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The aim of this paper is to define and study a class of Bazilevic functions using the generalized
Salagean operator. Some properties of this class are investigated: inclusion relation, some
convolution properties, coefficient bounds, and other interesting results.

1. Introduction

Let H be the set of analytic functions in the open unit disc E = {z : |z| < 1}. Let A be the
set of functions f ∈ H, with f(z) = z +

∑∞
k=2 akz

k, and let A0 be the set of functions f ∈ H,
with f(0) = 1. Let S be the class of functions f ∈ A, which are univalent in E. Denote by
ST(γ)(CV (γ))(K(γ)), γ < 1, the class of starlike (convex)(close-to-convex) functions of order
γ . Note that when 0 ≤ γ < 1, then ST(γ)(CV (γ))(K(γ)) ⊂ S, let ST(0)(CV (0))(K(0)) ≡
ST(CV )(K). A function F ∈ A0, where F /= 0 belongs to the Kaplan class K(α, β), α ≥ 0, β ≥ 0,
[1] if

−απ +
1
2
(
α − β

)
(θ2 − θ1) ≤ argF

(
reiθ2

)
− argF

(
reiθ1

)
≤ 1

2
(
α − β

)
(θ2 − θ1) + βπ, (1.1)

for θ1 < θ2 < θ1 + 2π and 0 < r < 1.
The Dual of ν ⊂ A0 is defined as

ν� =
{
g ∈ A0 : f ∗ g /= 0 in Δ, f ∈ ν

}
, (1.2)

where ∗ denotes Hadamard product (convolution).
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A set ν ⊂ A0 is called a test set for u ⊂ A (denoted by ν � u) if ν ⊂ u ⊂ ν��. Note that
if ν � u, then ν� ⊂ u�.

Denote by P the class of functions p ∈ A0, such that Re p > 0, in E, and let Pα = {fα ∈
A0, f ∈ P}. Note that for 0 ≤ α ≤ β,

K
(
α, β
)
= Pα ·K(0, β − α

)
, (1.3)

and that f ∈ ST(α), α < 1, if, and only if, f/z ∈ K(0, 2 − 2α).
For α ≥ 0 and β ≥ 0, define the class T(α, β) as

T
(
α, β
)
=

{
(1 + xz)[α]

(
1 + yz

)α−[α]

(1 + uz)β
: |x| = ∣∣y∣∣ = |u| = 1

}

. (1.4)

Note that T(α, β) � K(α, β), α ≥ 1, β ≥ 1.
A function f ∈ A0, is called prestarlike of order α, α ≤ 1, (denoted by R(α)) if and only

if f/z ∈ T(0, 3 − 2α)�, or f ∈ R(α) if and only if

f ∗ z

(1 − z)2−2α
∈ ST(α) α < 1,

Re
f

z
>

1
2
, z ∈ E α = 1.

(1.5)

Let B(α, β), α > 0, β ∈ R, denote the class of Bazilevic functions in E, introduced by
Bazilevic [2], f ∈ B(α, β), α > 0, β ∈ R, if and only if there exists a g ∈ ST(1 − α), such that for
z ∈ E

zf ′

g

(
f

z

)α+iβ−1
∈ P, (1.6)

where (f/z)α+iβ = 1 at z = 0. We denote B(α, 0) by B(α). Bazilevic shows that B(α, β) ⊂ S, for
α > 0, β ∈ R. Note that

CV ⊂ ST ⊂ K ⊂ B
(
α, β
)
. (1.7)

For further information, see [3–7].
The generalized Salagean operator Dn

λ
f : A −→ A, n ∈ N0 = N ∪ {0}, λ ≥ 0, is defined

[8] as

Dn
λf(z) = hn,λ(z) ∗ f(z), (1.8)
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where

hn,λ(z) = hλ(z) ∗ · · · ∗ hλ(z)
︸ ︷︷ ︸

(n-times)

,

hλ(z) =
z − (1 − λ)z2

(1 − z)2
= z +

∞∑

k=2

[1 + λ(k − 1)]zk.

(1.9)

The Operator Dn
λ
f satisfies the following identity:

Dn+1
λ f(z) = (1 − λ)Dn

λf(z) + λz
(
Dn

λf(z)
)′
. (1.10)

Not that for λ = 1, Dn
1f(z) ≡ Dnf(z), Salagean differential operator [9].

Let

kn,λ(z) = h
(−1)
n,λ (z) = z +

∞∑

k=2

zk

[1 + λ(k − 1)]n
, λ > 0, (1.11)

we mean by f (−1), the solution of f ∗ f (−1) = z/(1 − z). Hence

kn,λ(z) = kλ(z) ∗ · · · ∗ kλ(z)
︸ ︷︷ ︸

(n-times)

, (1.12)

where kλ(z) = h
(−1)
λ

(z). It is known [10] that kλ/z ∈ T(1, 1+ 1/λ)∗, hence kλ ∈ R(1− 1/λ), and
that

kλ(z) ∗ z

(1 − z)(1/λ)+1
=

z

(1 − z)1/λ
. (1.13)

The class STn(γ), γ ≤ 1 is defined as f ∈ STn(γ) if and only if Dn
λ
f ∈ ST(γ). For λ = 1,

we get Salagean-type n-starlike functions [9].
The operator Dn

λf is now called “Al-Oboudi Operator” and has been extensively
studied latly, [5, 11, 12].

In this paper we define and study a class of Bazilevic functions using the operatorDn
λf

and study some of its basic properties, inclusion relation, convolution properties coefficient
bounds, and other interesting results.

2. Definition and Preliminaries

In this section, the class of n-Bazilevic functions Bn
λ , λ > 0, where B0

λ ≡ B(1/λ, 0), is defined
and some preliminary lemmas are given.
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2.1. Definition

Let f ∈ A. Then f ∈ Bn
λ
, n ∈ N0, λ > 0, if and only if there exists a g ∈ STn(1 − 1/λ), such that

Dn+1
λ z
(
f/z
)1/λ

Dn
λ
g(z)

∈ P, z ∈ E, (2.1)

where the power (f/z)1/λ is chosen as a principal one.
Denote by Bn

1λ the class of functions f ∈ Bn
λ
, where g ≡ z.

Using (1.10), we see that Dn+1
λ z(f/z)1/λ = f ′(z)Dn

λz(f/z)
1/λ−1, from which the

following special cases are clear.

2.1.1. Special Cases

(1) For n = 0, B0
1/α ≡ B(α), α > 0, Bazilevic [2].

(2) For λ = 1, Bn
1 ≡ Kn(0), Salagean type close to convex functions, Blezu [13].

(3) For n = 0, λ = 1, B0
1 ≡ K, Kaplan [14].

(4) For λ = 1, Bn
11 ≡ Bn+1(1), Abdul Halim [15] and Bn

11 ≡ T1
n+1(0), Opoola [16].

2.2. Lemmas

The following lemmas are needed to prove our results.

Lemma 2.1 (see [10]). Let α, β ≥ 1 and f ∈ T(α, β)∗, g ∈ K(α − 1, β − 1). Then for F ∈ A

(
ϕ ∗ g F

)

(
ϕ ∗ g) (E) ⊂ CO (F(E)). (2.2)

Lemma 2.2. If Dn+1
λ f ∈ ST(1 − 1/λ), λ > 0, then Dn

λf ∈ ST(1 − 1/λ).

Proof. Since Dn
λ
f = kλ ∗Dn+1

λ
f , we will show that (kλ ∗Dn+1

λ
f) ∈ ST(1 − 1/λ). Now Dn+1

λ
f ∈

ST(1 − 1/λ) ⊂ ST(1/2 − 1/2λ), implies

(
z

(1 − z)1/λ+1

)(−1)
∗Dn+1

λ f(z) ∈ R

(
1
2
− 1
2λ

)

⊂ R

(

1 − 1
2λ

)

. (2.3)

Hence

(
z

(1 − z)1/λ

)(
z

(1 − z)1/λ+1

)(−1)
∗Dn+1

λ f(z) ∈ ST

(

1 − 1
2λ

)

⊂ ST

(

1 − 1
λ

)

. (2.4)

From (1.13), we get the required result.
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Lemma 2.3 (see [1]). Let α, β ≥ 1 and f ∈ T(α, β)∗, g ∈ K(α, β). Then f ∗ g ∈ K(α, β).

For X ⊂ A, let rc(X) denote the largest positive number so that every f ∈ X is convex
in |z| < rc(X). The following result is due to Al-Amiri [17].

Lemma 2.4. One has

rc(hλ) = rc =
1

1 + |c| +
√

1 + |c| + |c|2
, c = 2λ − 1, 0 < λ ≤ 1. (2.5)

Lemma 2.5 (see [18]). Let f, g ∈ H, with f(0) = g(0) = 0 and f ′(0)g ′(0)/= 0. Let ϕ ∈ ν� in
|z| < r < 1, where

ν =
{
1 + xz

1 + yz
g(z) : |x| = ∣∣y∣∣ = 1

}

. (2.6)

Then for each F ∈ H,

(
ϕ ∗ Fg)
(
ϕ ∗ g) (|z| < r) ⊂ CO (F(E)), (2.7)

where CO stands for closed convex hull.

Remark 2.6. In [1], it was shown that condition (2.6) is satisfied for all z in E whenever ϕ is in
CV and g is in ST .

Lemma 2.7 (see [10]). Let α, β, γ, δ, μ, ν ∈ R be such that

0 ≤ γ ≤ α − 1, 0 ≤ δ ≤ β − 1, 0 ≤ μ ≤ α − γ, 0 ≤ γ ≤ β − δ, (2.8)

and let f ∈ T(α, β)∗, g ∈ K(γ, δ), F ∈ K(μ, ν). Then

(
f ∗ gF)
(
f ∗ g) ∈ Pmax{μ,ν}. (2.9)

From (1.12) and (1.13), we immediately have;

Lemma 2.8. One has

kn+1,λ =
z

(1 − z)(1/λ)−n
∗
(

z

(1 − z)(1/λ)+1

)(−1)
, (2.10)
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Lemma 2.9 (see [10]). Let f ∈ K(α, β), α, β ≥ 1. Then

f � (1 + z)α

(1 − z)β
, (2.11)

where� stands for coefficient majorization.

3. Main Results

Theorem 3.1. One has

Bn+1
λ ⊂ Bn

λ, λ > 0. (3.1)

Proof. Let f ∈ Bn+1
λ . Then there exists g ∈ STn+1(1 − 1/λ), such that

Dn+2
λ z

(
f

z

)1/λ

= Dn+1
λ g(z) · p(z), p ∈ K(1, 1). (3.2)

Hence

(
f

z

)1/λ

=
kn+1,λ
z

∗ kλ
z

∗ Dn+1
λ g

z
· p, p ∈ K(1, 1). (3.3)

Since Dn+1
λ

g/z ∈ K(0, 2/λ), and kλ/z ∈ T(1, 1 + 1/λ)∗, application of Lemma 2.3 gives

kλ
z

∗ Dn+1
λ

g

z
· p =

(
kλ
z

∗ Dn+1
λ

g

z

)

p0, p0 ∈ K(1, 1) (3.4)

hence

(
f

z

)1/λ

=
kn+1,λ
z

∗ Dn
λ
g

z
p0, p0 ∈ K(1, 1) (3.5)

Using Lemma 2.2 we deduce that f ∈ Bn
λ .

As a consequence of (3.1) we immediately have the following.
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Corollary 3.2. One has

Bn
λ ⊂ S. (3.6)

Corollary 3.3. If f ∈ Bn
λ
, n ∈ N0, λ > 0, then, for z ∈ E

(
f

z

)1/λ

∈ K

(

1, 1 +
2
λ

)

. (3.7)

Proof. Since f ∈ Bn
λ , there exists a g ∈ STn(1 − 1/λ) or Dn

λg/z ∈ K(0, 2/λ) such that

(
f

z

)1/λ

=
kn+1,λ
z

∗ Dn
λ
g

z
· p, p ∈ K(1, 1), (3.8)

=
kn+1,λ
z

∗ F, F ∈ K

(

1, 1 +
2
λ

)

, (3.9)

using (1.3). From (3.6), we conclude that

(
f

z

)1/λ

=
kn+1,λ
z

∗ F /= 0, 0 < |z| < 1, (3.10)

which implies that

kn+1,λ
z

∈ K

(

1, 1 +
2
λ

)∗
≡ T

(

1, 1 +
2
λ

)∗
, (3.11)

Applying Lemma 2.3 to (3.9), we get the result.

Theorem 3.4. Let f ∈ Bn
λ . Then

⎛

⎝
Dn+1

λ
z
(
f/z
)1/λ

z

⎞

⎠

λ

∈ K(λ,λ + 2). (3.12)

Proof. From (2.1), we see that

Dn+1
λ z

(
f

z

)1/λ

= Dn
λg(z) · p(z), p ∈ K(1, 1). (3.13)
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Since (Dn
λg/z)

λ ∈ K(0, 2), and p(z)λ ∈ K(λ, λ), then

⎛

⎝
Dn+1

λ
z
(
f/z
)1/λ

z

⎞

⎠

λ

=

(
Dn

λ
g

z

)λ

p(z)λ ∈ K(λ,λ + 2), (3.14)

which is the required result.

In the following we prove the converse of Theorem 3.1, for 0 < λ ≤ 1.

Theorem 3.5. Let f ∈ Bn
λ , 0 < λ ≤ 1. Then f ∈ Bn+1

λ in |z| < rc, where rc is given by (2.5)

Proof. f ∈ Bn
λ
implies (2.1), where Dn

λ
g ∈ ST(1 − 1/λ) ⊂ ST .

Now

Dn+2
λ

z
(
f/z
)1/λ

Dn+1
λ

g
=

hλ ∗Dn+1
λ

z
(
f/z
)1/λ

hλ ∗Dn
λ
g

. (3.15)

Using Lemma 2.4, we see that hλ ∈ CV in |z| < rc, for 0 < λ ≤ 1, where rc is given by (2.5).
From Remark 2.6, we conclude

hλ ∗
{
1 + xz

1 + yz
Dn

λg : |x| = ∣∣y∣∣ = 1
}

/= 0. (3.16)

Applying Lemma 2.5, we deduce

⎛

⎜
⎝

hλ ∗
(
Dn+1

λ z
(
f/z
)1/λ

/Dn
λg
)
Dn

λg

hλ ∗Dn
λ
g

⎞

⎟
⎠(|z| < rc) ⊂ CO

⎛

⎝
Dn+1

λ
z
(
f/z
)1/λ

Dn
λ
g

⎞

⎠(E), (3.17)

hence Dn+2
λ

z(f/z)1/λ/Dn+1
λ

g ∈ P in |z| < rc, as required.

Corollary 3.3 can be improved for 0 < λ ≤ 1, as follows.

Theorem 3.6. Let f ∈ Bn
λ , 0 < λ ≤ 1. Then

f

z
∈ K(1, 2). (3.18)

Proof. Wewill use Ruscheweyh’s.method of proof [10]. f ∈ Bn
λ
implies (3.8), whereDn+1

λ
g/z ∈

K(0, 2/λ), kn+1,λ/z ∈ T(1, 1 + 2/λ)∗.
Let Dn

λ
g/z = l ·m, where l = (Dn

λ
g/z)(1+λ)/2 and m = (Dn

λ
g/z)(1−λ)/2.

Then l ∈ K(0, 1/λ + 1) ·m ∈ K(0, 1/λ − 1) andm · p = F ∈ K(1, 1/λ). This implies

(
f

z

)1/λ

=
kn+1,λ
z

∗ lF. (3.19)
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Using Lemma 2.7, we get

(kn+1,λ/z) ∗ lF
(kn+1,λ/z) ∗ l = F0 ∈ K

(
1
λ
,
1
λ

)

, 0 < λ ≤ 1. (3.20)

Hence

(
f

z

)1/λ

=
(
kn+1,λ
z

∗ l
)

F0, F0 ∈ K

(
1
λ
,
1
λ

)
. (3.21)

To prove that (f/z)1/λ ∈ K(1/λ, 2/λ), we have to show that ((kn+1,λ/z) ∗ l) ∈ K(0, 1/λ), or
equivalently kn+1,λ ∗ z l ∈ ST(1 − 1/2λ).

Since z l ∈ ST((λ − 1)/2λ), then from (1.5)

(
z

(1 − z)1/λ+1

)(−1)
∗ z l ∈ R

(
λ − 1
2λ

)

⊂ R

(
(n + 2)λ − 1

2λ

)

,

z

(1 − z)1/λ−n
∗
(

z

(1 − z)1/λ+1

)(−1)
∗ z l ∈ ST

(
(n + 2)λ − 1

2λ

)

⊂ ST

(

1 − 1
2λ

)

.

(3.22)

From Lemma 2.8, (1.13), and (3.22), we see that ((kn+1,λ/z) ∗ l) ∈ K(0, 1/λ). Using (3.21), we
obtain (f/z)1/λ ∈ K(1/λ, 2/λ). From (1.1) we get the required result.

Remark 3.7. For n = 0, λ = 1/α Theorem 3.6 and other stronger results depending on α, are
proved by Sheil-Small [7].

For the coefficient bounds of f ∈ Bn
λ
, Theorem 3.6 is not strong enough to settle this

problem for 0 < λ < 1, In 1962, Zamorski [19] proved the Bieberbach conjecture for f ∈ B(α),
when α = 1, 1/2, 1/3, . . ., in the following we prove this result for f ∈ Bn

λ , using the extreme
points of Kaplan class K(α, β).

Theorem 3.8. For f ∈ Bn
λ
, λ = m ∈ N,

f � z

(1 − z)2−mn
. (3.23)

Proof. From (3.9) and Lemma 2.9, we get

(
f

z

)1/λ

� kn+1,λ
z

∗ 1 + z

(1 − z)1+2/λ
,

=
1

(1 − z)2/λ−n
,

(3.24)

using (2.10). Raising both sides of (3.24) to the mth power, where λ = m ∈ N, we get the
required result.
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Remark 3.9. For n = 0, we get the result of Zamorski [19], and the result of Sheil-Small [7],
from which we get the idea of proof.
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