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The hybrid joints of manipulators can be switched to either active (actuated) or passive
(underactuated) mode as needed. Consider the property of hybrid joints, the system switches
stochastically between active and passive systems, and the dynamics of the jump system cannot
stay on each trajectory errors region of subsystems forever; therefore, it is difficult to determine
whether the closed-loop system is stochastically stable. In this paper, we consider stochastic
stability and sliding mode control for mobile manipulators using stochastic jumps switching
joints. Adaptive parameter techniques are adopted to cope with the effect of Markovian switching
and nonlinear dynamics uncertainty and follow the desired trajectory for wheeled mobile
manipulators. The resulting closed-loop system is bounded in probability and the effect due to the
external disturbance on the tracking errors can be attenuated to any preassigned level. It has been
shown that the adaptive control problem for the Markovian jump nonlinear systems is solvable if
a set of coupled linear matrix inequalities (LMIs) have solutions. Finally, a numerical example is
given to show the potential of the proposed techniques.

1. Introduction

The hybrid joint shown in Figure 1 was first proposed in [1–5], which is with one clutch
and one brake. When the clutch is released, the link is free, and the passive link is directly
controlled by the dynamic coupling ofmobilemanipulators; when it is on, the joint is actuated
by the motor. Moreover, the passive link can be locked by the brake embedded in the joint as
needed. The robot with hybrid joints is called the hybrid actuated robot.

One of the advantages of using hybrid actuated robots is that they may consume less
energy than the fully-actuated ones. For example, hyperredundant robots, such as snake-like
robots or multileggedmobile robots [6], need large redundancy for dexterity and specific task
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Figure 1: The hybrid joint.

completion while underactuation structure allows a more compact design and much simpler
control and communication schemes. The hybrid actuated robot concept is also useful for the
reliability or fault-tolerant design of fully-actuated robots working in hazardous areas or with
dangerous materials. If any of the joint actuators of such a device fails, one degree of freedom
of the system would be lost. It is important, in these cases, that the passive (failed) joint can
still be controlled via the dynamic coupling with the active ones, so the system can still make
use of all of its degrees of freedom originally planned.

Hybrid actuated mobile manipulator is the robot manipulator consisting of hybrid
joints mounting on a wheeled mobile robot, which first appeared in [1–5]. Hybrid actuated
mobile manipulators are different from full-actuated mobile manipulators in [7–26], due to
simultaneously integrating both kinematic constraints and dynamic constraints. For these
reasons, increasing effort needs to be made towards control design that guarantee stability
and robustness for hybrid actuated mobile manipulators with the consideration of joint
switching. The hybrid joint is also with the characteristic of underactuated the joints [27–
34], for example, the hybrid joints in the free mode, which can rotate freely, can be indirectly
driven by the effect of the dynamic coupling between the active and passive joints. The zero
torque at the hybrid joints results in a second-order nonholonomic constraint [35, 36].

The mobile manipulator using Markovian switching hybrid joint can be loosely
defined as a system that involves the interaction of both discrete events (represented by
finite automata) and continuous-time dynamics (represented by differential equations). The
joint switching seems to be stochastic and the switching may appear in any joints of the
robot which need to develop Markovian jump linear system (MJLS) [37] to incorporate
abrupt changes in the joints of mobile manipulators and use the Markovian jumping systems
to guarantee the stochastic stability. Therefore, the discrete part (switching part) can be
regarded as a continuous-time Markov process representing the modes of the system and
the continuous part represents the dynamics state of the system, which evolves according to
the differential dynamic equation when the mode is fixed. The hybrid formulation provides
a powerful framework for modeling and analyzing the systems subject to abrupt joint
switching variations, which are partly due to the inherently vulnerability to abrupt changes
caused by component failures, sudden environmental disturbances, abrupt variation of the
operation point of mobile manipulator, and so on.

The joint switching seems to be stochastic and the switching may appear in any joints
of the robot, while simple switching approach cannot handle all the possibility. In this paper,
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to avoid the necessity of stopping the robot as the joint switches, MJLS method used to model
and analyze switching robotic systems is an effective but challenging work.

To our best knowledge, there are few works considering MJLS method used to
model and analyze switching robotic systems. In this paper, we consider the problem of
adaptive control for stochastic jump systems with matched uncertainties and disturbances.
The jumping parameters are treated as continuous-time discrete-state Markov process. Note
that adaptive control method is one of the most popular techniques of nonlinear control
design [8]. However, adaptive control for stochastic nonlinear mechanical dynamics systems
with Markovian switching has received relatively little attention. Therefore, this paper will
be concerned with the design of adaptive control for mobile manipulators using Markovian
switching joints. There exist parameter uncertainties, nonlinearities, and external disturbance
in the systems and environments under consideration. First, we design a reduced model for
the wheeled mobile manipulator with switching joints. After introducing continuous-time
Markov chain, adaptive control is adopted to cope with the effect of Markovian switching
and nonlinear dynamics uncertainty and drive wheeled mobile manipulators following the
desired trajectory. The resulting closed-loop system is bounded in probability and the effect
due to the external disturbance on the tracking error can be attenuated to any pre-assigned
level. Moreover, unknown upper bounds of dynamics uncertainties and disturbances can be
estimated by adaptive updated law. The mechanical system with matched disturbances and
Markov jumping is solved in terms of a finite set of coupled LMIs. It has been shown that
the adaptive control problem for the Markovian jump nonlinear systems is solvable if a set of
coupled LMIs have solutions. Finally, a numerical example is given to show the potential of
the proposed techniques.

The main contributions of this paper lie in:

(i) developing a reduced model for mobile manipulators such that it could be
transformed into the framework of MJLS with modeling system dynamics
uncertainties;

(ii) designing an adaptive sliding mode control (SMC) for wheeled mobile manipula-
tors with hybrid joints with Markovian switching;

(iii) the system with matched disturbances and Markov jumping is solved in terms of a
finite set of coupled LMIs.

2. Preliminary

Lemma 2.1 (see [38]). Let e = H(s)r with H(s) representing an (n × m)-dimensional strictly
proper exponentially stable transfer function, r and e denoting its input and output, respectively.
Then r ∈ Lm

2
⋂
Lm
∞ implies that e, ė ∈ Ln

2
⋂
Ln
∞, e is continuous, and e → 0 as t → ∞. If, in

addition, r → 0 as t → ∞, then ė → 0.

Lemma 2.2 (see [39]). For the matrix A and B with appropriate dimensions, if (I + AB) is
nonsingular, then (I +AB)−1 = I −A(I + BA)−1B.

Theorem 2.3. Given a Markov jump linear system with the system parameter matrices Ai, Bi, Ci,
Di, and I > η2DT

i Di, for η ≥ 0, Φ(t) is unknown but satisfying ‖Φ(t)‖ ≤ η,

ẋ =
[
Ai + Bi[I −Φ(t)Di]−1Φ(t)Ci

]
x, (2.1)
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if there exits Pi > 0 satisfies the following inequality for each i ∈ S = 1, 2, . . . ,N,

⎡

⎢
⎢
⎢
⎣

PiAi +AT
i Pi +

N∑

j=1

πijPj ηPiBi CT
i

ηBT
i P

T
i −I ηDT

i

Ci ηDi −I

⎤

⎥
⎥
⎥
⎦

< 0, (2.2)

then the system (2.1) is stable in the mean square sense.

Proof. If there exists a positive definite matrix Pi satisfying Lyapunov inequality (2.3), then
the indefinite system (2.1) is asymptotically stable:

PiAi +AT
i Pi + PiBi[I −Φ(t)Di]−1Φ(t)Ci +

(
Ai + Bi[I −Φ(t)Di]−1Φ(t)Ci

)T
PT
i +

N∑

j=0

πijPj < 0.

(2.3)

Let pi = [I −Φ(t)Di]
−1Φ(t)Cix, then pi can be represented as pi = Φ(t)[Cix+Dipi]. Then, from

the inequality ‖Φ(t)‖ ≤ η, we can achieve pTi pi ≤ η2[Cix +Dipi]
T [Cix +Dipi]. Since

2xTPiBi(I −Φ(t)Di)−1Φ(t)Cix = 2xTPiBipi

≤ 2xTPiBipi +
[
Cix +Dipi

]T[
Cix +Dipi

] − η−2pTi pi

= xTCT
i Cix + 2xT

[
PiBi + CT

i Di

]
pi

− η−2pTi
[
I − η2DT

i Di

]
pi.

(2.4)

Assume that aT
i = xT (PiBi +CT

i Di), bi = pi, Wi = η2(I −η2DT
i Di)

−1, using inequality (2.4) and
Lemma 2.1, there is

2xTPiBi(I −Φ(t)Di)−1Φ(t)Cix

≤ xTCT
i Cix + η2xT

(
PiBi + CT

i Di

)(
I − η2DT

i Di

)−1(
PiBi + CT

i Di

)T
x.

(2.5)

If the following inequality stands, then inequality (2.3) holds:

PiAi +AT
i Pi +

N∑

j=0

πijPj + CT
i Ci + η2

(
PiBi + CT

i Di

)(
I − η2DT

i Di

)−1(
PiBi + CT

i Di

)T
< 0.

(2.6)

With Schur Complement, it is easy to transfer (2.6) into (2.2), namely, the system (2.1) is
stable. The proof is completed.
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Definition 2.4. A stochastic process ν(t) is said to be bounded in probability if the random
variables |ν(t)| are bounded in probability uniformly in t, that is,

lim
r→∞

sup
t>0

P |ν(t)| > r = 0. (2.7)

3. System Description

3.1. Dynamics

Consider an na DOF robotic manipulator mounted on a two-wheeled drivenmobile platform,
the dynamics can be described as:

M
(
q
)
q̈ + V

(
q, q̇
)
q̇ +G

(
q
)
+ d(t) = B

(
q
)
τ + f, (3.1)

where q = [qTv , q
T
a]

T ∈ R
n with qv = [x, y, ϑ]T ∈ R

nv denoting the generalized coordinates for
the mobile platform and qa ∈ R

na denoting the coordinates of the robotic manipulator joints,
and n = nv + na. The symmetric positive definite inertia matrix M(q) ∈ R

n×n, the Centripetal
and Coriolis torques V (q, q̇) ∈ R

n×n, the gravitational torque vector G(q) ∈ R
n, the known

input transformation matrix B(q) ∈ R
n×m, the control inputs τ ∈ R

m, and the generalized
constraint forces f ∈ R

n could be represented as, respectively,

M
(
q
)
=
[
Mv Mva

Mav Ma

]

, V
(
q, q̇
)
=
[
Vv Vva

Vav Va

]

, f =
[
JTv λn
0

]

,

G
(
q
)
=
[
Gv

Ga

]

, B
(
q
)
τ =
[
τv
τa

]

, d(t) =
[
dv

da

]

,

(3.2)

where Mv and Ma describe the inertia matrices for the mobile platform and the links,
respectively, Mva and Mav are the coupling inertia matrices of the mobile platform and
the links; Vv, Va denote the Centripetal and Coriolis torques for the mobile platform,
the links, respectively; Vva, Vav are the coupling Centripetal and Coriolis torques of the
mobile platform, the links. Gv and Ga are the gravitational torque vectors for the mobile
platform, the links, respectively; τv is the input vector associated with the left driven
wheel and the right driven wheel, respectively; and τa are the control input vectors
for the joints of the manipulator; dv, da denote the external disturbances on the mobile
platform, the links, respectively; Jv ∈ R

l×nv is the kinematic constraint matrix related
to nonholonomic constraints; λn ∈ R

l is the associated Lagrangian multipliers with the
generalized nonholonomic constraints. We assume that the mobile manipulator is subject to
known nonholonomic constraints. A method of modeling the dynamics of wheeled robots
considering wheel-soil interaction mechanics is presented in [40, 41]. For the reason of
simplification, we can adopt the methods of producing enough friction between the wheels
of the mobile platform and the ground.
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3.2. Reduced System

When the system is subjected to nonholonomic constraints, the (n − m) nonintegrable and
independent velocity constraints can be expressed as

Jv
(
q
)
q̇v = 0. (3.3)

The constraint (3.3) is referred to as the classical nonholonomic constraint when it is not
integrable. In the paper, constraint (3.3) is assumed to be completely nonholonomic and
exactly known.

Since Jv(q) ∈ R
(nv−m)×n introduce Ja ∈ R

nα×n, and J = [Jv, Ja]
T ∈ R

(n−m)×n, such that it is
possible to find am + na rank matrix R(q) ∈ R

n×(m+na) formed by a set of smooth and linearly
independent vector fields spanning the null space of J(q), that is,

RT(q
)
JT
(
q
)
= 0, (3.4)

where R(q) = [r1(q), . . . , rm(q), rm+1(q), . . . , rm+na(q)]. Define an auxiliary time function ż(t) ∈
R

m+na , and ż(t) = [ż1(t), . . . , żm(t), żm+1(t), . . . , żm+na(t)]
T such that

q̇ = R
(
q
)
ż(t) = r1

(
q
)
ż1(t) + · · · + rm

(
q
)
żm(t) + rm+1

(
q
)
żm+1(t) + · · · + rm+na

(
q
)
żm+na(t).

(3.5)

Equation (3.5) is the kinematic model for the wheeled inverted pendulums. Usually, ż(t) has
physical meaning, consisting of the angular velocity ω, the linear velocity v, and the joint
angle vector θa, that is, ż(t) = [v ω θ̇T

a ]
T . Equation (3.5) describes the kinematic relationship

between the motion vector q and the velocity vector ż(t).
Differentiating (3.5) yields

q̈ = Ṙ
(
q
)
ż + R

(
q
)
z̈. (3.6)

From (3.5), ż can be obtained from q and q̇ as

ż =
[
RT(q

)
R
(
q
)]−1

RT(q
)
q̇. (3.7)

The dynamic equation (3.1), which satisfies the nonholonomic constraint (3.3), can be
rewritten in terms of the internal state variable ż as

M
(
q
)
R
(
q
)
z̈ + V ∗ż +G

(
q
)
+ d(t) = B

(
q
)
τ + JT

(
q
)
λ, (3.8)

with V ∗ = [M(q)Ṙ(q) + V (q, q̇)R(q)], λ = [λn, 0]
T .
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Table 1: The modes of operation.

Mode
The modes of hybrid joints

Right wheel Left wheel Joint 1 Joint 2 · · · Joint na

1 normal normal normal normal · · · normal
2 normal underactuated normal normal · · · normal
3 normal underactuated underactuated normal · · · normal
4 normal underactuated normal underactuated · · · normal
...

...
...

...
...

...
...

2na+1 normal underactuated underactuated underactuated · · · underactuated

Substituting (3.5) and (3.6) into (3.1), and then premultiplying (3.1) by RT (q), the
constraint matrix JT (q)λ can be eliminated by virtue of (3.4). As a consequence, we have
the transformed nonholonomic system

M(q)z̈ + V(q, q̇)ż + G(q) +D = U, (3.9)

where M(q) = RTM(q)R, V(q, q̇) = RT [M(q)Ṙ + V (q, q̇)R], G(q) = RTG(q), D = RTd(t),
U = RTB(q)τ , which is more appropriate for the controller design as the constraint λ has been
eliminated from the dynamics.

Remark 3.1. In this paper, we choose z = [θr θl θ1 θ2, . . . , θna]
T , where θr , θl denote the

rotation angle of the left wheel and the right wheel of the mobile platform, respectively,
and θ1, . . . , θna denote the joint angles of the link 1, 2, . . . , na, respectively, and τ =
[τr , τl, τ1, . . . , τna].

Remark 3.2. The total degree of freedom for a two-wheeled driven mobile manipulator is
nq = na + 2.

3.3. Switching Dynamics

The hybrid joint is within each actuator of the wheels and links of the mobile manipulator,
such that switching may appear in every joint independently. Since the left wheel and right
wheel are symmetric, for simplification, we assume that the switching appears in the left
wheel and each joint of the manipulator independently. Therefore, there are 2na+1 modes
of operation, which are listed in Table 1 depending on which hybrid joint is in the active
(actuated) or passive (underactuated) mode.

Let hp be the number of passive hybrid joints that have not already reached their set
point in a given instant. If hp > ha, ha passive joints are controlled and grouped in the vector
zp ∈ R

ha , the remaining passive hybrid joints, if any, are kept locked by the brakes, and the
active joints are grouped in the vector za ∈ R

ha . If hp < ha, the hp passive hybrid joints
are controlled applying torques in ha active hybrid joints. In this case, zp ∈ R

hp and za ∈
R

ha . The strategy is to control all passive hybrid joints until they reach the desired position,
considering the conditions exposed above, and then turn on the clutch. After that, all the
active hybrid joints are controlled by themselves as a fully-actuated robot.
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The dynamics (3.9) can be partitioned into two parts, the actuated part and the passive
part, represented by “a” and “p,” respectively. Then we can rewrite the dynamics (3.9) as

[Ma(ζ) Map(ζ)
Mpa(ζ) Mp(ζ)

][
z̈a
z̈p

]

+
[Va Vap

Vpa Vp

][
ża
żp

]

+
[Ga

Gp

]

+
[Da(t)
Dp(t)

]

=
[Ua

Up

]

, (3.10)

where

(i) Ma ∈ R
ha×ha ,Mp ∈ R

hp×hp : the inertia matrices of the actuated parts and the passive
parts, respectively;

(ii) Map ∈ R
ha×hp , Mpa ∈ R

hp×ha : the coupling inertia matrices of the actuated parts and
the passive parts, respectively;

(iii) Va ∈ R
ha×ha , Vp ∈ R

hp×hp : the Centripetal and Coriolis torque matrices of the
actuated parts and the passive parts, respectively;

(iv) Vap ∈ R
ha×hp , Vpa ∈ R

hp×ha : the coupling Centripetal and Coriolis torques of the
actuated parts and the passive parts, respectively;

(v) Ga ∈ R
ha , Gp ∈ R

hp : the gravitational torque vector for the actuated parts and the
passive parts, respectively;

(vi) Da(t) ∈ R
ha , Dp(t) ∈ R

hp : the bounded external disturbance from the environments
on the actuated parts and the passive parts, respectively;

(vii) Ua ∈ R
ha : the control input torque vector for the actuated parts of the joints;

(viii) Up ∈ R
hp : the control input torque vector for the passive parts of the joints satisfying

Up = 0.

After some simple manipulation, we can further obtain

Ua = M(z)z̈p +H(z, ż) +D(t), (3.11)

where

M = Ma −MaM−1
paMp,

H = V 1ża + V 2żp + Ga −MaM−1
paGp,

D(t) = Da −MaM−1
paDp,

V 1 = Va −MaM−1
paVpa,

V 2 = Vap −MaM−1
paVp.

(3.12)
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4. Control Design

4.1. Model-Based Control with Unmodeled Dynamics

Define the tracking errors as

e = zp − zpd,

ė = żp − żpd,
(4.1)

where z̈pd, żpd and zpd denote the desired trajectories vectors of passive joint accelerations,
velocities, and positions, respectively.

The parameters M, H, and D(t) in dynamical model (3.11) are functions of physical
parameters of mobile manipulators like links masses, links lengths, moments of inertial, and
so on. The precise values of these parameters are difficult to acquire due to measuring errors
and environment and payloads variations. Therefore, it is assumed that actual value M, H,

and D(t) can be separated as nominal parts denoted by M0, H0, and D0(t) and uncertain
parts denoted by ΔM, ΔH, and ΔD(t), respectively. These variables satisfy the following
relationships:

M = M0 + ΔM,

H = H0 + ΔH,

D = D0 + ΔD.

(4.2)

Suppose that the dynamical models of robot manipulators are known precisely and
unmodeled dynamics are excluded, that is, ΔM, ΔH, and ΔD in (3.11) are all zeros. At this
time, dynamical models (3.11) can be converted into the following nominal models:

M0(z)z̈p +H0(z, ż) +D0 = U0. (4.3)

Consider the control law as

U0 = M0(z)
(
z̈pd −Kvė −Kpe

)
+H0(z, ż) +D0, (4.4)

where Kv and Kp are positive definite matrices. Substituting (4.4) into (4.3) yields

ë +Kvė +Kpe = 0. (4.5)

From Lemma 2.1, it is obvious that errors ė and ë will asymptotically if proportional gain Kp

and derivative gain Kv are chosen in the favorable situation.
According to (4.4), the proposed control is effective based on the strong assumptions

that exact knowledge of robot dynamics is precisely known and unmodeled dynamics has
to be ignored, which is difficult to obtain in practices. Therefore, we need to approximate
dynamics nonlinear functions. One can imagine that model-based control is used to control
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nominal system and another adaptive based control attaching to model-based control for
uncertain system can be designed. In this way, applying (4.4) to original systems (3.11) yields

ë +Kvė +Kpe = Ξ, (4.6)

Ξ = −M−1
0
(
ΔMz̈p + ΔH(z, ż) + ΔD(t)

)
, (4.7)

which Ξ is a function of joint variables, physical parameters, parameters variations,
unmodeled dynamics, and so on and denotes the structured uncertainty and unstructured
uncertainty.

Up to now, the control objective can be restated as: seek a control law based on nominal
parameters and adaptive-based compensator such that joint motions of robotic systems (3.11)
can follow desired trajectories. The overall control law can be written as

Ua = U0 +Uc, (4.8)

where Uc is an adaptive-based controller serving as a compensator for model-based control
and designed later. Using control law (4.8), the closed-loop system becomes:

ë +Kvė +Kpe = M
−1
0 Uc + Ξ. (4.9)

Supposed that the state vector is defined as x = [eT , ėT ]T , the state space equation has
form as

ẋ = Ax + BU, (4.10)

A =
[

0 I
−Kp −Kv

]

, B =
[
0
I

]

,

U = M
−1
0 Uc + Ξ.

(4.11)

4.2. Stochastic Control Design

Since the hybrid joints can be switched among different modes, considering the Markovian
jumping, we can rewrite (4.10) by integrating Markovian jumping parameters as

ẋ(t) = A(rt)x(t) + B(rt)U, (4.12)

where rt = j, and j is one of the Markovian jumping parameters in the limited set S =
{1, 2, . . . ,N} with the mode transition rate matrix

∏
= (πjι), (k, ι ∈ N). The jump transition

probability can be defined as

P(rt+Δt = ι | rt = k) =

{
πkιΔt + o(Δt), k /= ι,

1 + πkkΔt + o(Δt), ι = k,
(4.13)
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where
∑N

ι=1,ι /= k πkι = −πkι, πkι ≥ 0, ∀ ι, k ∈ Ω, ι /= k. Here, Δt > 0 and limΔt→ 0o(Δt)/Δt = 0.
The model of the form (4.12) is a hybrid system in which one state x(t) takes values
continuously and another state rt, referred to as the mode or operating form, takes values
discretely in S.

For V (t, x) ∈ C1, let us introduce the weak infinitesimal operator LV of the process
{x(t), ηt, t ≥ 0} at the point {t, x, j},

LV =
∂V

∂t
+
∂V

∂x
ẋ(t) +

N∑

k=1

πkjV
(
x, j
)
. (4.14)

For each possible value rt = j, j ∈ S, we will denote the system matrices associated
with mode j by

A(rt) = A
(
j
)
= Aj, B(rt) = B

(
j
)
= Bj, (4.15)

whereAj , Bj are known real constant matrices of appropriate dimensions which describe the
nominal system.

Theorem 4.1. If the linear matrix inequalities (4.16) have the solution Xj for given Aj , Bj , Xj > 0,
and

⎡

⎢
⎣

B̃j 0 0
0 I 0
0 0 I

⎤

⎥
⎦

T
⎡

⎢
⎢
⎢
⎣

(

AjXj +XjA
T
j +

N∑

k=1

πkjXj

)

∗ ∗
η −I ηI

AjXj ηI −I

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎣

B̃j 0 0
0 I 0
0 0 I

⎤

⎥
⎦ < 0, (4.16)

and define the sliding surface as

σj = Sjxj + γ

∫ t

0
Sjxjdt, (4.17)

Sj =
(
BT
j X

−1
j Bj

)−1
BT
j X

−1
j . (4.18)

Consider the adaptive control as

Uc = −M0Kσj −M0
(
SjAjxj + γSjxj

) −M0
1
b

5∑

i=1

σj ĉiΦ2
i∥

∥σj

∥
∥Φi + δ

, (4.19)

with the adaptive law

˙̂ci = −�iĉi +
ωiΦ2

i

∥
∥σj

∥
∥2

∥
∥σj

∥
∥Φi + δi

, i = 1, . . . , 5, (4.20)
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where Ĉ = [ĉ1, . . . , ĉ5]
T , and Φ = [‖z̈pr‖, 1, ‖ż‖, 1, ‖ż‖]T , ωi > 0, K is positive definite, δi > 0

and �i > 0 ( 1 ≤ i ≤ 5) satisfying: limt→∞δi(t) = 0,
∫∞
0 δi(s)ds = ρiδ < ∞, limt→∞�i(t) = 0,∫∞

0 �i(s)ds = ρi� < ∞ with the constants ρiδ and ρi� , and b will be defined later. Then, a stable
sliding mode exists from the initial time, and the sliding dynamics is stable.

Proof. Define the transfer matrix Tj and the related vector ν, we have

Tj =

⎡

⎣

(
B̃jXjB̃j

)
B̃T
j

(
BT
j X

−1
j Bj

)−1
BT
j X

−1
j

⎤

⎦, (4.21)

ν =
[
ν1 ν2

]T
= Tjxj , (4.22)

where ν1 ∈ Rn−m, and ν2 ∈ Rm, B̃j is any basis of the null space of BT
j , that is, Bj is an

orthogonal complement of Bj , Note that given any Bj , B̃j is not unique. Moreover, T−1
j =

[ XjB̃j Bj ].
Consider (4.22), it is easy to have

σ̇j = ν̇2 + γν2. (4.23)

From the definition of σj , we have

σ̇j = Sj

(
Ajxj + BjU

)
+ γSjxj . (4.24)

Consider (4.11) and (4.18), we can rewrite (4.24) as

σ̇j = SjAjxj + SjBjM
−1
0 Uc + SjBjΞ + γSjxj = SjAjxj +M

−1
0 Uc + Ξ + γSjxj . (4.25)

with SjBj = I.
Consider (4.7), and z̈p = z̈r + σ̇j with z̈r = z̈pd − γν2 and σ̇j = ν̇2 + γν2, we can rewrite it

as

Ξ = −M−1
0
(
ΔMz̈p + ΔH(z, ż) + ΔD(t)

)

= −M−1
0 ΔMz̈r −M

−1
0 ΔMσ̇j −M

−1
0 ΔH(z, ż) −M

−1
0 ΔD.

(4.26)

Let Γ = (I +M
−1
0 ΔM)−1, then we have

σ̇j = Γ
(
SjAjxj + γSjxj +M

−1
0 Uc −M

−1
0 ΔMz̈r −M

−1
0 ΔH(z, ż) −M

−1
0 ΔD

)
. (4.27)

Let us consider the Lyapunov function as

V1 = σT
j σj . (4.28)
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Taking the derivative (4.28) and integrating (4.27), we have

V̇1 = σT
j σ̇j + σ̇T

j σj

= 2σT
j Γ
(
SjAjxj + γSjxj +M

−1
0 Uc −M

−1
0 ΔMz̈r −M

−1
0 ΔH(z, ż) −M

−1
0 ΔD

)
.

(4.29)

Substituting (4.19) into (4.29), we have

V̇1 = −2σT
j ΓKσj + 2σT

j Γ

×
(

−1
b

5∑

i=1

σj ĉiΦ2
i∥

∥σj

∥
∥Φi + δ

−M
−1
0 ΔMz̈r −M

−1
0 ΔH(z, ż) −M

−1
0 ΔD

)

= −2σT
j ΓKσj − 2σT

j Γ
1
b

5∑

i=1

σĉiΦ2
i∥

∥σj

∥
∥Φi + δ

− 2σT
j ΓM

−1
0 ΔMz̈r

− 2σT
j ΓM

−1
0 ΔH(z, ż) − 2σT

j ΓM
−1
0 ΔD

≤ −2σT
j ΓKσj − 2Γ

1
b

5∑

i=1

∥
∥σj

∥
∥2ĉiΦ2

i∥
∥σj

∥
∥Φi + δ

+ 2
∥
∥σj

∥
∥‖Γ‖

∥
∥
∥M

−1
0 ΔM

∥
∥
∥‖z̈r‖

+ 2
∥
∥σj

∥
∥‖Γ‖

∥
∥
∥M

−1
0

∥
∥
∥‖ΔH(z, ż)‖ + 2

∥
∥σj

∥
∥‖Γ‖

∥
∥
∥M

−1
0

∥
∥
∥‖ΔD‖.

(4.30)

Assumption 4.2. There exist some finite positive constants ci > 0 (1 ≤ i ≤ 5) such that ∀z ∈
Rn−l, ∀ż ∈ Rn−l, ‖Γ‖‖M−1

0 ΔM‖ ≤ c1, ‖Γ‖‖M
−1
0 ‖‖ΔH(z, ż)‖ ≤ c2 + c3‖ż‖, ‖Γ‖‖M

−1
0 ‖‖ΔD‖ ≤

c4 + c5‖ż‖.

Remark 4.3. For simplification, we assume that ΔM > 0. There exist the minimum and
maximum eigenvalues λmin(Γ) and λmax(Γ), such that for all x ∈ R(n−l−np), there exists the
known positive parameter b satisfying 0 < b ≤ λmin(Γ), that is, xTbIx ≤ xTλmin(Γ)Ix.

Remark 4.4. In reality, these constants ci, 1 ≤ i ≤ 5 cannot be obtained beforehand. Although
any fixed large ci can guarantee good performance, it is not practical as large ci imply, in
general, high noise amplification and high cost of control. Therefore, it is necessary to develop
an adaptive law which can approximate the knowledge of ci, 1 ≤ i ≤ 5.

Choose the Lyapunov function candidate V3 = V1 + V2 with

V2 = C̃TΩ−1C̃, (4.31)

where C̃ = C − Ĉ, and Ω = diag[ωi], i = 1, . . . , 5, therefore, we have

V3 ≤ −2σT
j ΓKσj − 2Γ

1
b

5∑

i=1

∥
∥σj

∥
∥2ĉiΦ2

i∥
∥σj

∥
∥Φi + δ

+ 2
∥
∥σj

∥
∥‖Γ‖

∥
∥
∥M

−1
0 ΔM

∥
∥
∥‖z̈r‖

+ 2
∥
∥σj

∥
∥‖Γ‖

∥
∥
∥M

−1
0

∥
∥
∥‖ΔH(z, ż)‖ + 2

∥
∥σj

∥
∥‖Γ‖

∥
∥
∥M

−1
0

∥
∥
∥‖ΔD‖ + 2 ˙̃C

T
Ω−1C̃.

(4.32)
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Integrating (4.20) into (4.32), we have

V3 ≤ −2σT
j ΓKσj − 2Γ

1
b

5∑

i=1

∥
∥σj

∥
∥2ĉiΦ2

i

‖σj‖Φi + δ
+ 2
∥
∥σj

∥
∥‖Γ‖

∥
∥
∥M

−1
0 ΔM

∥
∥
∥‖z̈r‖

+ 2
∥
∥σj

∥
∥‖Γ‖

∥
∥
∥M

−1
0

∥
∥
∥‖ΔH(z, ż)‖ + 2

∥
∥σj

∥
∥‖Γ‖

∥
∥
∥M

−1
0

∥
∥
∥‖ΔD‖

+ 2
5∑

i=1

ĉTi �iω
−1
i c̃i − 2

5∑

i=1

c̃iΦ2
i

∥
∥σj

∥
∥2

∥
∥σj

∥
∥‖Φi‖ + δi

≤ −2σT
j ΓKσj + 2

5∑

i=1

ĉTi �iω
−1
i c̃i +

5∑

i=1

2δi

≤ −2λmin(ΓK)
∥
∥σj

∥
∥2 +

5∑

i=1

�i

2ωi
c2i +

5∑

i=1

2δi,

(4.33)

with c̃iĉi = −(ĉi − (1/2)ci)
2 + (1/4)c2i . Therefore, V̇3 ≤ −λmin(ΓK)‖σj‖2 +

∑5
i=1(�i/2ωi)c2i +

∑5
i=1 2δi. Since

∑5
i=1(�i/2ωi)c2i +

∑5
i=1 2δi is bounded, there exists t > t1,

∑5
i=1(�i/2ωi)c2i +

∑5
i=1 2δi ≤ ρ1 with the finite constant ρ1, when ‖σj‖ ≥ √ρ1/λmin(ΓK), then V̇3 ≤ 0. For ‖σj‖ ≥√
ρ1/λmin(ΓK), and σj will converge to a compact set denoted by

Υj :=

{

σj :
∣
∣σj

∣
∣ ≤
√

ρ1
λmin(ΓK)

}

. (4.34)

From all the above, σj converges to a small set containing the origin as t → ∞. Moreover,
σj → 0 as t → ∞ because of limt→∞δi(t) = 0, limt→∞�i(t) = 0, therefore, Υj converges to the
origin, there σj → 0, therefore, ν̇2 → 0 and ν2 → 0.

Consider (4.21) and (4.22), we have

ν̇ = Tjẋj . (4.35)

Consider Theorem 2.3 and (4.23), and let σ̇ = 0, it is easy to have

ν̇ =
[
ν̇1
ν̇2

]

= Ajν, (4.36)

where

Aj =
[
Λj1 Λj2

0 −γI
]

=

⎡

⎣

(
B̃T
j XB̃j

)−1
B̃T
j AjXjB̃

(
B̃T
j XB̃j

)−1
B̃T
j AjBj

0 −γI

⎤

⎦, (4.37)

Therefore, we can partition the state equation as as

ν̇1 = Λj1ν1 + Λj2ν2,

ν̇2 = −γν2,
(4.38)
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Since ν2 → 0 and ν̇2 → 0, we only consider the stability of ν̇1 = Λj1ν1. It is easy to obtain that
if there exists a positive-define matrix Pj = B̃T

j XjB̃j enabling the following inequality to hold:

⎡

⎢
⎢
⎢
⎣

PjΛj1 + ΛT
j1Pj +

N∑

k=1

πkjPj ∗ ∗

ηB̃j −I ∗
Cj ηI −I

⎤

⎥
⎥
⎥
⎦

< 0, (4.39)

where Cj = AjXjB̃j , then the system

ν̇1 = Λj1ν1 (4.40)

is asymptotically stable, where X is a solution matrix to the LMIs (4.16), which implies that
the sliding-mode dynamics (4.36) is asymptotically stable. This implies that (4.39) holds if
the matrix inequality shown in (4.16) holds.

Remark 4.5. Note that Theorem 4.1 provides a solution to the problem of adaptive control
for mechanical nonlinear systems with Markovian jump parameters. It is worth mentioning
that the work conducted in this paper is the attempt to overcome the dynamics uncertainty
arising in the sliding mode control for dynamics nonlinear systems with Markovian jump
parameters and adopt adaptive control for dynamics nonlinear systems with Markovian
jump parameters. The results obtained could be extended to general dynamics systems.

4.3. Switching Stability

For the system switching stability between the two different modes, we give the following
theorems.

Theorem 4.6. Consider the switching system (4.13) if the system is both stable before and after the
switching phase using the control law (4.19). Assume that there exists no external impacts during the
switching, the system is also stable during the switching phase.

Proof. Since V1 and V2 are decreasing from Theorem 4.1, we know the system is stable no
matter the hybrid joint is either actuated or underactuated. In the preceding, we have shown
that the Lyapunov function is nonincreasing during the switching. Let V

−
12 = (1/2 )(ζ̇− −

ζ̇)D(ζ̇− − ζ̇) and V
+
12 = (1/2) (ζ̇+ − ζ̇)D(ζ̇+ − ζ̇) denote the Lyapunov function before and after

the switching, and ζ̇+ and ζ̇− represent the post- and preswitch velocities, respectively. The
Lyapunov function change during the switching can be simplified as follows:

ΔV = V
+ − V

− =
1
2
(
ζ̇+ − ζ̇

)D(ζ̇+ − ζ̇
) − 1

2
(
ζ̇− − ζ̇

)D(ζ̇− − ζ̇
)
. (4.41)

There is no external impact during the switching, which means that there are no extra energy
injected into the system. Since the inertia properties of the switching joint and link exist,
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Figure 2: The wheeled mobile manipulator in the simulation.

during the switching joint, if the switching joint is switched from the active mode to the
passive mode without considering the friction, the motion of the link should be continuous,
that is, ζ̇+ = ζ̇− = ζ̇. Therefore, during the switching, the Lyapunov function is nonincreasing.
If considering the friction, the Lyapunov function is decreasing, that is, ΔV ≤ 0, the motion
is stable during the switching. Similarly, if the switching joint is switched from the passive
mode to the active mode, although the joint torque is added, since the motion of the system is
continuous because of the inertia, that is, ΔV ≤ 0, the motion of the system is also stable.

5. Simulation Studies

To verify the effectiveness of the proposed control algorithm, let us consider awheeledmobile
underactuated manipulator shown in Figure 2.

The following variables have been chosen to describe the vehicle (see also Figure 2),

(i) τl, τr : the torques of two wheels;

(ii) τ1: the torques of joint 1;

(iii) θl, θr : the rotation angle of the left wheel and the right wheel of the mobile platform;

(iv) v: the forward velocity of the mobile platform;

(v) θ: the direction angle of the mobile platform;

(vi) ω: the rotation velocity of the mobile platform, and ω = θ̇;

(vii) θ1: the joint angle of the underactuated link;

(viii) m1, I1, l1: the mass, the inertia moment, and the length for the link;

(ix) r: the radius of the wheels;

(x) l: the distance of the wheels;

(xi) lG: the distance between the wheel and joint 1;

(xii) m: the mass of the mobile platform;

(xiii) I: the inertia moment of the mobile platform;
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(xiv) Iw: the inertia moment of each wheel;

(xv) g: gravity acceleration.

The mobile underactuated manipulator is subject to the following constraint: ẋ cos θ −
ẏ sin θ + θ̇lG = 0. Using the Lagrangian approach, we can obtain the dynamic model with
q = [θl, θr , θ1]

T , then we could obtain

M
(
q
)
q̈ + C

(
q, q̇
)
q̇ +G

(
q
)
= Bτ,

M
(
q
)
=

⎡

⎣
m11
(
q
)

m12
(
q
)

m13
(
q
)

∗ m22
(
q
)

m23
(
q
)

∗ ∗ m33
(
q
)

⎤

⎦, C
(
q, q̇
)
=

⎡

⎣
c1
(
q, q̇
)

c2
(
q, q̇
)

c3
(
q, q̇
)

⎤

⎦,

B =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦,

(5.1)

where

m11
(
q
)
= 2p1 +

2p3
l2

tan2θr,

m12
(
q
)
=

p4
l
tan θr − p8 sin θl,

m13
(
q
)
= 0, m22

(
q
)
= 2p2,

m23
(
q
)
= p6, m33

(
q
)
= 2p5,

c1
(
q, q̇
)

=
4p3
l2

tan θr sec2θrθ̇2
r θ̇l +

p4
l
sec θrθ̇2

r − 2p7 sec θr sin θ1θ̇lθ̇2
r

−2p7 sec2θr cos θ1θ̇1θ̇l − p8 cos θ1θ̇1θ̇r ,

c2
(
q, q̇
)
=

p4
l
sec2θrθ̇lθr − p8 cos θ1θlθ1,

c3
(
q, q̇
)
= p7 tan θr cos θ1θ̇lθ̇1 + p8 cos θ1θ̇lθ̇r θ̇1,

p1 =
1
2

(

m +m1 +
Iw
r2

)

, p2 =
1
2

(
I + Im +m1l

2
1 + I1

)
, p3 =

1
2
(Im + Iw),

p4 = Im, p5 =
1
2

(
m1l

2
1 + I1

)
, p6 = m1l

2
1 + I1, p7 =

m1l1
l1

, p8 = m1l1.

(5.2)

As discussed in Section 2, we set the fully operational configuration represented
by OOO while three possible configurations can occur: AAP , APA, and APP , where
A represents actuated joints and P represents passive joints. For example, if we find
that a switching occurs in τθ1 , then the switching configuration to validate the proposed
methodology is theAAP configuration. We consider a workspace with a positioning domain
which range from −8◦ to 12◦, with the velocities set to 1◦/s, and use 2 sectors of position in
each joint, denoted as I(−8◦ : 2◦) and II(2◦ : 12◦), to map the mobile manipulator workspace.
The linearization points with respect to I and II are chosen as −3◦ and 7◦, respectively. Then,
according to Section 3.2, 8 linearization points with 32 modes are found. For simplification,
we select the 8 modes in simulation, which are shown in Table 2. There exist 8 modes for the
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Table 2: Simulation modes.

Mode Joint status Mode Joint status
Linearization Section

θr θl θ1

1 AAA 5 AAP I I I
2 AAA 6 AAP II I I
3 APA 7 APP II I II
4 APA 8 APP II II II

simulation example, which means an 8 × 8 dimension transition rate matrix Π is needed, so
Π is defined as

Π =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.72 0.15 0.22 0.21 0.14 0 0 0
0.2 −0.7 0.2 0.2 0 0.1 0 0
0.16 0.22 −0.68 0.2 0 0 0.1 0
0.22 0.3 0.2 −0.82 0 0 0 0.1
0 0 0 0 −0.78 0.26 0.26 0.26
0 0 0 0 0.26 −0.78 0.26 0.26
0 0 0 0 0.26 0.26 −0.78 0.26
0 0 0 0 0.26 0.26 0.26 −0.78

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.3)

The system parameters are chosen as G = 0 kg, B = I,m = 10.0 kg,m1 = 2.0 kg, I = 1.0 kg ·m2,
I1 = 1.0 kg ·m2, Im = 2.0 kg ·m2, Iw = 2.0 kg · m2, l = 1.0 m, l1 = 1.0 m, r = 0.5 m.

Assume that the nominal models are obtained as:

A1 =

⎡

⎢
⎢
⎣

0 0 1.0000 0
0 0 0 1.0000

0.0040 0.0012 0.0653 −0.0728
−0.0047 −0.0010 −0.0717 0.0647

⎤

⎥
⎥
⎦, B1 =

⎡

⎢
⎢
⎣

0 0
0 0

0.0003 0.3354
−0.0003 −0.0020

⎤

⎥
⎥
⎦,

A2 =

⎡

⎢
⎢
⎣

0 0 1.0000 0
0 0 0 1.0000

0.0040 0.0012 0.0653 −0.0728
−0.0047 −0.0010 −0.0717 0.0647

⎤

⎥
⎥
⎦, B2 =

⎡

⎢
⎢
⎣

0 0
0 0

0.0003 0.3354
−0.0003 0.3333

⎤

⎥
⎥
⎦,

A3 =

⎡

⎢
⎢
⎣

0 0 1.0000 0
0 0 0 1.0000

0.0057 0.0014 0.0725 −0.0764
−0.0064 −0.0011 −0.0790 0.0676

⎤

⎥
⎥
⎦, B3 =

⎡

⎢
⎢
⎣

0 0
0 0

0.0035 0.3582
−0.0035 −0.0249

⎤

⎥
⎥
⎦,

A4 =

⎡

⎢
⎢
⎣

0 0 1.0000 0
0 0 0 1.0000

0.0057 0.0014 0.0725 −0.0764
−0.0064 −0.0011 −0.0790 0.0676

⎤

⎥
⎥
⎦, B4 =

⎡

⎢
⎢
⎣

0 0
0 0

0.0035 0.3582
−0.0035 0.3333

⎤

⎥
⎥
⎦,
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A5 =

⎡

⎢
⎢
⎣

0 0 1.0000 0
0 0 0 1.0000

0.0042 0.0016 0.0628 −0.0686
−0.0048 −0.0013 −0.0691 0.0606

⎤

⎥
⎥
⎦, B5 =

⎡

⎢
⎢
⎣

0 0
0 0

−0.0022 0.3175
0.0022 0.0158

⎤

⎥
⎥
⎦,

A6 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 1.0000 0
0 0 0 1.0000

0.0042 0.0016 0.0628 −0.0686
−0.0048 −0.0013 −0.0691 0.0606

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, B6 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0
0 0

−0.0022 0.3175
0.0022 0.3333

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

A7 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 1.0000 0
0 0 0 1.0000

0.0055 0.0010 0.0753 −0.0809
−0.0062 −0.0008 −0.0819 0.0719

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, B7 =

⎡

⎢
⎢
⎣

0 0
0 0

0.0068 0.3808
−0.0068 −0.0475

⎤

⎥
⎥
⎦,

A8 =

⎡

⎢
⎢
⎣

0 0 1.0000 0
0 0 0 1.0000

0.0055 0.0010 0.0753 −0.0809
−0.0062 −0.0008 −0.0819 0.0719

⎤

⎥
⎥
⎦, B8 =

⎡

⎢
⎢
⎣

0 0
0 0

0.0068 0.3808
−0.0068 0.3333

⎤

⎥
⎥
⎦.

(5.4)

The parameters in (4.19) are set as C(0) = [0.00002, . . . , 0.00002]T , for i = 1, 2, . . . , 8, M0 = I,
ωi = 0.5, αi = δ = 1/(t + 1)2, K = diag[1.0], b = 1.0, γ = 1.0. The initial condition we used for
simulation is x0 = [0.3, 0.3, 0.2,−0.1, 0.1,−0.15]T . Via LMI optimization with the data Aj, Bj ,
we can get the following solution to the LMIs (4.16) as:

X1 = 104

⎡

⎢
⎢
⎣

1.9625 0.0001 −0.0012 0.0011
0.0001 1.9620 −0.0003 0.0002
−0.0012 −0.0003 1.0267 0.0000
0.0011 0.0002 0.0000 1.0267

⎤

⎥
⎥
⎦,

X2 = 103

⎡

⎢
⎢
⎣

2.7094 −0.0148 −0.0022 0.0015
−0.0148 2.7654 −0.0004 −0.0003
−0.0022 −0.0004 4.8496 −0.0000
0.0015 −0.0003 −0.0000 4.8496

⎤

⎥
⎥
⎦,

X3 = 103

⎡

⎢
⎢
⎣

2.4313 −0.0153 −0.0028 0.0020
−0.0153 2.4918 −0.0005 −0.0002
−0.0028 −0.0005 4.8077 −0.0000
0.0020 −0.0002 −0.0000 4.8077

⎤

⎥
⎥
⎦,

X4 = 103

⎡

⎢
⎢
⎣

2.2073 −0.0145 −0.0026 0.0018
−0.0145 2.2639 −0.0004 −0.0003
−0.0026 −0.0004 4.7749 −0.0000
0.0018 −0.0003 −0.0000 4.7749

⎤

⎥
⎥
⎦,
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X5 = 103

⎡

⎢
⎢
⎣

2.8110 −0.0160 −0.0023 0.0016
−0.0160 2.8679 −0.0005 −0.0002
−0.0023 −0.0005 4.8654 −0.0000
0.0016 −0.0002 −0.0000 4.8654

⎤

⎥
⎥
⎦,

X6 = 103

⎡

⎢
⎢
⎣

5.2731 −0.0149 −0.0037 0.0030
−0.0149 5.3153 −0.0010 0.0003
−0.0037 −0.0010 5.3202 −0.0000
0.0030 0.0003 −0.0000 5.3202

⎤

⎥
⎥
⎦,

X7 = 103

⎡

⎢
⎢
⎣

5.2363 −0.0123 −0.0054 0.0045
−0.0123 5.3133 −0.0007 0.0000
−0.0054 −0.0007 5.3153 −0.0000
0.0045 0.0000 −0.0000 5.3153

⎤

⎥
⎥
⎦,

X8 =

⎡

⎢
⎢
⎣

−0.6928 −0.0000 −0.0000 −0.0000
−0.0000 −0.6928 −0.0000 −0.0000
−0.0000 −0.0000 −0.6928 −0.0000
−0.0000 −0.0000 −0.0000 −0.6928

⎤

⎥
⎥
⎦.

(5.5)

So we can obtain the solution of Si, for i = 1, 2, . . . , 8. Torque disturbancesD(t) are introduced
to verify the robustness of the controllers

⎡

⎣
dr(t)
dl(t)
d1(t)

⎤

⎦ =

⎡

⎣
0.023 sin(4t)

0.007 sin(3t) + 0.009cos2t
0.015 cos(5t)

⎤

⎦. (5.6)

The disturbance is turned off after the switching introduction in corresponding joint or wheel.
The system switches among the 8 modes randomly during operation. From Figure 3,

we can see that firstly the system switches from mode 1 to mode 4, then from mode 4 to
mode 1, finally, it switches from mode 1 to modes 4, 6, and 7. Figure 4 shows that the system
is stabilized during operation. From Figures 5, 6, and 7, it can be noticed that the torque inputs
are bounded. The simulation results demonstrate the tracking error decays to the equilibrium
point under the designed mode-dependent controller.

6. Conclusion

In this paper, we consider stochastic stability and sliding mode control for mobile
manipulators using stochastic jumps switching joints. Adaptive parameter techniques are
adopted to cope with the effect of the Markovian switching and nonlinear dynamics
uncertainty and follow the desired trajectory for wheeled mobile manipulators. The resulting
closed-loop system is bounded in probability and the effect due to the external disturbance
on the tracking errors can be attenuated to any preassigned level. It has been shown that the
adaptive control problem for the Markovian jump nonlinear systems is solvable if a set of
coupled LMIs have solutions. Finally, a numerical example is given to show the potential of
the proposed techniques.
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