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A two-grid method is presented and discussed for a finite element approximation to a nonlinear
parabolic equation in two space dimensions. Piecewise linear trial functions are used. In this two-
grid scheme, the full nonlinear problem is solved only on a coarse grid with grid size H. The
nonlinearities are expanded about the coarse grid solution on a fine gird of size h, and the resulting
linear system is solved on the fine grid. A priori error estimates are derived with the H1-norm
O(h+H2)which shows that the two-grid method achieves asymptotically optimal approximation
as long as the mesh sizes satisfy h = O(H2). An example is also given to illustrate the theoretical
results.

1. Introduction

Let Ω ⊂ R
2 be a bounded convex domain with smooth boundary Γ and consider the initial-

boundary value problem for the following nonlinear parabolic equations:

ut − ∇ · (A(u)∇u) = f(x), x ∈ Ω, 0 < t ≤ T,

u(x, t) = 0, x ∈ Γ, 0 < t ≤ T,

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where ut denotes ∂u/∂t. x = (x1, x2), f(x) is a given real-valued function on Ω. We assume
thatA(u) is a symmetric, uniformly positive definite second-order diagonal tensor.A(u) and
A′(u) satisfy the Lipschitz continuous condition with respect to u.

|A(u1) −A(u2)| ≤ L|u1 − u2|, (1.2)
∣
∣A′(u1) −A′(u2)

∣
∣ ≤ L|u1 − u2|, u1, u2 ∈ R, (1.3)
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where L is a positive constant. We also assume that each element of A is twice continuously
differentiable in space and

|A(u)| +
∣
∣A′(u)

∣
∣ ≤ M, ∀u ∈ R, (1.4)

where M is a positive constant.
It is assumed that the functions f, u0 have enough regularity, and they satisfy

appropriate compatibility conditions so that the initial-boundary value problem (1.1)
has a unique solution satisfying the regularity results as demanded by our subsequent
analysis.

Two-grid method is a discretization technique for nonlinear equations based on two
grids of different sizes. The main idea is to use a coarse-grid space to produce a rough
approximation of the solution of nonlinear problems and then use it as the initial guess
for one Newton-like iteration on the fine grid. This method involves a nonlinear solve on
the coarse grid with grid size H and a linear solve on the fine grid with grid size h � H.
Two-grid method was first introduced by Xu [1, 2] for linear (nonsymmetric or indefinite)
and especially nonlinear elliptic partial differential equations. Later on, two-grid method
was further investigated by many authors. Dawson and Wheeler [3] Dawson et al. [4]
have applied this method combined with mixed finite element method and finite difference
method to nonlinear parabolic equations. Wu and Allen [5] have applied two-grid method
combined with mixed finite element method to reaction-diffusion equations. Chen et al.
[6–9] have constructed two-grid methods for expanded mixed finite element solution of
semilinear and nonlinear reaction-diffusion equations and nonlinear parabolic equations.
Bi and Ginting [10] have studied two-grid finite volume element method for linear and
nonlinear elliptic problems. Chen et al. [11] and Chen and Liu [12, 13] have studied two-grid
method for semilinear parabolic and second-order hyperbolic equations using finite volume
element.

In this paper, based on two conforming piecewise linear finite element spaces SH and
Sh on one coarse grid with grid size H and one fine grid with grid size h, respectively, we
consider the two-grid finite element discretization techniques for the nonlinear parabolic
problems. With the proposed techniques, solving the nonlinear problems on the fine space
is reduced to solving a linear problems on the fine space and a nonlinear problems on a
much smaller space. This means that solving a nonlinear problem is not much more difficult
than solving one linear problem, since dimSH � dimSh and the work for solving the
nonlinear problem is relatively negligible. A remarkable fact about this simple approach is,
as shown in [1], that the coarse mesh can be quite coarse and still maintain a good accuracy
approximation.

The rest of this paper is organized as follows. In Section 2, we describe the finite
element scheme for the nonlinear parabolic problem (1.1). Section 3 contains the error
estimates for the finite element method. Section 4 is devoted to the two-grid finite element
and its error analysis. A numerical example is presented to confirm the theoretical results in
the last section.

Throughout this paper, the letter C or with its subscript denotes a generic positive
constant which does not depend on the mesh parameters and may be different at its different
occurrences.
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2. Finite Element Method

We adopt the standard notation for Sobolev spaces Ws,p(Ω) with 1 ≤ p ≤ ∞ consisting
of functions that have generalized derivatives of order s in the space Lp(Ω). The norm of
Ws,p(Ω) is defined by

‖u‖s,p,Ω = ‖u‖s,p =

⎛

⎝

∫

Ω

∑

|α|≤s
|Dαu|pdx

⎞

⎠

1/p

, (2.1)

with the standard modification for p = ∞. In order to simplify the notation, we denote
Ws,2(Ω) by Hs(Ω) and omit the index p = 2 and Ω whenever possible, that is, ‖u‖s,2,Ω =
‖u‖s,2 = ‖u‖s. We denote by H1

0(Ω) the subspace of H1(Ω) of functions vanishing on the
boundary Γ.

The corresponding variational form of (1.1) is to find u(·, t) ∈ H1
0(Ω), 0 < t ≤ T such

that

(ut, v) + a(u;u, v) =
(

f, v
)

, ∀v ∈ H1
0(Ω),

u(x, 0) = u0(x), x ∈ Ω,
(2.2)

where (·, ·) denotes the L2(Ω)-inner product and the bilinear form a(·; ·, ·) is defined by

a(w;u, v) =
∫

Ω
A(w)∇u · ∇vdx. (2.3)

Henceforth, it will be assumed that the problem (2.2) has a unique solution u, and in
the appropriate places to follow, additional conditions on the regularity of uwhich guarantee
the convergence results will be imposed.

Let Th be a quasi-uniform triangulation of Ω with h = maxhK, where hK is the
diameter of the triangle K ∈ Th. Denote the continuous piecewise linear finite element space
associated with the triangulation Th by

Sh =
{

v ∈ C
(

Ω
)

: v linear in K for each K ∈ Th, v = 0 on Γ
}

. (2.4)

With the above assumptions on Th, it is easy to see that Sh is a finite-dimensional subspace
of the Hilbert space H1

0(Ω) [14].
Thus, the continuous-time finite element approximation is defined as to find a solution

uh(t) ∈ Sh, 0 < t ≤ T , such that

(uh,t, vh) + a(uh;uh, vh) =
(

f, vh

)

, ∀vh ∈ Sh,

uh(0) = u0,
(2.5)

with uh,t = ∂uh/∂t. Since we have discretized only in the space variables, this is referred to
as a spatially semidiscrete problem. By means of Brouwer fixed-point iteration, Li [15] has
proved the existence and uniqueness of the solution uh of this problem.
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3. Error Analysis for the Finite Element Method

To describe the error estimates for the finite element scheme (2.5), we will give some useful
lemmas. In [16], it was shown that the bilinear form a(·; ·, ·) is symmetric and positive
definite and the following lemma was proved, which indicates that the bilinear form a(·; ·, ·)
is continuous and coercive on Sh.

Lemma 3.1. For sufficiently small h, there exist two positive constants C1, C2 > 0 such that, for all
uh, vh,wh ∈ Sh, the coercive property

a(wh;uh, uh) ≥ C1‖uh‖21 (3.1)

and the boundedness property

|a(wh;uh, vh)| ≤ C2‖uh‖1‖vh‖1 (3.2)

hold true.

Lemma 3.2. Let ũ ∈ Sh be the standard Ritz projection such that

a(u(x, t); (ũ − u)(x, t), vh) = 0, ∀vh ∈ Sh. (3.3)

Thus ũ is the finite element approximation of the solution of the corresponding elliptic problem whose
exact solution is u. From [16–18], we have

‖u − ũ‖ + h‖u − ũ‖1 ≤ Ch2‖u‖2, (3.4)

‖(u − ũ)t‖ + h‖(u − ũ)t‖1 ≤ Ch2‖ut‖2, (3.5)

for some positive constant C independent of h and u. In addition, Yuan and Wang [16] have proved
that ‖∇ũ‖∞ and ‖∇ũt‖∞ are bounded by a positive constant.

Now we turn to describe the estimates for the finite element method. We give the
error estimates in the L2-norm between the exact solution and the semidiscrete finite element
solution.

Theorem 3.3. Let u and uh be the solutions of problem (1.1) and the semidiscrete finite element
scheme (2.5), respectively. Under the assumptions given in Section 1, if uh(0) = ũ0, for 0 < t ≤ T , we
have

‖u(t) − uh(t)‖ ≤ Ch2, (3.6)

where C = C(‖u‖L2(H2), ‖ut‖L2(H2)) independent of h.
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Proof. For convenience, let u−uh = (u− ũ) + (ũ−uh) =: η+ ξ. Then from (1.1), (2.5), and (3.3),
we get the following error equation:

(ξt, vh) + a(uh; ξ, vh) = −
(

ηt, vh

)

+ a(uh; ũ, vh) − a(u; ũ, vh), ∀vh ∈ Sh. (3.7)

Choosing vh = ξ in (3.7) to get

(ξt, ξ) + a(uh; ξ, ξ) = −
(

ηt, ξ
)

+ a(uh; ũ, ξ) − a(u; ũ, ξ). (3.8)

For the first term of (3.8), we have

(ξt, ξ) =
1
2
d

dt
(ξ, ξ) =

1
2
d

dt
‖ξ‖2. (3.9)

Integrating (3.8) from 0 to t, by (3.9) and noting that ξ(0) = 0, we have

1
2
‖ξ‖2 +

∫ t

0
a(uh; ξ, ξ)dt = −

∫ t

0

(

ηt, ξ
)

dt +
∫ t

0
(a(uh; ũ, ξ) − a(u; ũ, ξ))dt

≡ Q1 +Q2.

(3.10)

Now let’s estimate the right-hand terms of (3.10), for Q1, there is

|Q1| ≤
∫ t

0

∥
∥ηt

∥
∥‖ξ‖dt ≤ C

∫ t

0

(∥
∥ηt

∥
∥
2 + ‖ξ‖2

)

dt. (3.11)

For Q2, by (1.2), we obtain

|Q2| ≤
∫ t

0

∫

Ω
|(A(uh) −A(u))||∇ũ · ∇ξ|dxdt

≤ L

∫ t

0
‖∇ũ‖∞‖u − uh‖‖∇ξ‖dt

≤ C

∫ t

0

(∥
∥η

∥
∥ + ‖ξ‖

)

‖ξ‖1dt

≤ C(ε)
∫ t

0

(∥
∥η

∥
∥
2 + ‖ξ‖2

)

dt + ε

∫ t

0
‖ξ‖21dt,

(3.12)

with ε a small positive constant. By Lemma 3.1, from (3.10)–(3.12), we get

‖ξ‖2 + C1

∫ t

0
‖ξ‖21dt

≤ C2

∫ t

0

(∥
∥ηt

∥
∥
2 + ‖ξ‖2

)

dt + C3(ε)
∫ t

0

(∥
∥η

∥
∥
2 + ‖ξ‖2

)

dt + ε

∫ t

0
‖ξ‖21dt.

(3.13)
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Choosing proper ε and kicking the last term into the left side of (3.13), and applying Gronwall
lemma, for t ≤ T , we have

‖ξ‖2 + C1

∫T

0
‖ξ‖21dt ≤ C2

∫T

0

(∥
∥η

∥
∥
2 +

∥
∥ηt

∥
∥
2
)

dt. (3.14)

By (3.4) and (3.5), we obtain

‖ξ‖2 ≤ Ch4
∫T

0

(

‖u‖22 + ‖ut‖22
)

dt, (3.15)

which yields (3.6).

4. Two-Grid Finite Element Method

In this section, we will present two-grid finite element algorithm for problem (1.1) based on
two different finite element spaces. The idea of the two-gridmethod is to reduce the nonlinear
problem on a fine grid into a linear system on a fine grid by solving a nonlinear problem on
a coarse grid. The basic mechanisms are two quasi-uniform triangulations of Ω, TH , and Th,
with two different mesh sizesH and h (H > h), and the corresponding piecewise linear finite
element spaces SH and Sh which satisfies SH ⊂ Sh and will be called the coarse-grid space
and the fine-grid space, respectively.

To solve problem (1.1), we introduce a two-grid algorithm into finite element method.
This method involves a nonlinear solve on the coarse-grid space and a linear solve on the
fine-grid space. We present the two-grid finite element method as two steps.

Algorithm 4.1. Step 1. On the coarse grid TH , find uH ∈ SH , such that

(uH,t, vH) + a(uH ;uH, vH) =
(

f, vH

)

, ∀vH ∈ SH,

uH(0) = ũ0,
(4.1)

where ũ0 is defined by (3.3).
Step 2. On the fine grid Th, find uh ∈ Sh, such that

(uh,t, vh) + a(uH ;uh, vh) =
(

f, vh

)

, ∀vh ∈ Sh,

uh(0) = ũ0.
(4.2)

Themain feature of this method is that it replaces the resolution of a nonlinear problem
on the fine grid with the resolution of a nonlinear problem on the coarse grid coupled with
the resolution of a linear system on the fine grid. Now we consider the error estimates in
H1-norm for the two-grid finite element method Algorithm 4.1.
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Theorem 4.2. Let u and uh be the solutions of problem (1.1) and the two-grid scheme Algorithm 4.1,
respectively. Under the assumptions given in Section 1, if uh(0) = ũ0, for 0 < t ≤ T , one has

‖u(t) − uh(t)‖1 ≤ C
(

h +H2
)

, (4.3)

where C = C(‖u‖L2(H2), ‖ut‖L2(H2)) is independent of h.

Proof. Once again, we set u − uh = (u − ũ) + (ũ − uh) =: η + ξ and choose vh = ξt. Then for
Algorithm 4.1, we get the error equation

(ξt, ξt) + a(uH ; ξ, ξt) = −
(

ηt, ξt
)

+ a(uH ; ũ, ξt) − a(u; ũ, ξt). (4.4)

For the terms of (4.4), we have

a(uH ; ξ, ξt) =
∫

Ω
A(uH)∇ξ · ∇ξtdx

=
1
2
d

dt
a(uH ; ξ, ξ) − 1

2

∫

Ω
A′(uH)uH,t∇ξ · ∇ξdx.

(4.5)

a(uH ; ũ, ξt) − a(u; ũ, ξt) =
∫

Ω
[A(uH) −A(u)]∇ũ · ∇ξtdx

=
d

dt

(∫

Ω
[A(uH) −A(u)]∇ũ · ∇ξdx

)

−
∫

Ω
[A(uH) −A(u)]∇ũt · ∇ξdx

−
∫

Ω

(

A′(uH)uH,t −A′(u)ut

)

∇ũ · ∇ξdx.

(4.6)

Integrating (4.4) from 0 to t, combining with (4.4)–(4.6) and noting that ξ(0) = 0 and ξt(0) = 0,
we have

∫ t

0
‖ξt‖2dt +

1
2
a(uH ; ξ, ξ)

= −
∫ t

0

(

ηt, ξt
)

dt +
1
2

∫ t

0

(∫

Ω
A′(uH)uH,t∇ξ · ∇ξdx

)

dt

+
∫

Ω
[A(uH) −A(u)]∇ũ · ∇ξdx −

∫ t

0

(∫

Ω
[A(uH) −A(u)]∇ũt · ∇ξdx

)

dt

−
∫ t

0

(∫

Ω

(

A′(uH)uH,t −A′(u)ut

)

∇ũ · ∇ξdx

)

dt ≡
5∑

i=1

Ti.

(4.7)
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Now let’s estimate the right-hand terms of (4.7), for T1, there is

|T1| ≤ C

∫ t

0

∥
∥ηt

∥
∥‖ξt‖dt ≤ C(ε1)

∫ t

0

∥
∥ηt

∥
∥
2
dt + ε1

∫ t

0
‖ξt‖2dt, (4.8)

with ε1 a small positive constant. For T2, by (1.4), we obtain

|T2| ≤ C

∫ t

0

∣
∣A′(uH)uH,t

∣
∣
∞‖∇ξ‖2dt

≤ CM

∫ t

0
|uH,t|∞‖∇ξ‖2dt ≤ C

∫ t

0
‖ξ‖21dt,

(4.9)

where we used the fact |uH,t|∞ is bounded by a positive constant [15].
For T3–T5, by (1.2) and Theorem 3.3, we get

|T3| ≤ C‖∇ũ‖∞‖A(uH) −A(u)‖‖∇ξ‖

≤ C‖∇ũ‖∞L‖uH − u‖‖ξ‖1

≤ C(ε2)H4 + ε2‖ξ‖21,

(4.10)

with ε2 a small positive constant.

|T4| ≤ C

∫ t

0
‖∇ũt‖∞‖A(uH) −A(u)‖‖∇ξ‖dt

≤ C

∫ t

0
‖∇ũt‖∞L‖uH − u‖‖ξ‖1dt

≤ C1H
4 + C2

∫ t

0
‖ξ‖21dt.

(4.11)

|T5| ≤ C

∫ t

0
‖∇ũ‖∞‖uH,t − ut‖‖∇ξ‖dt

≤ C1H
4 + C2

∫ t

0
‖ξ‖21dt.

(4.12)

By Lemma 3.1, from (4.7)–(4.12), we get

∫ t

0
‖ξt‖2dt + C0‖ξ‖21 ≤ C1(ε1)

∫ t

0

∥
∥ηt

∥
∥
2
dt + C2

∫ t

0
‖ξ‖21dt + C3(ε2)H4

+ C4H
4 + ε1

∫ t

0
‖ξt‖2dt + ε2‖ξ‖21.

(4.13)
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Choosing proper ε1 and ε2 and kicking the last term into the left side of (4.13), by (3.5) and
the Gronwall lemma, for t ≤ T , we have

∫T

0
‖ξt‖2dt + C0‖ξ‖21 ≤ C1

∫T

0

∥
∥ηt

∥
∥
2
dt + C2H

4 ≤ C
(

h4 +H4
)

. (4.14)

Together with (3.4), this yields (4.3).

Remark 4.3. We consider the spatial discretization to focus on the two-grid method.
Algorithm 4.1 is only a semidiscrete two-grid finite element method. In practical computa-
tions, the method should be combined with a time-stepping algorithm. We consider a time
step Δt and approximate the solutions at tn = nΔt, Δt = T/N, n = 0, 1, . . . ,N. Denote
un
h = u(·, tn), un

h,t = (un
h − un−1

h )/Δt, we can get an implicit backward Euler two-grid finite
element algorithm as follows.

(1) On the coarse grid TH , find un
H ∈ SH (n = 1, 2, . . .), such that

(

un
H,t, vH

)

+ a
(

un
H ;un

H, vH

)

=
(

fn, vH

)

, ∀vH ∈ SH,

u0
H = ũ0,

(4.15)

where ũ0 is defined by (3.3).

(2) On the fine grid Th, find un
h ∈ Sh (n = 1, 2, . . .), such that

(

un
h,t, vh

)

+ a
(

un
H ;un

h, vh

)

=
(

fn, vh

)

, ∀vh ∈ Sh,

u0
h = ũ0.

(4.16)

Higher order temporal discretization methods such as Crank-Nicolson method or Runge-
Kutta method can also be used. For the space discretization, from a practical point of view,
we just need to choose space grid h < H to obtain a considerable error reduction in spite of
the demanding requirement h = O(H2).

5. Numerical Example

In this section, we consider the following nonlinear parabolic problem:

∂u

∂t
− ∇ · (A(u)∇u) = f(x, t), x ∈ Ω = [0, 1]2, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = x1x2(1 − x1)(1 − x2),

(5.1)

where x = (x1, x2), A = u and f(x, t) is decided by the exact solution of (5.1).
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Table 1:H1 error and CPU time of the finite element method.

h H1 error CPU time (s)
1/9 4.746 × 10−3 301.68
1/16 3.222 × 10−4 1142.05

Table 2:H1 error and CPU time of the two-grid finite element method.

h H H1 error CPU time (s)
1/9 1/3 4.989 × 10−3 5.7660
1/16 1/4 3.264 × 10−4 16.1812
1/36 1/6 1.286 × 10−4 414.875
1/64 1/8 8.548 × 10−5 2831.70

Let the exact solution of (5.1) be

u(x, t) = e−tx1x2(1 − x1)(1 − x2). (5.2)

Our main interest is to verify the performances of the two-grid finite element method
Algorithm 4.1. Choose the space step H and obtain the coarse grids. Let h = H2 and then
obtain the fine grids. We further discretize time t of Algorithm 4.1 and consider a time step
Δt and approximate the solutions at tn = nΔt, Δt = T/N, n = 0, 1, . . . ,N. The mesh consists
of triangular elements and the backward Euler scheme is used for the time discretization.
We use Newton iteration method for the solutions on the coarse grid. In order to prove the
efficiency of the two-grid finite element method, we compare this method with the standard
finite element method. Computational results are shown in Tables 1 and 2.

From Tables 1 and 2, we can see that the numerical results coincide with the theoretical
analysis, and the two-grid finite element method spends less time than the standard finite
element method, that is to say, the two-grid algorithm is effective for saving a large amount
of computational time and still keeping good accuracy.
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