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We investigate the generalized Drazin inverse of A − CB over Banach spaces stemmed from the
Drazin inverse of a modified matrix and present its expressions under some conditions.

1. Introduction

Let X and Y be Banach spaces. We denote the set of all bounded linear operators from X to
Y by B(X,Y). In particular, we write B(X) instead of B(X,X).

For any A ∈ B(X,Y), R(A) and N(A) represent its range and null space, respectively.
If A ∈ B(X), the symbols σ(A) and acc(σ(A)) stand for its spectrum and the set of all
accumulation points of σ(A), respectively.

Recall the concept of the generalized Drazin inverse introduced by Koliha [1] that the
element Td ∈ B(X) is called the generalized Drazin inverse of T ∈ B(X) provided it satisfies

TTd = TdT, TdTTd = Td, T − T2Td is quasinilpotent. (1.1)

If it exists then it is unique. The Drazin index Ind(T) of T is the least positive integer k if
(T − T2Td)

k = 0, and otherwise Ind(T) = +∞.
From the definition of the generalized Drazin inverse, it is easy to see that if T is a

quasinilpotent operator, then Td exists and Td = 0. It is well known that the generalized
Drazin inverse of T ∈ B(X) exists if and only if 0 /∈ acc(σ(T)) (see [1, Theorem 4.2]).
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If T is generalized Drazin invertible, then the spectral idempotent Tπ of T corresponding
to 0 is given by Tπ = I − TTd.

The generalized Drazin inverse is widely investigated because of its applications in
singular differential difference equations, Markor chains, (semi-) iterative method numerical
analysis (see, for example, [1–5, 7], and references therein).

In this paper, we aim to discuss the generalized Drazin inverse ofA −CB over Banach
spaces. This question stems from the Drazin inverse of amodifiedmatrix (see, e.g., [6]). In [3],
Deng studied the generalized Drazin inverse ofA−CB. Here we research the problem under
more general conditions than those in [3]. Our results extend the relative results in [3, 4].

In this section, we will list some lemmas. In next section, we will present the expres-
sions of the generalized Drazin inverse of A − CB. In final section, we illustrate a simple ex-
ample.

Lemma 1.1 (see [4, Theorem 2.3]). Let A,B ∈ B(X) be the generalized Drazin invertible. If AB =
0, then A + B is generalized Drazin invertible and

(A + B)d = Bπ
∞∑

n=0

BnAn+1
d +

( ∞∑

n=0

Bn+1
d An

)
Aπ. (1.2)

Lemma 1.2 (see [7, Theorem 5.1]). If A ∈ B(X) and B ∈ B(Y) are generalized Drazin invertible
and C ∈ B(Y,X), then

M =
(
A C
0 B

)
(1.3)

is also generalized Drazin invertible and

Md =
(
Ad S
O Bd

)
, (1.4)

where

S = A2
d

( ∞∑

n=0

An
dCB

n

)
Bπ +Aπ

( ∞∑

n=0

AnCBn
d

)
B2
d −AdCBd. (1.5)

2. Main Results

We start with our main result.
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Theorem 2.1. Let A ∈ B(X) be the generalized Drazin invertible, C ∈ B(X,Y), and B ∈ B(Y,X).
Suppose that there exists a P ∈ B(X) such thatAP = PAP and BP = 0. If R = (I −P)(A−CB) and
AP are generalized Drazin invertible, then A − CB is generalized Drazin invertible and

(A − CB)d =

[ ∞∑

n=0
(AP)n+1d

(
Rn + VRn−1 + V 2Rn−2

)]
Rπ

− (AP)d
[
VRd + V 2R2

d + (AP)dV
2Rd

]

+ (AP)π
∞∑

n=0
(AP)n

(
Rn+1

d + VRn+2
d + V 2Rn+3

d

)
,

(2.1)

where V = PA − PCB −AP and the symbols V iRj = 0, i = 1, 2, if j < 0.

Proof. Let S := AP and T := (A − CB)(I − P). Then

TS = (A − CB)(I − P)AP = 0, (2.2)

RP = (I − P)(A − CB)P = 0, (2.3)

A − CB = AP +A(I − P) − CB(I − P) = S + T (2.4)

since AP = PAP and BP = 0. So, by Lemma 1.1,

(T + S)d = Sπ
∞∑
n=0

SnTn+1
d +

∞∑
n=0

Sn+1
d TnTπ. (2.5)

Next, we will give the representations of Td, Tn, and Tn
d
. In order to obtain the expres-

sion of Td, rewrite T as

T = R + PA − PCB − PAP = R + V. (2.6)

Since VP = PAP −AP 2 = PAP(I − P),

V 2P = (PA − PCB −AP)PAP(I − P) = (PAPAP −APPAP)(I − P) = 0, (2.7)

and then V n = 0 for n > 2 since V = PA − CB − AP . So Vd exists and Vd = 0. By (2.3),
RV = RP(A − CB −AP) = 0 and then RdV = RdRdRV = 0. So, by Lemma 1.1,

Td = (R + V )d = Rd + VR2
d + V 2R3

d, (2.8)

and then

TTd = RRd + VRd + V 2R2
d. (2.9)
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Since R(R + V )k = Rk+1 and V 2(R + V )k = V 2Rk for k ≥ 1,

Tn = (R + V )n =
(
R2 + VR + V 2

)
(R + V )n−2 = Rn + VRn−1 + V 2Rn−2, n ≥ 2. (2.10)

From RdV = 0, it is easy to verify that

Tn
d =
(
Rd + VR2

d + V 2R3
d

)n
= Rn

d + VRn+1
d + V 2Rn+2

d . (2.11)

Hence,

( ∞∑

n=0

Sn+1
d Tn

)
Tπ = (AP)d

[
I + (AP)d(R + V ) + (AP)2d

(
R2 + VR + V 2

)]

×
(
Rπ − VRd − V 2R2

d

)
+

∞∑

n=3
(AP)n+1d

(
Rn + VRn−1 + V 2Rn−2

)
Rπ

= (AP)d
[
I + (AP)d(R + V ) + (AP)2d

(
R2 + VR + V 2

)]
Rπ

− (AP)d
(
VRd + V 2R2

d + (AP)dV
2Rd

)

+
∞∑

n=3
(AP)n+1d

(
Rn + VRn−1 + V 2Rn−2

)
Rπ,

Sπ
∞∑

n=0

SnTn+1
d = (AP)π

∞∑

n=0
(AP)n

(
Rn+1

d + VRn+2
d + V 2Rn+3

d

)
.

(2.12)

Therefore, we reach (2.1).

When Ind(AP), Ind(R) < +∞, we have the following corollary.

Corollary 2.2. Let A ∈ B(X) be generalized Drazin invertible. C ∈ B(X,Y), and B ∈ B(Y,X).
Suppose that there exists a P ∈ B(X) such thatAP = PAP and BP = 0. If R = (I −P)(A−CB) and
AP are generalized Drazin invertible and Ind(R) = k < +∞ and Ind(AP) = h < +∞, then A − CB
is generalized Drazin invertible and

(A − CB)d =

[
k−1∑

n=0
(AP)n+1d

(
Rn + VRn−1 + V 2Rn−2

)]
Rπ

− (AP)d
[
VRd + V 2R2

d + (AP)dV
2Rd

]

+ (AP)π
h−1∑

n=0
(AP)n

(
Rn+1

d + VRn+2
d + V 2Rn+3

d

)
,

(2.13)

where V = PA − PCB −AP and the symbols V iRj = 0, i = 1, 2, if j < 0.

If an operator T is quasinilpotent, Td = 0 and Tπ = I. So, the following corollary
follows from Theorem 2.1.



Abstract and Applied Analysis 5

Corollary 2.3. Let A ∈ B(X) be generalized Drazin invertible, C ∈ B(X,Y), and B ∈ B(Y,X).
Suppose that there exists a P ∈ B(X) such that AP = PAP and BP = 0. If R = (I − P)(A − CB) is
generalized Drazin invertible andAP is a quasinilpotent operator, thenA−CB is generalized Drazin
invertible and

(A − CB)d =
∞∑

n=0
(AP)n

(
Rn+1

d + VRn+2
d + V 2Rn+3

d

)
, (2.14)

where V = PA − PCB −AP .

Theorem 2.4. Let A ∈ B(X) be generalized Drazin invertible, C ∈ B(X,Y), and B ∈ B(Y,X).
Suppose that there exists an idempotent P ∈ B(X) such that PA = PAP and BP = B. If R =
P(A − CB) is generalized Drazin invertible, then A − CB is generalized Drazin invertible and

(A − CB)d = Rd +Ad(I − P) +
∞∑

n=0

An+2
d (I − P)(A − CB)P(A − CB)nRπ

+Aπ
∞∑

n=0

An(I − P)(A − CB)PRn+2
d −Ad(I − P)(A − CB)Rd.

(2.15)

Proof. Since P 2 = P , we haveX = R(P)⊕N(P) and can write P in the following matrix form:

P =
(
I 0
0 0

)
. (2.16)

The condition PA = PAP , therefore, yields the matrix form of A as follows:

A =
(
A1 0
A3 A2

)
. (2.17)

From σ(A) = σ(A1) ∪ σ(A2) and the hypothesis that Ad exists, A1 ∈ B(R(P)) and A2 ∈
B(N(P)) are generalized Drazin invertible since 0 /∈ acc(σ(A)) if and only if 0 /∈ acc(σ(A1))
and 0 /∈ acc(σ(A2)). And, by Lemma 1.2,

Ad =
(
Ad

1 0
W Ad

2

)
, (2.18)

where W is some operator. Since

A(I − P) =
(
0 0
0 A2

)
, (2.19)

(A(I − P))d exists and

(A(I − P))d =
(
0 0
0 Ad

2

)
= Ad(I − P). (2.20)
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To use Theorem 2.1 to complete the proof, let Q = (I − P). So R = (I −Q)(A −CB) and
AQ are generalized Drazin invertible. And from the conditions PA = PAP and BP = B, we
can obtain AQ = QAQ and BQ = 0. Thus, by Theorem 2.1, we have

(A − CB)d = (AQ)dR
π + (AQ)2d(R + V )Rπ +

[ ∞∑

n=2
(AQ)n+1d

(
Rn + VRn−1 + V 2Rn−2

)]
Rπ

− (AQ)d
[
VRd + V 2R2

d + (AQ)dV
2Rd

]
+ (AQ)π

(
Rd + VR2

d + V 2R3
d

)

+ (AQ)π
∞∑

n=1

(AP)n
(
Rn+1

d + VRn+2
d + V 2Rn+3

d

)
,

(2.21)

where V = QA −QCB −AQ.
Since P 2 = P and Q2 = Q and then VQ = 0 and V = QV . So V 2 = 0. Note that QR = 0

and then QRd = 0 and (AQ)dR = 0. Thus it follows from (2.21) that

(A − CB)d = (AQ)d + (AQ)2dVRπ +

[ ∞∑

n=2
(AQ)n+1d VRn−1

]
Rπ − (AQ)dVRd

+ Rd + (AQ)πVR2
d + (AQ)π

∞∑

n=1

(AQ)nVRn+2
d

= (AQ)d +

[ ∞∑

n=0
(AQ)n+2d VRn

]
Rπ − (AQ)dVRd + Rd

+ (AQ)π
∞∑

n=0
(AQ)nV (Rd)n+2.

(2.22)

Since V = Q(A − CB) − (A − CB)Q = (A − CB)(I −Q) − (I −Q)(A − CB), VR = Q(A − CB)R
and QV = Q(A − CB)(I −Q). Note that Rn = P(A − CB)n and (AQ)n = AnQ. Substituting V
and Q = I − P in (2.22) yields (2.15).

Adding the condition PC = C in Theorem 2.4 yields a result below.

Corollary 2.5. Let A ∈ B(X) be generalized Drazin invertible, C ∈ B(X,Y), and B ∈ B(Z,X).
Suppose that there exists an idempotent P ∈ B(X) such that PA = PAP , BP = B, and PC = C. If
R = P(A − CB) is generalized Drazin invertible, then A − CB is generalized Drazin invertible and

(A − CB)d = Rd +Ad(I − P) +
∞∑

n=0

An+2
d (I − P)AP(A − CB)nRπ

+Aπ
∞∑

n=0

An(I − P)APRn+2
d −Ad(I − P)ARd.

(2.23)

Adding the condition PC = 0 in Theorem 2.4 yields R = PA. So similar to the proof of
(A(I − P))d = Ad(I − P) in Theorem 2.4, we can gain (PA)d = PAd.
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Corollary 2.6. Let A ∈ B(X) be generalized Drazin invertible, C ∈ B(X,Y), and B ∈ B(Z,X).
Suppose that there exists an idempotent P ∈ B(X) such that PA = PAP , BP = B, and PC = 0; then
A − CB is generalized Drazin invertible and

(A − CB)d = Ad +
∞∑

n=0

An+2
d (I − P)(A − CB)PAnAπ +Aπ

∞∑

n=0

An(I − P)(A − CB)PAn+2
d

−Ad(I − P)(A − CB)PAd.

(2.24)

Analogously, we can deduce Theorem 2.7 and Corollary 2.9 below.

Theorem 2.7. Let A ∈ B(X) be generalized Drazin invertible, C ∈ B(X,Y), and B ∈ B(Y,X).
Suppose that there exists an idempotent P ∈ B(X) such that AP = PAP and PC = C. If R =
(A − CB)P is generalized Drazin invertible, then A − CB is generalized Drazin invertible and

(A − CB)d = Rd + (I − P)Ad +
∞∑

n=0

Rn+2
d P(A − CB)(I − P)AnAπ

+ Rπ
∞∑

n=0
(A − CB)nP(A − CB)(I − P)An+2

d − Rd(A − CB)(I − P)Ad.

(2.25)

Remark 2.8 (see [4, Theorem 2.4]). It is a special case of Theorem 2.7.

Corollary 2.9. Let A ∈ B(X) be generalized Drazin invertible, C ∈ B(X,Y), and B ∈ B(Z,X).
Suppose that there exists an idempotent P ∈ B(X) such that AP = PAP , PC = C, and BP = 0; then
A − CB is generalized Drazin invertible and

(A − CB)d = Ad +
∞∑

n=0

An+2
d P(A − CB)(I − P)AnAπ

+Aπ
∞∑

n=0

AnP(A − CB)(I − P)An+2
d −AdP(A − CB)(I − P)Ad.

(2.26)

Similar to Theorem 2.1 and Corollary 2.2, we can show the following two results.

Theorem 2.10. Let A ∈ B(X) be generalized Drazin invertible, C ∈ B(X,Y), and B ∈ B(Y,X).
Suppose that there exists a P ∈ B(X) such that PA = PAP and PC = 0. If R = (A − CB)(I − P)
and PA are generalized Drazin invertible, then A − CB is generalized Drazin invertible and

(A − CB)d = Rπ
∞∑

n=0

(
Rn + Rn−1V + Rn−2V 2

)
(PA)n+1d

−
[
RdV + R2

dV
2 + RdV

2(PA)d
]
(PA)d

+

[ ∞∑

n=0

(
Rn+1

d + Rn+2
d V + Rn+3

d V 2
)
(PA)n

]
(PA)π,

(2.27)

where V = AP − CBP − PA and the symbols RiV j = 0, j = 1, 2, if i < 0.
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Corollary 2.11. Let A ∈ B(X) be generalized Drazin invertible. C ∈ B(X,Y), and B ∈ B(Y,X).
Suppose that there exists a P ∈ B(X) such that PA = PAP and PC = 0. If R = (A−CB)(I −P) and
PA are generalized Drazin invertible and Ind(R) = k < +∞ and Ind(PA) = h < +∞, then A − CB
is generalized Drazin invertible and

(A − CB)d = Rπ
k−1∑

n=0

(
Rn + Rn−1V + Rn−2V 2

)
(PA)n+1d

−
[
RdV + R2

dV
2 + RdV

2(PA)d
]
(PA)d

+

[
h−1∑

n=0

(
Rn+1

d + Rn+2
d V + Rn+3

d V 2
)
(PA)n

]
(PA)π,

(2.28)

where V = AP − CBP − PA and the symbols RiV j = 0, j = 1, 2, if i < 0.

When PA = AP and P 2 = P in Theorem 2.10, we can obtain the following result since
Rn = (A − CB)n(I − P).

Corollary 2.12 (see [3, Theorem 4.3]). Let A ∈ B(X) be the generalized Drazin invertible, C ∈
B(X,Y), and B ∈ B(Y,X). Suppose that there exists an idempotent P ∈ B(X) commuting with A
such that PC = 0. If R = (A − CB)(I − P) is generalized Drazin invertible, then A − CB is the
generalized Drazin invertible and

(A − CB)d = Rd + PAd − RdVAd + Rπ
∞∑

n=0
(A − CB)nVAn+2

d +
∞∑

n=0

Rn+2
d VAnAπ, (2.29)

where V = −CBP .

3. Example

Before ending this paper, we give an example as follows.

Example 3.1. Let

A =

⎛
⎜⎜⎝

1 2 4 1
0 −1 1 0
0 −1 1 0
0 0 0 0

⎞
⎟⎟⎠, B =

(
0 0 0 1

)
, C =

⎛
⎜⎜⎝

1
−1
0
0

⎞
⎟⎟⎠. (3.1)

Then

CB =

⎛
⎜⎜⎝

0 0 0 1
0 0 0 −1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, A − CB =

⎛
⎜⎜⎝

1 2 4 0
0 −1 1 1
0 −1 1 0
0 0 0 0

⎞
⎟⎟⎠. (3.2)
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We will compute the Drazin inverse of A − CB. To do this, we choose the matrix

P =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 −1 2 0
0 0 0 0

⎞
⎟⎟⎠. (3.3)

Apparently, P is not idempotent and PA/=AP . But BP = 0 and

AP = PAP =

⎛
⎜⎜⎝

1 −2 8 0
0 −2 2 0
0 −2 2 0
0 0 0 0

⎞
⎟⎟⎠. (3.4)

Obviously, Ind(AP) = 2. Computing

R = (I − P)(A − CB) =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠, Rd =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠, (3.5)

V = PA − PCB −AP =

⎛
⎜⎜⎝

0 4 −4 0
0 1 −1 1
0 1 −1 −1
0 0 0 0

⎞
⎟⎟⎠, (3.6)

we have Ind(R) = 2. So, by Corollary 2.2,

(A − CB)d =

⎛
⎜⎜⎝

1 −4 10 −4
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠. (3.7)
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[4] D. S. Djordjević and Y. Wei, “Additive results for the generalized Drazin inverse,” Journal of the
Australian Mathematical Society, vol. 73, no. 1, pp. 115–125, 2002.

[5] X. Liu, Y. Yu, and C. Hu, “The iterative methods for computing the generalized inverse A
(2)
T,S of the

bounded linear operator between Banach spaces,” Applied Mathematics and Computation, vol. 214, no. 2,
pp. 391–410, 2009.

[6] Y. Wei, “The Drazin inverse of a modified matrix,” Applied Mathematics and Computation, vol. 125, no.
2-3, pp. 295–301, 2002.
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