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An algebraic multigrid (AMG) with aggregation technique to coarsen is applied to construct a
better preconditioner for solving Helmholtz equations in this paper. The solution process consists
of constructing the preconditioner by AMG and solving the preconditioned Helmholtz problems
by Krylov subspace methods. In the setup process of AMG, we employ the double pairwise
aggregation (DPA) scheme firstly proposed by Y. Notay (2006) as the coarsening method. We
compare it with the smoothed aggregation algebraic multigrid and meanwhile show shifted
Laplacian preconditioners. According to numerical results, we find that DPA algorithm is a good
choice in AMG for Helmholtz equations in reducing time and memory. Spectral estimation of
system preconditioned by the three methods and the influence of second-order and fourth-order
accurate discretizations on the three techniques are also considered.

1. Introduction

In this paper, the time-harmonic wave equation in 2D homogeneous media is solved nu-
merically. The essential equation is Helmholtz equation, which governs wave scattering and
propagation phenomena arising in acoustic problems in many areas, such as geophysics,
aeronautics, and optical problems. In particular, we are in search of solutions of theHelmholtz
equation discretized by the finite differencemethod. The discrete problem becomes extremely
large for very high wavenumber, because the number of gridpoints per wavelength should
be sufficiently large in order to result in accepted solutions. In this case, direct methods
are difficult to solve, and iterative methods are the interesting alternative. However, Krylov
subspace iterative methods are not competitive without a good preconditioner. In this paper,
we consider an algebraic multigrid with aggregation scheme as preconditioning to improve
the convergence of Krylov subspace iterative methods.
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In [1], Bayliss et al. proposed a preconditioner based on the Laplace operator for
solving the discrete Helmholtz equation efficiently with CGNR. In [2], Laird and Giles
proposed a preconditioner where an extra term is added to the Laplace operator for solving
the discrete Helmholtz equation. Subsequently, in [3], Erlangga et al. generalized the above
two kinds of preconditioners and obtained a new class of preconditioners, the so-called
“shifted Laplacican” preconditioner of the form −Δφ − αk2φ with α = −(β1 − β2i) ∈ C,
where i =

√−1 is the imaginary unit. In 2006, Erlangga et al. [4] compared multigrid
with incomplete LU used to approximate the shifted Laplacian preconditioner to construct
the final preconditioner for the inhomogeneous Helmholtz equation, and concluded that
multigrid applied to approximate the shifted Laplacian preconditioner with Bi-CGSTAB
resulted in a fast and robust method. In 2006, Erlangga et al. [5] proposed a multigrid
V (1, 1)-cycle with de Zeeuw’s prolongation operator, FW (full weighted) restriction, and
Jacobi smoothing with the relaxation parameter ω = 0.5. The smallest size of the parameter
β2 in front of the imaginary Helmholtz term in the preconditioner, for which the multigrid
method could be successfully employed, has been determined to β2 = 0.5 and meanwhile
β1 = 1. In 2007, Van Gijzen et al. [6] analyzed the spectral of the discrete Helmholtz
operator preconditioned with a shifted Laplacian, and proposed an optimal value for the
shift by combining the results of the spectral analysis with an upper bound on the GMRES
residual norm. In 2009, Umetani et al. [7] proposed a multigrid V (0, 1)-cycle with AMG’s
prolongation operator, FW restriction, and incomplete LU postsmoothing for a fourth-
order Helmholtz discretization based on [5]. The fourth-order accurate shifted Laplacian
preconditioner could be easily approximated by one V (0, 1)-cycle of multigrid and enables us
to choose a somewhat smaller imaginary shift parameter (β2 = 0.4) in the shifted Laplacian
preconditioner, which improves the solvers convergence (especially for high wavenumbers
on fine meshes). In 2007, Airaksinen et al. [8] proposed a preconditioner based on an
algebraic multigrid approximate of the inverse of a shifted Laplacian for the Helmholtz
equation. This is a generalization of the preconditioner proposed by Erlangga et al. in [5]. In
2010, Olson and Schroder [9] proposed a smoothed aggregation algebraic multigrid method
for 1D and 2D scalar Helmholtz problems with exterior radiation boundary conditions
discretized by 1D finite difference and 2D discontinues Galerkin. In the same year, Notay
[10] proposed an aggregation-based algebraic multigrid (AGMG) method, in which double
pairwise aggregation scheme firstly proposed by Notay in [11] is used.

We will consider using the double pairwise aggregation algorithm to coarsen in the
setup process of the general algebraic multigrid method in this paper in order to improve the
solution effects of Helmholtz problems.

This paper is organized as follows. In Section 2, we discuss the Helmholtz equation,
and the discrete finite difference formulations of second order and fourth order. The
iterative solution methods with the three different kinds of preconditionings are presented in
Section 3. Numerical results are reported in Section 4, and conclusions are given in Section 5.

2. The Helmholtz Equation and Discretizations

2.1. Mathematical Problem Definition

We solve wave propagations in a two dimensional medium in a unit domain governed by the
Helmholtz equation

−Δφ − k2(x, y
)
φ = g, Ω = [0, 1]2, (2.1)
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Table 1: Discretization steps related to wavenumbers.

k 10 20 30 40 50 60 70 80 90
h 1/16 1/32 1/48 1/64 1/80 1/96 1/112 1/128 1/144

whereΔ ≡ ∂2/∂x2+∂2/∂y2 is the Laplace operator, φ(x, y) represents the pressure field in the
frequency domain, the source term is denoted by g, and k(x, y) is the wavenumber, which
is a constant in the homogeneous domain. Otherwise, the wavenumber k = ω/c(x, y) is
space dependent because of a spatially dependent speed of sound c(x, y) in a heterogeneous
medium. With angular frequency ω = 2πf (f is the frequency in Hertz), wavelength � is
defined by � = c/f . So the wavenumber k = 2π/�. The number of wavelengths in a domain
of size L equals L/�. nω, the number of points per wavelength, is typically chosen to be 10–12
points. A dimensionless discretization step reads h = �/(nωL), and therefore kh = 2π/(nωL).
With domain size L = 1, an accuracy requirement for second-order discretizations is that
kh ≤ π/5 (≈ 0.63) for nω = 10 points per wavelength, and kh ≤ 0.53 with nω = 12 points
per wavelength. We select combinations of wavenumber k and the discretization step hwith
kh = 0.625, which is displayed in Table 1, in the latter numerical experiments.

The boundary condition can be the Dirichlet boundary condition or the first-order
radiation boundary condition, and they are, respectively, as follows:

φ = 0, on Γ = ∂Ω,
(
Dirichlet boundary condition

)
(2.2)

∂φ

∂n
− ikφ = 0, on Γ = ∂Ω, (Sommerfeld condition), (2.3)

where n is an outward direction normal to the boundary.

2.2. Finite Difference Discretizations

The Helmholtz equations are discretized either by a second-order or by a fourth-order finite
difference scheme, resulting in the linear system

Ahφh = bh, (2.4)

where φh and bh represent the discrete frequency-domain pressure field and the source,
respectively.

The well-known 5-point stencil related to a second-order (o(h2)) accurate discretiza-
tion for Helmholtz equation (2.1) reads

Ah � 1
h2

⎡

⎣
−1

−1 4 − (kh)2 −1
−1

⎤

⎦. (2.5)
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The fourth-order (o(h4)) accurate discretization named by HO discretization [12] for
Helmholtz equation (2.1) is given with stencil

AHO
h � 1

h2

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

−1
6

−2
3
− (kh)2

12
−1
6

−2
3
− (kh)2

12
−10
3

− 2(kh)2

3
−2
3
− (kh)2

12

−1
6

−2
3
− (kh)2

12
−1
6

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

, (2.6)

Compared with a second-order discretization method, a fourth-order discretization
method could make the number of grid points per wavelength be smaller and discrete
the equations to smaller matrices for the same level of accuracy. It is possible to lead to
an algorithm that is more efficient in terms of the accuracy of the solution versus the
computational cost. As in [7], the multigrid-based shifted Laplacian preconditioner with the
fourth-order discretization is preferable.

The boundary discretization is also considered, and we could employ the first-order
forward or backward scheme to approximate the first-order derivative in (2.3).

Next, we can obtain a linear system through substituting

Ahx = bh, Ah ∈ C
N×N, (2.7)

where Ah is a large, spare symmetric matrix and N is the number of grid points. The
matrix Ah remains positive definite as long as k2 is smaller than the minimum eigenvalue
of the discrete Laplacian, is indefinite with both positive and negative eigenvalues for large
values of k, and is complex-valued because of absorbing boundary conditions. However, it
is non-Hermitian. Apparently, the size of the linear system (2.7) gets very large for the high
frequency.

3. Iterative Solution Methods

3.1. Preconditioned Krylov Subspace Iterative Methods

Iterative methods for linear system (2.7) within the class of Krylov subspace method are
based on the construction of iterants in the subspace

Kj(A, r0) = span
{
r0, Ar0, A

2r0, . . . , A
j−1r0

}
, (3.1)

whereKj(A, r0) is the jth Krylov subspace associated withA and r0, r0 = b−Ax0, is the initial
residual.

The Bi-CGSTAB algorithm [13] is one of the better known Krylov subspace algorithms
for non-Hermitian problems, which has been used for Helmholtz problems, for example, in
[5, 8]. One of the advantages of Bi-CGSTAB, compared to full GMRES, is its limited memory
requirements. Bi-CGSTAB is based on the idea of computing twomutually biorthogonal bases
for the Krylov subspaces based on matrix Ah and its conjugate transpose AH

h and is easy to
implement.
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Without a preconditioner, Krylov subspace methods converge very slowly, or not at
all, for the problem of interest in [4]. So a preconditioner should be incorporated to improve
the convergence of Krylov subspace methods. By left preconditioning, one solves a linear
system premultiplied by a preconditioning matrix M−1

h ,

M−1
h Ah = M−1

h bh. (3.2)

The challenge is to find a form of matrix Mh, whose inverse matrix M−1
h

can be
efficiently approximated, such that M−1

h Ah has a spectrum that is favorable for Krylov
subspace iterative solution methods.

In this paper, we choose Bi-CGSTAB and GMRES with preconditionings to solve
discrete Helmholtz equations. In [3], GMRES is used to solve theHelmholtz equationwith the
shifted Laplacian preconditioner and is compared with Bi-CGSTAB. As a result, Bi-CGSTAB
is preferable since the convergence for heterogeneous highwavenumber Helmholtz problems
is typically faster than that of GMRES.

3.2. Shifted Laplacian (SL) Preconditioners

In [5], a shifted Laplacian operator was proposed as a preconditioner for the Helmholtz
equation, withMh defined as a discretization of

MSL = −∂xx − ∂yy + αk2(x, y
)
, α ∈ C, α = −(β1 − β2i

)
, (3.3)

and boundary conditions were set identically to those for the original Helmholtz equation.
The readers could refer to the related contents in [4, 7, 8, 14].

There are different choices of the parameter pair (β1, β2) such as (β1, β2) = (0, 0)
(Laplace preconditioner in [1]), (β1, β2) = (−1, 0) (Laird and Giles preconditioner in [2]),
(β1, β2) = (0, 1) (Erlangga et al. preconditioner in [3]), (β1, β2) = (1, 1) (basic parameter pair
choice). In [5], Erlangga et al. evaluated the influence of parameters β1 and β2 to the multigrid
method which was applied to approximate the shifted Laplacian operator to construct
the final preconditioner, and the proposed optimal parameter pair for the solver was that
(β1, β2) = (1, 0.5). Based on [5], Umetani et al. [7] considered using the fourth-order accurate
finite difference discretization with the result that the parameter pair (β1, β2) = (1, 0.4) is the
best choice. In this paper, we merely consider the shifted Laplacian preconditioners, without
the multigrid or incomplete LU method to approximate, which is not the same as that in
[5, 7]. So we will also choose that (β1, β2) = (1, 0.5) and (β1, β2) = (1, 0.3) for comparison with
the previously mentioned parameter pair (β1, β2) in the numerical experiments.

3.3. Smoothed Aggregation (SA) Preconditioning

In this section, we will present an overview of the smoothed aggregation setup algorithm.
The function of the SA setup phase is to construct coarse operators Ak through interpolation
operators

Pk : �nk+1 −→ �nk , (3.4)
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(1) t� = Sν1
�

(ones(n, 1), 0)
(2) While � ≤ L
(3) [neighbour, hoods] = aggregate (n�,A�);
(4) [P ,t�+1] = qr(n�, t� ,hoods);
(5) S� = smoother (n�,A�,ω,neighbour);
(6) I�

�+1 = S�P ;
(7) A�+1 = (I�

�+1)
T
A�I

�
�+1;

(8) � = � + 1;
(9) Endwhile

Algorithm 1: SA setup (n�,A�, �).

where nk and nk+1 are sizes of two successively coarser grids. The initial matrixA0 associated
with the finest level equalsA. The inputs need thematrixA and one near null-space candidate
t that is intended to form the interpolation basis. t is an algebraically smoothmode that is slow
to relax on the fine mesh. The details are described in Algorithm 1.

When the current coarse level � ≤ L(L is the coarsest level), we gain two sets
respectively named by “neighbour” and “hoods.” The “neighbor [i]” includes the nodes
which are strongly connective to the node i, and the “hoods [i]” contains the nodes which
are in the ith aggregation set. Next, we reset t� according to “hoods,” and QR factorization
is applied to it in order to get the initial interpolation operator P and the next t�+1. Third,
we obtain the smooth operator S� according to the relative algorithm in [15]. Fourth, we
get the final interpolation operator I��+1, through the smooth operator S� is acted on the initial
interpolation operator P . Finally, we can easily obtain the coarse operatorA�+1. The interested
readers could consult the related contents in [9]. We will employ the SA setup algorithm in
AMG to approximate the original system in order to obtain the preconditioner and we name
this process by SA preconditioning.

3.4. Double Pairwise Aggregation (DPA) Preconditioning

An algebraic coarsening algorithm sets up an interpolation operator P only making use of the
information available in the fine grid matrixA. The interpolation operator P is a n×nc matrix,
where nc (nc ≤ n) is the number of coarse variables. With acted on by the interpolation
operator, a vector defined on the coarse variable set [1, nc] could be transferred on the fine
grid. The coarsen grid matrix Ac depends not only on the interpolation matrix P , but also on
the restriction matrix R and the fine grid matrix A. It is usual to take the restriction operator
R equals to the transpose of the interpolation operator P . Therefore, the coarsen grid matrix
Ac is computed from the Galerkin formula

Ac = RAP = PTAP. (3.5)

Coarsening by aggregation needs to define aggregatesGi, which are disjoint subsets of
the variable set. The number of these aggregations is the number of coarse variables nc, and
the interpolation operator P is given by

Pi,j =

{
1, if i ∈ Gj,

0, otherwise

(
1 ≤ i ≤ n, 1 ≤ j ≤ nc

)
. (3.6)
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Note that there is no need to explicitly form interpolation operator P , and the coarse
grid matrix is practically computed by

(Ac)i,j =
∑

k∈Gi

∑

�∈Gj

ak�

(
1 ≤ i, j ≤ nc

)
. (3.7)

The double pairwise aggregation algorithmwas first proposed byNotay in [11], which
employed two passes of the pairwise aggregation algorithm, with the result of decreasing
the number of variables by a factor slightly less than four in most cases. Subsequently, we
will take the double pairwise aggregation scheme in the setup process of AMG, in order to
construct a better preconditioner with Bi-CGSTAB for discrete Helmholtz equations. We also
name this process by DPA preconditioning. The details of aggregation algorithms could be
consulted in [10, 11].

4. Experiments

We will consider the following problem and use a uniform mesh with constant mesh size h
in all directions. In the experiments, we will compare the three preconditionings combined
with Bi-CGSTAB or GMRES for solving discrete Helmholtz equations. The shifted Laplacian
preconditioner (SLP), the smoothed aggregation preconditioning (SAP), and the double
pairwise aggregation preconditioning (DPAP) are, respectively, introduced in Section 3. We
let that the iterative method is terminated at the kth step if ‖b −Axk‖2/‖b‖2 ≤ 10−6. All the
numerical results are from running relative Matlab programs in the computer with the CPU
of AMD Pentium Dual Core 4000+.

4.1. The Close-off Problem and Numerical Results

We consider a problem in a rectangular homogeneous medium governed by

−Δφ − k2φ = sin(πx) sin
(
πy

)
sin

(√
2πx

)
sin

(√
3πy

)
, x = [0, 1], y = [0, 1], (4.1)

φ = 0, at the boundaries.
Different grid resolutions are used to solve this problem with various wavenumbers

in Table 1.
Firstly, we will observe the distribution of eigenvalues of the systems preconditioned

by the three different preconditionings in order to estimate which preconditioning is best
combined with Krylov subspace iterative methods. Since the spectral analysis of shifted
Laplacian preconditioners (MSL)h with different parameter pairs (β1, β2) was considered
in many papers [5–7, 14] and (β1, β2) = (1, 0.5) is an almost better choice, we will only
present the distribution of eigenvalues of the system preconditioned by the shifted Laplacian
preconditioner (MSL)h with (β1, β2) = (1, 0.5) with second-order and fourth-order accurate
discretizations. We employ two-gird process to approximate V -cycle of AMG, and so
M−1

AMGA = I − S(I − PA−1
C PTA)S, where I is unit matrix and S is smoothing matrix.

Second-order and fourth-order accurate discretizations are taken into account. Next, we note
preconditioners produced by the smoothed aggregation preconditioning and by the double
pairwise aggregation preconditioning separately as (MSA)h and (MDPA)h. In Figures 1(a),
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Figure 1: Spectral pictures.
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Table 2: Computational performance of GMRES with SLPs.

k
(β1, β2) = (0, 0) (β1, β2) = (−1, 0) (β1, β2) = (0, 1) (β1, β2) = (1, 0.5) (β1, β2) = (1, 0.3)

Iter T solve (s) Iter T solve (s) Iter T solve (s) Iter T solve (s) Iter T solve (s)
10 15 0.593 19 0.282 18 0.625 13 0.39 11 3.422
20 50 1.218 64 1.406 56 98.032 38 2.046 29 6.328
30 99 4.547 125 5.203 113 185.468 69 170.484 — —

Table 3: Computational performance of Bi-CGSTAB with SAP.

k
SAP (T O) SAP (F O)

Iter T setup (s) T solve (s) Iter T setup (s) T solve (s)
10 5 4.484 0.328 5 4.391 0.265
20 7 72.718 0.500 5 72.516 0.391
30 4 417.172 0.672 4 419.953 0.703
40 6 3114.88 14.578 6 1586.28 6.375
Note: presmooth = 0, postsmooth = 1, smoother = ILU, setup Alg = sagg, V cycle.

1(b), and 1(c) are, respectively, spectral pictures of (MSL)
−1
h Ah, (MSA)

−1
h Ah and (MDPA)

−1
h Ah

with second-order accurate discretization, and Figures 1(d), 1(e), and 1(f) are respectively
spectral pictures of (MSL)

−1
h Ah, (MSA)

−1
h Ah, and (MDPA)

−1
h Ah with fourth-order accurate

discretization. Meanwhile, we compute the condition number of the preconditioned systems,
and cond2((MSL)

−1
h Ah) = 211.1400, cond2((MSA)

−1
h Ah) = 1.3062, and cond2((MDPA)

−1
h Ah) =

1.3078 separately correspond to Figures 1(a), 1(b), and 1(c).
Next, we will present numerical results in Tables 2, 3, and 4 and explain the meaning

of signs in them. Tables 2, 3, and 4, respectively, show the computational performance of
GMRES with SLPs, Bi-CGSTAB with SAP, and Bi-CGSTAB with DPAP for solving the closed-
off problem with finite difference discretizations, in terms of the number of iterations and
computational time, to reach the specified convergence. We also test Bi-CGSTAB with SLPs,
but it leads to more iterations and solve time. So we do not present the corresponding
results. Meanwhile, we find that Bi-CGSTAB with SLPs when β1 = 1 and β2 in the interval
(0, 1) is better than GMRES, and the fourth-order accurate discretization could make the
iterative solution rate more quick. Nevertheless, we make the focus only on the second-order
accurate discretization for shifted Laplacian preconditioners, so the second-order accurate
discretization is used in Table 2. “Iter” denotes the number of iterations, and “—” means
that the corresponding experimental result is not given. “T setup (s),” and “T solve (s)”
respectively, denote the setup time of preconditioner and the time of iterative solution by the
second, and “T O” and “F O,” respectively, mean the second-order and fourth-order finite
difference discretizations shown in Section 2. The values of “presmooth” and “postsmooth”
respectively, denote the number of pre- and postsmoothing iterations in the solve process
of AMG, “smoother” denotes the chosen smoothing method, and “setup Alg” denotes the
coarsening algorithm used in the setup process of AMG.

4.2. Analysis of Numerical Results

We will analyze the numerical results from the following aspects.
Firstly, from Figure 1, by comparing pictures (a), (b), (c), we find that the eigenvalues

of (b) and (c) aremore farther from zero point andmore close with one, but the eigenvalues of
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Table 4: Computational performance of Bi-CGSTAB with DPAP.

k
DPAP(T O) DPAP(F O)

Iter T setup(s) T solve(s) Iter T setup(s) T solve(s)
10 3 0.968 0.547 3 0.922 0.453
20 3 2.938 0.531 2 3.313 0.421
30 2 9.031 0.578 3 10.844 0.812
40 3 22.828 1.265 4 29.969 1.703
50 4 57.391 2.859 3 70.594 2.125
60 3 113.17 3.344 11 144.844 12.032
70 4 202.578 7.000 6 273.75 14.375
80 3 339.531 7.547 5 453.469 12.281
90 4 561.031 13.766 8 723.343 40.765
Note: presmooth = 1, postsmooth = 1, smoother = ILU, setup Alg = dpagg, V cycle.

(b) contain zero point. So we could boldly deduce that DPAP and SAP are more beneficial for
Krylov subspace iterative method. Perhaps DPAP is better than SAP since the eigenvalues of
(b) contain zero point. Next, we contrast (a), (b), (c), respectively, with (d), (e), (f). We notice
that the higher accurate discretization is possible to improve the solution efficiency of SLP,
since the fourth-order discretization makes eigenvalues more close to one in (d), is probably
good for SAP for avoiding the zero point eigenvalue, and is likely bad for DPAP because
of appearing the zero point eigenvalue. As we all know, the larger the condition number of
matrix is, the worse the numerical stability of solution of the corresponding matrix equation
is. So the system preconditioned by the shifted Laplacian operator has worse numerical
stability, which means that the small change of the right hand will bring large change of
solution, since cond2((MSL)

−1
h Ah) = 211.1400 is much larger. It is perhaps the reason for using

multigrid or LU to approximate the shifted Laplacian operator to obtain final preconditioner,
such as [4, 5, 7, 8].

Secondly, from Table 2, we could easily see that the number and time of iterative
solution are both going up largely with the increasing wavenumber. The shifted Laplacian
preconditioner degenerates into the Laplace preconditioner when (β1, β2) = (0, 0). Next, we
find out that the number of iterations is smallest when (β1, β2) = (1, 0.3), but it is not best in
terms of the time of iterative solution. In general, the best choice is that (β1, β2) = (1, 0.5) by
considering both aspects of the number and time of iterative solution.

Thirdly, from Table 3, we find that the fourth-order accurate discretization only affects
the iterative solution a little, and it is little better than the second-order accurate discretization
when thewavenumber k = 10, 20, 40. However, only the lowwavenumbers k are computed in
Table 3 because of the too long time of iterative solution or the inadequate memory for higher
wavenumbers. From Table 4, we discover that the fourth-order accurate discretization does
not evidently improve the efficiency of iterative solution and that the second-order accurate
discretization looks more stable in the aspect of the number of iterations. The fourth-order
accurate discretization improves the efficiency of iterative solution both on the sides of setup-
time and solve time when the wavenumber k = 10, 20 but costs more time and iterations for
the higher wavenumber k = 30, . . . , 90. So we could conclude that the second-order accurate
discretization combined with DPAP is preferable.

Finally, to compare results of Tables 2, 3, and 4, according to the number of iterations,
we can easily find that Bi-CGSTAB with DPAP and second-order accurate discretization is
preferable. However, presmooth = 0 is chosen in Table 3, and, when we take presmooth
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= 1 for Bi-CGSTAB with SAP, the iterative steps will be smaller but still not better than Bi-
CGSTAB with DPAP, with leading to the longer solve time for the added smoothing process.
Following, we contrast solve time and setup time with second-order accurate discretization
in Tables 2, 3, and 4. Then, we see that GMRES with SLP with (β1, β2) = (−1, 0) need the
least solve-time for wavenumber k = 10, Bi-CGSTAB with SAP has the least time of iterative
solution for wavenumber k = 20, and Bi-CGSTAB with DPAP has the quickest iterative
rate for wavenumber k = 30, 40. SAP has much more setup time than DPAP for the same
wavenumber, and setup time of SAP increases more rapidly than that of DPAP. Though setup
time will lead to the whole solution time longer, if there are some matrix equations with
the same left matrix and the different right hands, DPAP will excel for higher wavenumber
because of needing the setup process once. The results of preconditioning for wavenumber
k = 50, . . . , 90 are only shown in Table 4, and the reason is that the larger the wavenumber k
is, the longer the solution time is for higher wavenumber. So we do not present the results for
the higher wavenumber in Tables 2 and 3 due to the limited experiment condition. Next, we
observe that, with the increasing wavenumber k, the number of iterative solution changes
between linearly and squarely in Table 2, but it fluctuates between 4 and 7 in Table 3 and
between 2 and 4 in Table 4. In other words, the number of iterative solution is not related to
the wavenumber k when Bi-CGSTAB with DPAP and SAP is employed. In contrast with Bi-
CGSTAB with SAP in Table 3, Bi-CGSTAB with DPAP in Table 4 makes the time of iterative
solution change more slowly while the wavenumber k is increasing.

5. Conclusions

As is known to all, Helmholtz equations are difficult to solve, especially with high wavenum-
bers. The reason is that the high wavenumber is able to make the corresponding matrices of
Helmholtz equations highly indefinite. The original Krylov subspace iterative method is not
efficient to solve these problems. Preconditioning is needed to apply into Krylov subspace
iterative methods in order to improve the efficiency of solution. We consider using the
algebraic multigrid method to construct the preconditioner and look for a concrete AMG
method which is fit for Helmholtz problems. According to numerical results and analysis
in Section 4, the double pairwise aggregation is applied in the setup process of AMG and
finally better results are gained. Meanwhile, the number of iterative solution is independent
on the wavenumber, with the result that Helmholtz equations with highwavenumbers can be
solved more efficiently in terms of time and memory. The methods that are Bi-CGSTAB with
DPAP and with SAP get fewer number of iterative solution however, SAP prolongs the setup
time in contrast with DPAP. The two kinds of preconditionings are obviously more efficient
than the shifted Laplacian preconditioners. In view of the above, we can draw the conclusion
that the double pair aggregation algorithm in the setup process of AMG is a good choice to
solve Helmholtz equations especially with high wavenumbers. Though only the 2 D close-off
problem with Dirichlet boundary condition is experimented in Section 4, this conclusion is
also possible to generalize to Helmholtz equations with other boundary conditions.
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