, there is no paper considering subharmonic solutions of
impulsive differential equations. Our result is new.

Proof. The proof is divided into three steps. In the following, Ci (i = 1, . . .) denote different
positive constants.

Step 1. The functional φk satisfies condition (C). Let {un} ⊂ W
1,p
kT

satisfying (1 +
‖un‖)‖φ′

k(un)‖ → 0 as n → ∞ and φk(un) is bounded; then, there exists a constant C1 such
that

∣∣φk(un)
∣∣ ≤ C1, (1 + ‖un‖)

∥∥φ′
k(un)

∥∥ ≤ C1. (3.3)

From (H4), there existsM2 > 0 such that

F(t, x) ≤M|x|r ∀|x| ≥M2, a.e. t ∈ [0, T]. (3.4)

By assumption (A), for |x| ≤M2, there exists C2 = max|x|≤M2a(|x|) > 0 such that

|F(t, x)| ≤ C2b(t), (3.5)



Journal of Applied Mathematics 7

which together with (3.4) implies that

F(t, x) ≤M|x|r + C2b(t), ∀x ∈ R
N, a.e. t ∈ [0, T]. (3.6)

By (3.3) and (3.6), we have

φk(un) +
∫kT

0
F(t, un)dt ≤ C1 +

∫kT

0

(
M|un(t)|r + C2b(t)

)
dt

= C1 + C2k‖b‖L1 +M
∫kT

0
|un(t)|rdt

= C3 +M
∫kT

0
|un(t)|rdt.

(3.7)

Since L(t) is continuous T -periodic positive definite symmetric matrix on [0, T], there exist
constants c1, c2 > 0 such that

c1|x|p ≤
(
L(t)|x|p−2x, x

)
≤ c2|x|p, ∀x ∈ R

N. (3.8)

It follows from (3.8) and (I1) that

φk(un) +
∫kT

0
F(t, un)dt =

1
p

∫kT

0

[
|u̇n(t)|p +

(
L(t)|un(t)|p−2un(t), un(t)

)]
dt + k

m∑
j=1

Ij
(
u
(
tj
))

≥ 1
p

∫kT

0

[|u̇n(t)|p + c1|un(t)|p
]
dt

≥ min
{
1
p
,
c1
p

}
‖un‖p

= C4‖un‖p.
(3.9)

By (3.7) and (3.9), we get

C4‖un‖p ≤ C3 +M
∫kT

0
|un(t)|rdt. (3.10)

From (H5), there existsM3 > 0 such that

(∇F(t, x), x) − pF(t, x) ≥M1|x|μ for |x| ≥M3, a.e. t ∈ [0, T]. (3.11)

By assumption (A), for |x| ≤M3, there exists C5 = max|x|≤M3a(|x|) > 0 such that

∣∣(∇F(t, x), x) − pF(t, x)∣∣ ≤ C5
(
p +M3

)
b(t). (3.12)
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Thus, from (3.11) and (3.12), we have

(∇F(t, x), x) − pF(t, x) ≥M1|x|μ −M1M
μ

3 − C5
(
p +M3

)
b(t) for x ∈ R

N, a.e. t ∈ [0, T],
(3.13)

which together with (3.3) and (I2) implies that

(
p + 1

)
C1 ≥ pφk(un) −

〈
φ′
k(un), un

〉

=
∫kT

0

[
(∇F(t, un), un) − pF(t, un)

]
dt + pk

m∑
j=1

Ij
(
un

(
tj
))

− k
m∑
j=1

∇Ij
(
un

(
tj
))
un

(
tj
)

≥M1

∫kT

0
|un(t)|μdt − C5

(
p +M3

) ∫kT

0
b(t)dt −M1M

μ

3kT

=M1

∫kT

0
|un(t)|μdt − C6.

(3.14)

Hence,
∫kT
0 |un(t)|μdt is bounded. If μ > r, we have

∫kT

0
|un(t)|rdt ≤ (kT)(μ−r)/μ

(∫kT

0
|un(t)|μdt

)r/μ

, (3.15)

which together with (3.10) implies that ‖un‖ is bounded. If μ ≤ r, then from (2.12), we get

∫kT

0
|un(t)|rdt ≤ ‖un‖r−μ∞

(∫kT

0
|un(t)|μdt

)r/μ

≤ dr−μ
k ‖un‖r−μ

(∫kT

0
|un(t)|μdt

)r/μ

. (3.16)

Since μ > r − p, it follows from (3.10) that ‖un‖ is bounded too. Therefore, ‖un‖ is bounded in
W

1,p
kT

. Hence, there exists a subsequence, still denoted by {un}, such that

un ⇀ u0 weakly in W
1,p
kT
, (3.17)

un −→ u0 strongly in C
(
[0, kT];RN

)
, (3.18)

un −→ u0 strongly in Lp
(
[0, kT];RN

)
. (3.19)
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From (2.11), we have

〈
φ′
k(un), un − u0

〉
=
∫kT

0

[(
|u̇n(t)|p−2u̇n(t), u̇n(t) − u̇0(t)

)
+
(
L(t)|un(t)|p−2un(t), un(t) − u0(t)

)]
dt

−
∫kT

0
(∇F(t, un(t)), un(t) − u0(t))dt + k

m∑
j=1

(∇Ij
(
un

(
tj
))
, un

(
tj
) − u0

(
tj
))
.

(3.20)

From (3.3) and (3.18), we have

∣∣〈φ′
k(un), un − u0

〉∣∣ ≤ ∥∥φ′
k(un)

∥∥‖un − u0‖ −→ 0 as n −→ ∞. (3.21)

By (3.8), we know that c1 ≤ ‖L‖ ≤ c2, which together with the boundedness of {un} and (3.19)
implies that

∫kT

0

(
L(t)|un(t)|p−2un(t), un(t) − u0(t)

)
dt ≤ ‖L‖‖un‖p−1Lp ‖un − u0‖Lp −→ 0 as n −→ ∞.

(3.22)

From the boundedness of {un}, the continuity of ∇Ij , and (3.18), we have

m∑
j=1

(∇Ij
(
un

(
tj
))
, un

(
tj
) − u0

(
tj
)) −→ 0 as n −→ ∞. (3.23)

It follows from (A), (3.18) and the boundedness of {un} that

∫kT

0
(∇F(t, un(t)), un(t) − u0(t))dt −→ 0 as n −→ ∞, (3.24)

which together with (3.20), (3.21), (3.22), and (3.23) implies that

∫kT

0

(
|u̇n(t)|p−2u̇n(t), u̇n(t) − u̇0(t)

)
dt −→ 0 as n −→ ∞. (3.25)

It is easy to see from the boundedness of {un} and (3.18) that

∫kT

0

(
|un(t)|p−2un(t), un(t) − u0(t)

)
dt −→ 0 as n −→ ∞. (3.26)
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Let f(u) = (1/p)(
∫kT
0 |u(t)|pdt + ∫kT

0 |u̇(t)|pdt). Then, we have

〈
f ′(un), un − u0

〉
=
∫kT

0

(
|u̇n(t)|p−2u̇n(t), u̇n(t) − u̇0(t)

)
dt

+
∫kT

0

(
|un(t)|p−2un(t), un(t) − u0(t)

)
dt,

(3.27)

〈
f ′(u0), un − u0

〉
=
∫kT

0

(
|u̇0(t)|p−2u̇0(t), u̇n(t) − u̇0(t)

)
dt

+
∫kT

0

(
|u0(t)|p−2u0(t), un(t) − u0(t)

)
dt.

(3.28)

It follows from (3.25) and (3.26) that

〈
f ′(un), un − u0

〉 −→ 0 as n −→ ∞. (3.29)

From (3.17), we get

〈
f ′(u0), un − u0

〉 −→ 0 as n −→ ∞. (3.30)

By (3.27), (3.28), and Hölder’s inequality, we have

〈
f ′(un) − f ′(u0), un − u0

〉

=
∫kT

0

(
|u̇n(t)|p−2u̇n(t), u̇n(t) − u̇0(t)

)
dt +

∫kT

0

(
|un(t)|p−2un(t), un(t) − u0(t)

)
dt

−
∫kT

0

(
|u̇0(t)|p−2u̇0(t), u̇n(t) − u̇0(t)

)
dt −

∫kT

0

(
|u0(t)|p−2u0(t), un(t) − u0(t)

)
dt

= ‖un‖p + ‖u0‖p −
∫kT

0

(
|u̇n(t)|p−2u̇n(t), u̇0(t)

)
dt −

∫kT

0

(
|un(t)|p−2un(t), u0(t)

)
dt

−
∫kT

0

(
|u̇0(t)|p−2u̇0(t), u̇n(t)

)
dt −

∫kT

0

(
|u0(t)|p−2u0(t), un(t)

)
dt

≥ ‖un‖p + ‖u0‖p −
(
‖un‖p−1Lp ‖u0‖Lp + ‖u̇n‖p−1Lp ‖u̇0‖Lp

)
−
(
‖u0‖p−1Lp ‖un‖Lp + ‖u̇0‖p−1Lp ‖u̇n‖Lp

)

≥ ‖un‖p + ‖u0‖p −
(
‖un‖pLp + ‖u̇n‖pLp

)(p−1)/p(
‖u0‖pLp + ‖u̇0‖pLp

)1/p

−
(
‖u0‖pLp + ‖u̇0‖pLp

)(p−1)/p(
‖un‖pLp + ‖u̇n‖pLp

)1/p
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= ‖un‖p + ‖u0‖p −
(
‖un‖p−1‖u0‖ + ‖u0‖p−1‖un‖

)

=
(
‖un‖p−1 − ‖u0‖p−1

)
(‖un‖ − ‖u0‖).

(3.31)

Hence, from (3.29) and (3.30), we obtain

0 ≤
(
‖un‖p−1 − ‖u0‖p−1

)
(‖un‖ − ‖u0‖) ≤

〈
f ′(un) − f ′(u0), un − u0

〉 −→ 0 as n −→ ∞. (3.32)

That is, ‖un‖ → ‖u0‖ as n → ∞. SinceW1,p
kT

has the Kadec-Klee property, we have un → u0

inW1,p
kT . Therefore, the functional φk satisfies condition (C).

Step 2. From (H2), for any small ε = ε(k) > 0, there exists small enough δ > 0 such that

F(t, u) ≤ ε|u|p for |u| ≤ δ, a.e. t ∈ [0, kT]. (3.33)

For u ∈ W̃1,p
kT

and ‖u‖p = ρp
k
= δp/(kT)p/q , it follows from (2.13) that

‖u‖p∞ ≤ (kT)p/q‖u̇‖pLp ≤ (kT)p/q‖u‖p = δp, (3.34)

which implies that |u(t)| ≤ δ. Then from (I1), (3.8), and (3.33), we have

ϕk(u) =
1
p

∫kT

0
|u̇(t)|pdt + 1

p

∫kT

0

(
L(t)|u(t)|p−2u(t), u(t)

)
dt

−
∫kT

0
F(t, u)dt + k

m∑
j=1

Ij
(
u
(
tj
))

≥ 1
p

∫kT

0
|u̇(t)|pdt + 1

p

∫kT

0
c1|u(t)|pdt −

∫kT

0
ε|u(t)|pdt

≥ min
{
1
p
,
c1
p

}
‖u‖p − kTεδp

= C4‖u‖p − kTεδp.

(3.35)

Let ε = ε(k) ∈ (0, C4/2(kT)
p); then from (3.24), we have

ϕk(u) ≥ C4ρ
p

k
− kTεδp ≥ C4

2
ρ
p

k
≡ α > 0 (3.36)

for all u ∈ W̃1,p
T and ‖u‖ = ρk. This implies that condition (a) of Lemma 2.2 holds.
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Step 3. Let c = max{cj}, j ∈ B. Choose C7 > (c2/p) + (mc/T); then from (H3), there exists
M4 > 0 such that

F(t, x) ≥ C7|x|p, |x| ≥M4, a.e. t ∈ [0, T]. (3.37)

By assumption (A), for |x| ≤M4, there exists C8 = max|x|≤M4a(|x|) > 0 such that

|F(t, x)| ≤ C8b(t), a.e. t ∈ [0, T], (3.38)

which together with (3.37) implies that

F(t, x) ≥ C7|x|p − C8b(t), ∀x ∈ R
N, a.e. t ∈ [0, T]. (3.39)

Thus, from (H1), (I1), (3.8), and (3.39), we have

φk(u) =
1
p

∫kT

0

(
L(t)|u|p−2u, u

)
dt −

∫kT

0
F(t, u)dt + k

m∑
j=1

Ij(u)

=
k

p

∫T

0

(
L(t)|u|p−2u, u

)
dt − k

∫T

0
F(t, u)dt + k

m∑
j=1

Ij(u)

≤ c2k

p

∫T

0
|u|pdt − k

∫T

0
C7|u|pdt + k

∫T

0
C8b(t)dt +mc|u|p for u ∈ R

N.

(3.40)

From (H3), we can choose C7 suitable large such that

φk(u) ≤ 0, ∀u ∈ R
N. (3.41)

Let W
1,p
kT = span{ek} + R

N , where ek = (k−1 sin(k−1ωt)), ω = 2π/T . Since W
1,p
T is finite

dimensional, there exists a constant d > 0 such that

(∫T

0
|x|pdt

)1/p

≥ d
(∫T

0
|x|2dt

)1/2

, ∀x ∈W1,p
T . (3.42)
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By (I1), we have

∣∣ψ(u + rek)
∣∣ =

∣∣∣∣∣∣
k

m∑
j=1

Ij
(
u + rek

(
tj
))
∣∣∣∣∣∣

≤
m∑
j=1

cj
∣∣u + rek

(
tj
)∣∣p

≤ 2pmc|u|p + 2pmcrp
∣∣ek

(
tj
)∣∣p

≤ 2pmc|u|p + 2pmcrpk−p

≤ 2pmc|u|p + 2pmcrp, u ∈ R
N.

(3.43)

From (3.39), (3.42), and (3.43), we obtain

φk(u + rek) =
1
p

∫kT

0
|rėk(t)|pdt −

∫kT

0
F(t, u + rek(t))dt

+
1
p

∫kT

0

(
L(t)|u + rek(t)|p−2(u + rek(t)), u + rek(t)

)
dt + k

m∑
j=1

Ij
(
u + rek

(
tj
))

≤ 1
p
k−2prpωp

∫kT

0

∣∣∣cos
(
k−1ωt

)∣∣∣
p
dt +

c2
p

∫kT

0
|u + rek(t)|pdt +

∫kT

0
C8b(t)dt

−
∫kT

0
C7|u + rek(t)|pdt + 2pmc|u|p + 2pmcrp

≤ 1
p
k−2p+1rpωp

∫T

0
|cos(ωt)|pdt − k

∫T

0

(
C7 − c2

p

)
|u + re1(t)|pdt

+
∫T

0
C8kb(t)dt + 2pmc|u|p + 2pmcrp

≤
(
T

p
k−2p+1ωp + 2pmc

)
rp − kdp

(
C7 − c2

p

)(∫T

0
|u + re1(t)|2dt

)p/2

+ 2pmc|u|p + C9k

≤
(
T

p
k−2p+1ωp + 2pmc

)
rp − kdp

(
C7 − c2

p

)(∫T

0
(|u|2 + r2|e1(t)|2)dt

)p/2

+ 2pmc|u|p + C9k

≤
(
T

p
k−2p+1ωp + 2pmc

)
rp − kdp

(
C7 − c2

p

)(
T |u|2 + Tr2

2

)p/2

+ 2pmc|u|p + C9k, ∀r ≥ 0, u ∈ R
N.

(3.44)
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From (H3), we can choose C7 suitable such that

dp
(
C7 − c2

p

)(
T

2

)p/2

− 23pmc > 0,

dp
(
C7 − c2

p

)
Tp/2 − 2p+1mc > 0.

(3.45)

If k ≥ 2(Tp)1/2pω1/2/[dp(C7 − c2/p)(T/2)p/2 − 23pmc] := C10, then we get

k−1φk(u + rek) ≤
[
T

p
k−2prpωp +

2pmc
k

− dp
(
C7 − c2

p

)(
T

2

)p/2
]
rp + C9

≤
[
Tk−2pωp + 2pmc − dp

(
C7 − c2

p

)(
T

2

)p/2
]
rp + C9

≤ −1
2
dp

(
C7 − c2

p

)(
T

2

)p/2

rp + C9,

k−1φk(u + rek) ≤ −1
2
dp

(
C7 − c2

p

)
Tp/2|u|p + C9.

(3.46)

It follows from (3.46) that

ϕk(u + rek) ≤ 0, either r ≥ r1 or |u| ≥ r2, (3.47)

where r1 =
√
2(2C9)

1/p/(C7 − c2/p)1/pdT1/2, r2 = (2C9)
1/p/d(C7 − c2/p)1/pT1/2. Notice that

for any u ∈ R
N , we have

‖u‖ = ‖u‖Lp =
(∫kT

0
|u|pdt

)1/p

= (kT)1/p|u| ≥ (C10T)1/pr2 := r3. (3.48)

Hence, (3.47) holds for all ‖u‖ ≥ r3 whenever u ∈ R
N . Set

Qk =
{
rek | 0 ≤ r ≤ r1, ek ∈ W̃1,p

kT

}
⊕
{
u ∈ R

N | ‖u‖ ≤ r3
}
; (3.49)

then ∂Qk = Q1k
⋃
Q2k

⋃
Q3k, where

Q1k =
{
u ∈ R

N | ‖u‖ ≤ r3
}
,

Q2k =
{
u + rek | ‖u‖ = r3, r ∈ [0, r1], ek ∈ W̃1,p

kT

}
,

Q3k =
{
u + rek | ‖u‖ ≤ r3, r = r1, ek ∈ W̃1,p

kT

}
.

(3.50)
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By (3.41) and (3.47), we have

ϕ(u) ≤ 0, u ∈ ∂Qk = Q1k

⋃
Q2k

⋃
Q3k. (3.51)

Furthermore, for all u + rek ∈ Qk, it follows from (H1), (3.8), and (3.43) that

φk(u + rek) =
1
p

∫kT

0
|rėk(t)|pdt −

∫kT

0
F(t, u + rek(t))dt

+
1
p

∫kT

0

(
L(t)|u + rek(t)|p−2(u + rek(t)), u + rek(t)

)
dt + k

m∑
j=1

Ij
(
u + rek

(
tj
))

≤ 1
p
rp

∫kT

0
|ėk(t)|pdt + c2

p

∫kT

0
|u + rek(t)|pdt + 2pmc|u|p + 2pmcrp

≤ 1
p
k−2prpωp

∫kT

0

∣∣∣cos
(
k−1ωt

)∣∣∣
p
dt +

2p−1c2
p

∫kT

0

(
|u|p + rpk−p

∣∣∣sin
(
k−1ωt

)∣∣∣
p)
dt

+ 2pmc|u|p + 2pmcrp

≤ 1
p
k−2p+1rpωp

∫T

0
|cos(ωt)|pdt + 2p−1c2

p

(
‖u‖p + rpk−p+1

∫T

0
|sin(ωt)|pdt

)

+
2pmc
T

‖u‖p + 2pmcrp

≤ T

p
k−2p+1rpωp +

2p−1c2
p

(
‖u‖p + rpk−p+1T

)
+
2pmc
T

‖u‖p + 2pmcrp

≤ T

p
r
p

1ω
p +

2p−1c2
p

(
r
p

3 + rp1T
)
+ 2pmc

(
1
T
r
p

3 + rp1

)
.

(3.52)

Then by Lemma 2.2, φk has at least a critical point uk whose critical value ck satisfies

0 < α ≤ ck = φk(uk) ≤ T

p
r
p

1ω
p +

2p−1c2
p

(
r
p

3 + rp1T
)
+ 2pmc

(
1
T
r
p

3 + rp1

)
. (3.53)

Similar to the proof of [28], let uk1 be a k1T -periodic solution; we can prove that there
exists a positive integer k2 > k1 such that ukk1 /=uk1 for all kk1 ≥ k2. Otherwise, ϕk(ukk1) =
kϕk(uk1) → ∞ as k → ∞, which contradicts to (3.53). Repeating this process, we can obtain
a sequence {ukj} of distinct periodic solutions of problem (1.1). From (3.41), we know that
ukj is nonconstant. The proof is complete.

4. Examples

In this section, we give an example to illustrate our result.
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Example 4.1. Let p = 3, r = 5, μ = 4, and consider the following p-Laplacian system with
impulsive effects

d

dt
(|u̇(t)|u̇(t)) − L(t)|u(t)|u(t) +∇F(t, u(t)) = 0, a.e. t ∈ R,

u(0) − u(T) = u̇(0) − u̇(T) = 0,

Δ(|u̇(ti)|u̇(ti)) =
∣∣u̇(t+i

)∣∣u̇(t+i
) − ∣∣u̇(t−i

)∣∣u̇(t−i
)
= ∇Ii(u(ti)), i = 1, 2, . . . , m.

(4.1)

Let

L(t) = diag
(
1 + exp

(
1 − sin

(
k−1ωt

))
, . . . , 1 + exp

(
1 − sin

(
k−1ωt

)))
,

Ii(x) =
ci
k
|x|p, F(t, x) =

1 + e
3

(
2 + sin

(
k−1ωt

))
|x|5,

(4.2)

where ci > 0, i ∈ B. It is easy to check that F satisfies (A), (H1), and (H2). By a direct
computation, we have

lim
|x|→∞

F(t, x)

|x|3
= +∞, lim sup

|x|→∞

F(t, x)

|x|5
≤ 1 + e,

lim inf
|x|→∞

(∇F(t, x), x) − 3F(t, x)

|x|4
≥ 2(1 + e)

3
,

(4.3)

which show that (H3), (H4), and (H5) hold. On the other hand,

0 ≤ Ii(x) ≤ c

k
|x|p, ∇Ii(x)x =

pci
k

|x|p = pIi(x), (4.4)

where c = max{ci}, i ∈ B. It is easy to see that Ii satisfies (I1) and (I2). Hence, from
Theorem 3.1, problem (4.1) has a sequence of distinct nonconstant periodic solutions with
period kjT satisfying kj ∈ N and kj → ∞ as j → ∞.
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[18] J. J. Nieto and R. Rodrı́guez-López, “Boundary value problems for a class of impulsive functional
equations,” Computers & Mathematics with Applications, vol. 55, no. 12, pp. 2715–2731, 2008.

[19] P. Chen and X. H. Tang, “Existence of solutions for a class of p-Laplacian systems with impulsive
effects,” Journal of Taiwanses Mathematics. In press.

[20] J. J. Nieto and D. O’Regan, “Variational approach to impulsive differential equations,” Nonlinear
Analysis. Real World Applications, vol. 10, no. 2, pp. 680–690, 2009.

[21] J. Sun, H. Chen, and L. Yang, “The existence andmultiplicity of solutions for an impulsive differential
equation with two parameters via a variational method,” Nonlinear Analysis. Theory, Methods &
Applications, vol. 73, no. 2, pp. 440–449, 2010.

[22] J. Sun, H. Chen, and L. Yang, “Variational methods to fourth-order impulsive differential equations,”
Journal of Applied Mathematics and Computing, vol. 35, no. 1-2, pp. 323–340, 2011.

[23] Y. Tian and W. Ge, “Applications of variational methods to boundary-value problem for impulsive
differential equations,” Proceedings of the Edinburgh Mathematical Society. Series II, vol. 51, no. 2,
pp. 509–527, 2008.

[24] J. W. Zhou and Y. K. Li, “Existence and multiplicity of solutions for some Dirichlet problems with
impulsive effects,” Nonlinear Analysis. Theory, Methods & Applications, vol. 71, no. 7-8, pp. 2856–2865,
2009.

[25] J. Zhou and Y. Li, “Existence of solutions for a class of second-order Hamiltonian systems with
impulsive effects,” Nonlinear Analysis. Theory, Methods & Applications, vol. 72, no. 3-4, pp. 1594–1603,
2010.

[26] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, vol. 74, Springer, New York,
NY, USA, 1989.



18 Journal of Applied Mathematics

[27] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations,
vol. 65 ofCBMSRegional Conference Series inMathematics, AmericanMathematical Society, Providence,
RI, USA, 1986.

[28] S. W. Ma and Y. X. Zhang, “Existence of infinitely many periodic solutions for ordinary p-Laplacian
systems,” Journal of Mathematical Analysis and Applications, vol. 351, no. 1, pp. 469–479, 2009.


