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By using an abstract existence result based on a coincidence degree theory for k-set contractive
mapping, a new result is obtained for the existence of at least two positive periodic solutions for
a neutral multidelay logarithmic population model with a periodic harvesting rate. An example is
given to illustrate the effectiveness of the result.

1. Introduction

In recent years, many papers have been published on the existence of positive periodic
solutions for neutral delay logarithmic population models by using a topological degree
theory for k-set contractive mapping (see, e.g., [1–5]). Recently, Xia [6] obtained some
new sufficient conditions for the existence and uniqueness of an almost periodic solution
of a multispecies logarithmic population model with feedback controls. However, few
papers deal with the existence of multiple positive periodic solutions for neutral multidelay
logarithmic population models with harvesting. The main difficulty is hard to obtain a priori
bounds on solutions for neutral multi-delay models with harvesting.

In this paper, we consider the following neutral multi-delay logarithmic population
model of single-species population growth with a periodic harvesting rate

dy(t)
dt

= y(t)

⎡
⎣a(t) −

n∑
j=1

bj(t) lny
(
t − σj(t)

) −
m∑
i=1

ci(t)
d

dt
lny(t − τi(t))

⎤
⎦ − h(t), (1.1)
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where a(t), bj(t), σj(t) (j = 1, 2, . . . , n), ci(t), τi(t) (i = 1, 2, . . . , m), h(t) are nonnegative
continuous T -periodic functions, and h(t) denotes the harvesting rate. When h(t) ≡ 0, (1.1)
was considered by [2–5]. When n = m = 1, h(t) ≡ 0, and σ1(t), τ1(t) are constants, (1.1) was
considered by [7].

The purpose of this paper is to establish the existence of at least two positive periodic
solutions for a neutral multi-delay logarithmic population model (1.1) by using a coincidence
degree theory for k-set contractions. Motivated by the work of Chen [8], some novel
techniques are employed to find a priori bounds on solutions.

2. Preliminaries

We now briefly state the part of the coincidence degree theory for k-set contractive mapping
developed by Hetzer [9, 10]. For more details, we refer to [11].

Let Z be a Banach space. For a bounded subset A ⊂ Z, let ΓZ(A) denote the
(Kuratowski) measure of noncompactness defined by

ΓZ(A) = inf

{
δ > 0 : ∃ a finite number of subsets Ai ⊂ A,A =

⋃
i

Ai, diam(Ai) ≤ δ

}
. (2.1)

Here, diam (Ai) denotes the maximum distance between the points in the set Ai.
LetX andZ be Banach spaces with norms ‖·‖X and ‖·‖Z, respectively andΩ a bounded

open subset ofX. A continuous and bounded mappingN : Ω → Z is called k-set contractive
if for any bounded A ⊂ Ω, we have

ΓZ(N(A)) ≤ kΓX(A). (2.2)

Also, for a continuous and bounded map T : X → Y , we define

l(T) = sup{r ≥ 0 : ∀ bounded subset A ⊂ X, rΓX(A) ≤ ΓY (T(A))}. (2.3)

Let L : domL ⊂ X → Z be a linear mapping and N : X → Z be a continuous
mapping. The mapping L will be called a Fredholm mapping of index zero if dim KerL =
codim ImL < +∞ and ImL is closed in Z. If L is a Fredholm mapping of index zero, there
then exist continuous projectors P : X → X and Q : Z → Z such that ImP = KerL, ImL =
KerQ = Im(I −Q). If we define LP : domL ∩ KerP → ImL as the restriction L|domL∩KerP of
L to domL ∩ KerP , then LP is invertible. We denote the inverse of that map by KP . If Ω is an
open bounded subset of X, the mapping N will be called L-k-set contractive on Ω if QN(Ω)
is bounded andKP (I −Q)N : Ω → X is k-set contractive. Since ImQ is isomorphic to KerL,
there exists an isomorphism J : ImQ → KerL.

Lemma 2.1 ([11, Proposition XI.2.]). Let L be a closed Fredholm mapping of index zero and let
N : Ω → Z be k′-set contractive with

0 ≤ k′ < l(L). (2.4)

ThenN : Ω → Z is a L-k-set contraction with constant k = k′/l(L) < 1.
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The following lemma [[11, page 213] will play a key role in this paper.

Lemma 2.2. Let L be a Fredholm mapping of index zero and let N : Ω → Z be L-k-set contractive
on Ω, k < 1. Suppose

(i) Lx/=λNx for every x ∈ domL ∩ ∂Ω and every λ ∈ (0, 1);

(ii) QNx/= 0 for every x ∈ ∂Ω ∩ KerL;

(iii) Brouwer degree degB(JQN, Ω ∩ KerL, 0)/= 0.

Then Lx = Nx has at least one solution in domL ∩Ω.

3. Main Result

LetC0
T denote the linear space of real valued continuous T -periodic functions on R. The linear

space C0
T is a Banach space with the usual norm for x ∈ C0

T given by |x|0 = maxt∈R|x(t)|. Let
C1

T denote the linear space of T -periodic functions with the first-order continuous derivative.
C1

T is a Banach space with norm |x|1 = max{|x|0, |x′|0}.
Let X = C1

T and Z = C0
T and let L : X → Z be given by Lx = dx/dt. Since |Lx|0 =

|x′|0 ≤ |x|1, we see that L is a bounded (with bound = 1) linear map.
Under the transformation of y(t) = ex(t), (1.1) can be rewritten as

x′(t) = a(t) −
n∑
j=1

bj(t)x
(
t − σj(t)

) −
m∑
i=1

ci(t)
(
1 − τ ′i(t)

)
x′(t − τi(t)) − h(t)

ex(t)
. (3.1)

Next define a nonlinear map N : X → Z by

N(x)(t) = a(t) −
n∑
j=1

bj(t)x
(
t − σj(t)

) −
m∑
i=1

ci(t)
(
1 − τ ′i(t)

)
x′(t − τi(t)) − h(t)

ex(t)
. (3.2)

Now, if Lx = Nx for some x ∈ X, then the problem (3.1) has a T -periodic solution x(t).
In the following, we denote

g =
1
T

∫T

0
g(t)dt, gl = min

t∈[0,T]
g(t), gu = max

t∈[0,T]
g(t), (3.3)

where g(t) is a continuous nonnegative T -periodic solution.
From now on, we always assume that

(H1) a(t), bj(t) ∈ C(R, (0,+∞)), σj(t), ci(t), τi(t) ∈ C1(R, (0,+∞)), for all j ∈ {1, 2, . . . ,
n}, for all i ∈ {1, 2, . . . , m}.

(H2) σ ′
j(t) < 1, τ ′i(t) < 1, for all t ∈ R, and

Γ(t) =
n∑
j=1

bj
(
μj(t)

)

1 − σ ′
j

(
μj(t)

) −
m∑
i=1

c′i
(
γi(t)

)

1 − τ ′i
(
γi(t)

) > 0, (3.4)
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where μj(t) is the inverse function of t−σj(t), γi(t) is the inverse function of t−τi(t), for all j ∈
{1, 2, . . . , n}, for all i ∈ {1, 2, . . . , m}.

(H3) Let

1 + ln
hl

Γu
<

au

Γl
≤ hl

Γu
< 1. (3.5)

(H4) Let

T

⎛
⎝Γ +

n∑
j=1

bj

⎞
⎠ +

m∑
i=1

cui < 1,

max

⎧
⎨
⎩1 + ln

hu

∑n
j=1 b

l
j

, 0

⎫
⎬
⎭ <

al −∑m
i=1 c

u
i

(
1 − τ ′i

)u
M0∑n

j=1 b
u
j

< R0,

(3.6)

where

M0 =
au +

∑n
j=1 b

u
j R0 + hueR0

1 −∑m
i=1 c

u
i

(
1 − τ ′i

)u , R0 = q + p,

q = 2

∣∣∣∣∣ln
hl

Γu

∣∣∣∣∣, p =
2Ta +

(
Γ +

∑n
j=1 bj

)
Tq

1 − T
(
Γ +

∑n
j=1 bj

)
−∑m

i=1 c
u
i

.

(3.7)

We first give some technological lemmas.
Set

f(x) = d − x − re−x, x ∈ (−∞,+∞). (3.8)

Lemma 3.1. Assume that d, r are positive constants such that

1 + ln r < d. (3.9)

Then there exist x−
∗ , x

+
∗ such that

f
(
x−
∗
)
= f(x+

∗ ) = 0,

x−
∗ < ln r < x+

∗ < d,

f(x) > 0 for x ∈ (
x−
∗ , x

+
∗
)
; f(x) < 0 for x ∈ (−∞, x−

∗
) ∪ (x+

∗ ,+∞).

(3.10)

If one assumes further that

d ≤ r < 1, (3.11)
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then the following inequalities also hold:

2 ln r < x−
∗ < ln r < x+

∗ ≤ 0. (3.12)

Proof. Clearly, f ′(x) = r/ex − 1 = 0 if and only if x = ln r. Therefore, noticing that
limx→±∞f(x) = −∞,we have

sup
x∈(−∞,+∞)

f(x) = d − ln r − 1 > 0. (3.13)

Set

g(r) = 2 ln r +
1
r
− r. (3.14)

Since

g ′(r) =
2
r
− 1
r2

− 1 = − (1 − r)2

r2
< 0 for 0 < r < 1, (3.15)

g(r) is monotonically decreasing on (0, 1].
Therefore, we have

g(r) > g(1) = 0, (3.16)

that is,

2 ln r +
1
r
> r, (3.17)

which implies

f(2 ln r) = d − 2 ln r − 1
r
< d − r ≤ 0. (3.18)

Again, noticing that

f(0) = d − r ≤ 0, (3.19)

by the monotonicity of the function f(x) on the interval (−∞, ln r) and (ln r,+∞), it is easy to
see that the assertion holds.
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Set

F(x) =
al −∑m

i=1 c
u
i

(
1 − τ ′i

)u
M0∑n

j=1 b
u
j

− x − hu

∑n
j=1 b

l
j

e−x,

G(x) =
a

∑n
j=1 bj

− x − h
∑n

j=1 bj
e−x,

H(x) =
au +

∑m
i=1 c

u
i

(
1 − τ ′i

)u
M0∑n

j=1 b
l
j

− x − hl

∑n
j=1 b

u
j

e−x.

(3.20)

Lemma 3.2. Assume that (H1), (H2), and (H4) hold. Then the following assertions hold.
(1) There exist u−, u+ such that

F
(
u−) = F(u+) = 0,

u− < ln
hu

∑n
j=1 b

l
j

< u+ <
al −∑m

i=1 c
u
i

(
1 − τ ′i

)u
M0∑n

j=1 b
u
j

,

F(x) > 0 for x ∈ (
u−, u+); F(x) < 0 for x ∈ (−∞, u−) ∪ (u+,+∞).

(3.21)

(2) There exist x−, x+ such that

G
(
x−) = G(x+) = 0,

x− < ln
h

∑n
j=1 bj

< x+ <
a

∑n
j=1 bj

,

G(x) > 0 for x ∈ (
x−, x+); G(x) < 0 for x ∈ (−∞, x−) ∪ (x+,+∞).

(3.22)

(3) There exist l−, l+ such that

H
(
l−
)
= H(l+) = 0,

l− < ln
hl

∑n
j=1 b

u
j

< l+ <
au +

∑m
i=1 c

u
i

(
1 − τ ′i

)u
M0∑n

j=1 b
l
j

,

H(x) > 0 for x ∈ (
l−, l+

)
; H(x) < 0 for x ∈ (−∞, l−

) ∪ (l+,+∞).

(3.23)

(4)

l− < x− < u− < u+ < x+ < l+. (3.24)
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Proof. Noticing that

al −∑m
i=1 c

u
i

(
1 − τ ′i

)u
M0∑n

j=1 b
u
j

<
a

∑n
j=1 bj

<
au +

∑m
i=1 c

u
i

(
1 − τ ′i

)u
M0∑n

j=1 b
l
j

,

hl

∑n
j=1 b

u
j

≤ h
∑n

j=1 bj
≤ hu

∑n
j=1 b

l
j

,

(3.25)

we have

F(x) < G(x) < H(x). (3.26)

It follows from (H1), (H2), and (H4), (3.25) that

1 + ln
hu

∑n
j=1 b

l
j

<
al −∑m

i=1 c
u
i

(
1 − τ ′i

)u
M0∑n

j=1 b
u
j

,

1 + ln
h

∑n
j=1 bj

<
a

∑n
j=1 bj

,

1 + ln
hl

∑n
j=1 b

u
j

<
au +

∑m
i=1 c

u
i

(
1 − τ ′i

)u
M0∑n

j=1 b
l
j

.

(3.27)

Therefore, by Lemma 3.1, the assertions (1)–(3) hold. Furthermore, by (3.26) and the asser-
tions (1)–(3), the assertion (4) also holds.

Lemma 3.3 (see [12]). L is a Fredholm map of index 0 and satisfies

l(L) ≥ 1. (3.28)

Lemma 3.4 (see [2]). Suppose σ ∈ C1
T and σ ′(t) < 1, for all t ∈ [0, T]. Then the function t − σ(t)

has an inverse function μ(t) satisfying μ ∈ C(R,R) with μ(a + T) = μ(a) + T .

Lemma 3.5. Assume that (H1)–(H4) hold. Let k0 =
∑m

i=1 c
u
i (1 − τ ′i)

u, and

Ω =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x ∈ X

∣∣∣∣∣∣∣∣∣

max
t∈[0,T]

x(t) ∈ (l− − δ, R0 + δ),

min
t∈[0,T]

x(t) ∈ (l− − δ, l+ + δ),

max
t∈[0,T]

|x′(t)| < M0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (3.29)

where 0 < δ < l−. ThenN : Ω → Z is a k0-set-contractive map.

Proof. The proof is similar to that of Lemma 3.3 in [12], so we omit it.
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Theorem 3.6. Assume that (H1)–(H4) hold. Then (1.1) has at least two positive T -periodic solutions.

Proof. Let Lx = λNx for x ∈ X, that is,

x′(t) = λ

⎡
⎣a(t) −

n∑
j=1

bj(t)x
(
t − σj(t)

) −
m∑
i=1

ci(t)
(
1 − τ ′i(t)

)
x′(t − τi(t)) − h(t)

ex(t)

⎤
⎦, λ ∈ (0, 1).

(3.30)

Therefore, we have

x′(t) = λ

⎡
⎣a(t) −

n∑
j=1

bj(t)x
(
t − σj(t)

) −
m∑
i=1

ci(t)[x(t − τi(t))]′ − h(t)
ex(t)

⎤
⎦, λ ∈ (0, 1). (3.31)

By (3.31), we have

[
x(t) + λ

m∑
i=1

ci(t)x(t − τi(t))

]′
= λ

⎡
⎣a(t) −

n∑
j=1

bj(t)x
(
t − σj(t)

)
+

m∑
i=1

c′i(t)x(t − τi(t)) − h(t)
ex(t)

⎤
⎦.

(3.32)

Integrating this identity leads to

∫T

0

⎡
⎣

n∑
j=1

bj(t)x
(
t − σj(t)

) −
m∑
i=1

c′i(t)x(t − τi(t)) +
h(t)
ex(t)

⎤
⎦dt =

∫T

0
a(t)dt. (3.33)

By Lemma 3.4, we have

μj(T + s) = T + μj(s), γi(T + s) = T + γi(s), (3.34)

where t = μj(s) is the inverse function of s = t − σj(t), and t = γi(s) is the inverse function of
s = t − τi(t), for all j ∈ {1, 2, . . . , n} and for all i ∈ {1, 2, . . . , m}.

Then

∫T

0

n∑
j=1

bj(t)x
(
t − σj(t)

)
dt =

n∑
j=1

∫T−σj (T)

−σj (0)
bj
(
μj(s)

) x(s)
1 − σ ′

j

(
μj(s)

)ds

=
n∑
j=1

∫T

0

bj
(
μj(s)

)

1 − σ ′
j

(
μj(s)

)x(s)ds,

∫T

0

m∑
i=1

c′i(t)x(t − τi(t))dt =
m∑
i=1

∫T−τi(T)

−τi(0)
c′i
(
γi(s)

) x(s)
1 − τ ′i

(
γi(s)

)ds

=
m∑
i=1

∫T

0

c′i
(
γi(s)

)

1 − τ ′i
(
γi(s)

)x(s)ds.

(3.35)
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From (3.33)–(3.35), we have

∫T

0

⎡
⎣a(s) −

⎛
⎝

n∑
j=1

bj
(
μj(s)

)

1 − σ ′
j

(
μj(s)

) −
m∑
i=1

c′i
(
γi(s)

)

1 − τ ′i
(
γi(s)

)
⎞
⎠x(s) − h(s)

ex(s)

⎤
⎦ds = 0, (3.36)

which implies

a
(
η
) − Γ

(
η
)
x
(
η
) − h

(
η
)

ex(η)
= 0, (3.37)

for some η ∈ [0, T].
Therefore, by (H2), we have

au

Γl
− x

(
η
) − hl/Γu

ex(η)
≥ 0. (3.38)

By (H3) and Lemma 3.1, we have

2 ln
hl

Γu
< x

(
η
) ≤ 0. (3.39)

Set

q := 2

∣∣∣∣∣ln
hl

Γu

∣∣∣∣∣, (3.40)

then we have

|x(t)| ≤ ∣∣x(η)∣∣ +
∫T

0

∣∣x′(t)
∣∣dt ≤ q +

∫T

0

∣∣x′(t)
∣∣dt, (3.41)

which implies

|x|0 ≤ q +
∫T

0

∣∣x′(t)
∣∣dt. (3.42)
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It follows from (3.30) that

∫T

0

∣∣x′(t)
∣∣dt

= λ

∫T

0

∣∣∣∣∣∣
a(t) −

n∑
j=1

bj(t)x
(
t − σj(t)

) −
m∑
i=1

ci(t)
(
1 − τ ′i(t)

)
x′(t − τi(t)) − h(t)

ex(t)

∣∣∣∣∣∣
dt

≤ λ

∫T

0

∣∣∣∣∣∣
a(t) −

n∑
j=1

bj(t)x
(
t − σj(t)

) −
m∑
i=1

ci(t)
(
1 − τ ′i(t)

)
x′(t − τi(t))

∣∣∣∣∣∣
dt +

∫T

0

h(t)
ex(t)

dt.

(3.43)

By (3.36) and (H2), we have

∫T

0

h(t)
ex(t)

dt ≤
∫T

0
a(t)dt +

∫T

0
Γ(t)dt|x|0 = Ta + TΓ|x|0. (3.44)

By this and (3.43), we obtain

∫T

0

∣∣x′(t)
∣∣dt ≤ T

⎡
⎣2a + Γ|x|0 +

n∑
j=1

bj |x|0

⎤
⎦ +

m∑
i=1

∫T

0

∣∣ci(t)
(
1 − τ ′i(t)

)
x′(t − τi(t))

∣∣dt. (3.45)

Meanwhile,

m∑
i=1

∫T

0

∣∣ci(t)
(
1 − τ ′i(t)

)
x′(t − τi(t))

∣∣dt =
m∑
i=1

∫T

0
ci
(
γi(s)

)∣∣x′(s)
∣∣ds ≤

m∑
i=1

cui

∫T

0

∣∣x′(s)
∣∣ds. (3.46)

Substituting (3.42) and (3.46) into (3.45) gives

∫T

0

∣∣x′(t)
∣∣dt

≤ T

⎡
⎣2a + Γ|x|0 +

n∑
j=1

bj |x|0

⎤
⎦ +

m∑
i=1

cui

∫T

0

∣∣x′(s)
∣∣ds

≤ T

⎡
⎣2a +

⎛
⎝Γ +

n∑
j=1

bj

⎞
⎠

(
q +

∫T

0

∣∣x′(t)
∣∣dt

)⎤
⎦ +

m∑
i=1

cui

∫T

0

∣∣x′(s)
∣∣ds

≤ T

⎡
⎣2a +

⎛
⎝Γ +

n∑
j=1

bj

⎞
⎠q

⎤
⎦ +

⎡
⎣T

⎛
⎝Γ +

n∑
j=1

bj

⎞
⎠ +

m∑
i=1

cui

⎤
⎦

∫T

0

∣∣x′(t)
∣∣dt.

(3.47)
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Since

T

⎛
⎝Γ +

n∑
j=1

bj

⎞
⎠ +

m∑
i=1

cui < 1, (3.48)

we have

∫T

0

∣∣x′(t)
∣∣dt <

2Ta +
(
Γ +

∑n
j=1 bj

)
Tq

1 − T
(
Γ +

∑n
j=1 bj

)
−∑m

i=1 c
u
i

:= p. (3.49)

Then,

|x|0 ≤ q +
∫T

0

∣∣x′(t)
∣∣dt ≤ q + p := R0. (3.50)

Again from (3.30), we get

∣∣x′∣∣
0 < au +

n∑
j=1

buj |x|0 +
m∑
i=1

cui
(
1 − τ ′i

)u∣∣x′∣∣
0 + hueR0 . (3.51)

Since
∑m

i=1 c
u
i (1 − τ ′i)

u < 1, we have

∣∣x′∣∣
0 <

au +
∑n

j=1 b
u
j R0 + hueR0

1 −∑m
i=1 c

u
i

(
1 − τ ′i

)u := M0. (3.52)

Choose tM, tm ∈ [0, T], such that

x(tM) = max
t∈[0,T]

x(t), x(tm) = min
t∈[0,T]

x(t). (3.53)

Then, it is clear that

x′(tM) = 0, x′(tm) = 0. (3.54)

From this and (3.30), we obtain that

a(tM) =
n∑
j=1

bj(tM)x
(
tM − σj(tM)

)
+

m∑
i=1

ci(tM)
(
1 − τ ′i(tM)

)
x′(tM − τi(tM)) +

h(tM)
ex(tM)

, (3.55)

a(tm) =
n∑
j=1

bj(tm)x
(
tm − σj(tm)

)
+

m∑
i=1

ci(tm)
(
1 − τ ′i(tm)

)
x′(tm − τi(tm)) +

h(tm)
ex(tm)

. (3.56)
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It follows from (3.55) that

a(tM) −
m∑
i=1

ci(tM)
(
1 − τ ′i(tM)

)
M0 −

n∑
j=1

bj(tM)x(tM) − h(tM)
ex(tM)

≤ 0, (3.57)

which implies

al −∑m
i=1 c

u
i

(
1 − τ ′i

)u
M0∑n

j=1 b
u
j

− x(tM) − hu

∑n
j=1 b

l
j

e−x(tM) ≤ 0. (3.58)

By the assertion (1) of Lemma 3.2, we have

x(tM) ≤ u− or x(tM) ≥ u+. (3.59)

It follows from (3.56) that

a(tm) +
m∑
i=1

ci(tm)
(
1 − τ ′i(tm)

)
M0 −

n∑
j=1

bj(tm)x(tm) − h(tm)
ex(tm)

≥ 0, (3.60)

which implies

au +
∑m

i=1 c
u
i

(
1 − τ ′i

)u
M0∑n

j=1 b
l
j

− x(tm) − hl

∑n
j=1 b

u
j

e−x(tm) ≥ 0. (3.61)

By the assertion (3) of Lemma 3.2, we have

l− ≤ x(tm) ≤ l+. (3.62)

Hence, it follows from (3.50), (3.59), and (3.62) that

x(tM) ∈ [
l−, u−] ∪ [u+, R0],

x(tm) ∈
[
l−, l+

]
.

(3.63)

Clearly, l±, u± are independent of λ. Now, let us consider QN(x)with x ∈ R. Note that

QN(x) = a −
n∑
j=1

bjx − h

ex
. (3.64)

It follows from the assertion (2) of Lemma 3.2 that QN(x) = 0 has two distinct solutions:

ũ1 = x−, ũ2 = x+. (3.65)
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By the assertion (4) of Lemma 3.2, one can take v−, v+ > 0 such that

u− < v− < v+ < u+. (3.66)

Let

Ω1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x ∈ X

∣∣∣∣∣∣∣∣∣

max
t∈[0,T]

x(t) ∈ (l− − δ, v−),

min
t∈[0,T]

x(t) ∈ (l− − δ, l+ + δ),

max
t∈[0,T]

|x′(t)| < M0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,

Ω2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x ∈ X

∣∣∣∣∣∣∣∣∣

max
t∈[0,T]

x(t) ∈ (v+, R0 + δ),

min
t∈[0,T]

x(t) ∈ (l− − δ, l+ + δ),

max
t∈[0,T]

|x′(t)| < M0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

(3.67)

Then Ω1,Ω2 are bounded open subsets of X. Clearly, Ωi ⊂ Ω (i = 1, 2), where Ω as defined in
Lemma 3.5. It follows from Lemma 3.5 thatN : Ωi → Z is a k0-set-contractive map (i = 1, 2).
Therefore, it follows from Lemmas 2.1 and 3.3 that N : Ωi → Z is L-k-set contractive on
Ωi (i = 1, 2) with k = k0/l(L) ≤ k0 < 1.

By the assertion (4) of Lemma 3.2, (3.52), (3.63), (3.65), and (3.66), it is easy to verify
that Ωi satisfies the assumptions (i) and (ii) in Lemma 2.2 (i = 1, 2). By the assertion (2) of
Lemma 3.2, a direct computation gives

degB{JQN,Ω1 ∩ KerL, 0} = sgn

⎛
⎝−

n∑
j=1

bj +
h

ex−

⎞
⎠ = 1,

degB{JQN,Ω2 ∩ KerL, 0} = sgn

⎛
⎝−

n∑
j=1

bj +
h

ex+

⎞
⎠ = −1.

(3.68)

Here, J is taken as the identity mapping since ImQ = KerL. So far we have proved that Ωi

satisfies all the assumptions in Lemma 2.2 (i = 1, 2). Hence, (3.1) has at least two T -periodic
solutions x∗

i (t) and x∗
i ∈ domL ∩Ωi (i = 1, 2). Since Ω1 ∩Ω2 = ∅, x∗

i (i = 1, 2) are different. Let
y∗
i (t) = ex

∗
i (t) (i = 1, 2). Then y∗

i (t) (i = 1, 2) are two different positive T -periodic solutions of
(1.1). The proof is complete.

Example 3.7. Consider the following equation:

dy(t)
dt

= y(t)
[
a(t) − b(t) lny(t − σ(t)) − c(t)

d

dt
lny(t − τ(t))

]
− h(t), (3.69)
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where

a(t) =
(

1
4.2e

+
1

4.2e
sin2t

)
ε, b(t) = (2.35 + 0.15 sin t)ε,

c(t) = (0.9 + 0.1 cos t)ε, σ(t) ≡ 2π, τ(t) ≡ 4π, h =
3ε
2e

+
ε

2e
sin t,

(3.70)

and the constant ε > 0. Clearly, (H1) is satisfied.
Let μ(t) be the inverse function of t − σ(t), and γ(t) be the inverse function of t − τ(t).

Then we have

μ(t) = t + 2π, γ(t) = t + 4π,

Γ(t) =
b
(
μ(t)

)

1 − σ ′(μ(t)) − c′
(
γ(t)

)

1 − τ ′
(
γ(t)

) = b(t + 2π) − c′(t + 4π) = (2.35 + 0.25 sin t)ε.
(3.71)

Hence, (H2) is satisfied.
It is easy to see that

T = 2π, au =
ε

2.1e
, al =

ε

4.2e
, a =

ε

2.8e
, bu = 2.5ε, bl = 2.2ε, b = 2.35ε,

Γu = 2.6ε, Γl = 2.1ε, Γ = 2.35ε, cu = ε, hu =
2ε
e
, hl =

ε

e
, h =

3ε
2e

.

(3.72)

Therefore, we have

hl

Γu
=

1
2.6e

,
au

Γl
=

1
4.41e

,

1 + ln
hl

Γu
= − ln 2.6.

(3.73)

So,

1 + ln
hl

Γu
<

au

Γl
<

hl

Γu
< 1. (3.74)

Hence, (H3) is satisfied.
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Also, it is easy to see that

al − cu(1 − τ ′)uM0

bu
=

ε/(4.2e) − εM0

2.5ε
=

1
10.5e

− M0

2.5
< 1,

q = 2

∣∣∣∣∣ln
hl

Γu

∣∣∣∣∣ = 2(ln 2.6 + 1) > 1, p =
2Ta +

(
Γ + b

)
Tq

1 − T
(
Γ + b

)
− cu

=
πε/(0.7e) + 18.8(ln 2.6 + 1)πε

1 − 9.4πε − ε
,

R0 = q + p,

M0 =
au + buR0 + hueR0

1 − cu(1 − τ ′)u
=

ε/(2.1e) + 2.5εR0 + 2εeR0−1

1 − ε
.

(3.75)

Therefore, we obtain that

R0 > q >
al − cu(1 − τ ′)uM0

bu
. (3.76)

Noticing that limε→ 0+R0 = q, we have limε→ 0+M0 = 0. Therefore, for some sufficiently small
ε > 0, the following inequalities hold:

max
{
1 + ln

hu

bl
, 0

}
= max{− ln 1.1, 0} = 0 <

al − cu(1 − τ ′)uM0

bu
,

T
(
Γ + b

)
+ cu = 9.4πε + ε < 1.

(3.77)

By (3.76)-(3.77), (H4) is also satisfied. Therefore, all necessary conditions of Theorem 3.6 are
satisfied. By Theorem 3.6, (3.69) has at least two positive 2π-periodic solutions.
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