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We present an efficient numerical scheme for solving three-point boundary value problems of
nonlinear fractional differential equation. The main idea of this method is to establish a favorable
reproducing kernel space that satisfies the complex boundary conditions. Based on the properties
of the new reproducing kernel space, the approximate solution is obtained by searching least value
techniques. Moreover, uniformly convergence and error estimation are provided for our method.
Numerical experiments are presented to illustrate the performance of the method and to confirm
the theoretical results.

1. Introduction

Fractional differential equations have gained considerable importance due to their frequent
applications in various fields of science and engineering including physics [1–4], bioengi-
neering [5–7], hydrology [8–10], solid mechanics [11], chaos [12–14], control theory [15], and
finance [16–18]. It has been found that fractional derivatives provide an excellent instrument
for th e description of memory and hereditary properties of different substances [19]. With
these features, the fractional-order models become more practical and realistic than the
classical integerd-order models, in which such effects are not taken into account.

Finding exact solutions in closed forms for most differential equations of fractional
order is a difficult task. As a result, a number of methods have been proposed and
applied successfully to approximate fractional differential equations, such as Adomian
decomposition method [20], variational iteration method [21], homotopy analysis method
[22], implicit and explicit difference method [23], and collocation method [24]. Especially
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Momani and Odibat have applied He’s variational iteration method to fractional differential
equations [25–27]. Meanwhile, various fractional order differential equation have been
solved very recently including fractional advection-dispersion equations [28, 29], reaction-
diffusion systemwith fractional derivatives [30], fractional partial differential equations fluid
mechanics [31], and fractional-order two-point boundary value problem [32].

In contrast to the initial value and two-point boundary value problems, not much
attention has been paid to the multipoint fractional boundary value problem (MFBVP).
Ahmed and Wang [33] considered existence and uniqueness of solutions for a four-point
nonlocal boundary value problem of nonlinear impulsive differential equations of fractional
order. Rehman and Khan [34] also studied existence and uniqueness of solutions for a class
of multipoint boundary value problems for fractional differential equations. However, the
research on the numerical treatment for MFBVP has proceeded very slowly in the recent
years. This motivates us to investigate computationally efficient numerical techniques for
solving the MFBVP.

In the present work, we are concerned with the numerical solution of the following
three-point boundary value problem of fractional differential equation [35] in a reproducing
kernel space:

Dα
0+u(x) = f(x, u(x)), 0 < x < 1, 3 < α ≤ 4,

u(0) = u′(0) = u′′(0) = 0, u′′(1) = βu′′
(
η
)
,

(1.1)

whereDα
0+ is the Riemann-Liouville fractional derivative and 0 < η < 1 satisfies 0 < βηα−3 < 1,

while f : [0, 1] × [0,+∞) → [0,+∞) is continuous.
Recently, the reproducing kernel space method (RKSM) has been used for obtaining

approximate solutions of differential and integral equations [36–38]. However, due to the
multipoint boundary value conditions in (1.1), especially for fractional differential equations,
it is difficult to find the corresponding reproducing kernel space by applying traditional
RKSM.

The aim of this work is to extend the RKSM to derive the numerical solutions of (1.1).
One important improvement is that we successfully construct a novel reproducing kernel
space so as to overcome difficulties with the nonlocal multipoint boundary value conditions.
By using the new reproducing kernel functions, we present an efficient numerical algorithm
to solve problem (1.1). The emphasis of the result is that uniformly convergence of the
approximate solution, error estimation, and complexity analysis of our algorithm are studied.

The organization of this paper is as follows. In Section 2, we present some important
definitions and preparations used in this paper. In Section 3, we construct and develop
algorithms for solving nonlinear fractional differential equation with three-point boundary
value conditions. In Section 4 the proposed methods are applied to several examples. Also a
conclusion is given in Section 5.

2. The Construction of a New Reproducing Kernel Space

We give some basic definitions and theories which are used further in this paper.
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Definition 2.1 (see [39]). The Riemann-Liouville fractional derivative of order α is defined as

Dα
0+u(x) =

1
Γ(n − s)

(
d

dx

)n ∫x

0

u(t)

(x − t)α−n+1
dt. (2.1)

Γ(·) is the gamma function and n = [α] + 1, [α] denotes the integerd part of number α.

Definition 2.2 (see [40]). Let W be a Hilbert function space on a set X. W is called a
reproducing kernel space if and only if for any x ∈ X, there exists a unique function
Kx(y) ∈ W , such that 〈f,Kx〉 = u(x) for any u ∈ W . Meanwhile, K(x, y) .= Kx(y) is called a
reproducing kernel.

We now define a new reproducing kernel space W which includes the nonlocal
boundary value conditions and give an explicit representation formula for calculation of the
reproducing kernel.

Definition 2.3. W .=W[0, 1] = {u(x) | u(4)(x) is an absolutely continuous real value function in
[0, 1], u(5)(x) ∈ L2[0, 1], u(0) = u′(0) = u′′(0) = 0, u′′(1) − βu′′(η) = 0, 0 < η < 1, 0 < βηα−3 < 1}.
The inner product is given by

〈u(x), v(x)〉 = u′′
(
η
)
v′′(η

)
+ u(4)(0)v(4)(0) +

∫1

0
u(5)(x)v(5)(x)dx. (2.2)

Theorem 2.4. W is a reproducing kernel space, that is, there exists a function K(x, y) ∈ W , for any
fixed y ∈ [0, 1] and any u(x) ∈ W , such that u(y) = 〈u(x), K(x, y)〉. Moreover, the reproducing
kernel can be denoted by

K
(
x, y
)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1
(
x, y
)
= a1 + a2x + a3x2 + · · · + a10x9, y < x < η,

k2
(
x, y
)
= b1 + b2x + b3x2 + · · · + b10x9, y < η < x,

k3
(
x, y
)
= c1 + c2x + c3x2 + · · · + c10x9, η < y < x,

k4
(
x, y
)
= d1 + d2x + d3x2 + · · · + d10x9, η < x < y,

k5
(
x, y
)
= e1 + e2x + e3x2 + · · · + e10x9, x < η < y,

k6
(
x, y
)
= f1 + f2x + f3x2 + · · · + f10x9, x < y < η.

(2.3)

Proof. For any u(x) ∈ W , we only need to prove that there exists a K(x, y) ∈ W for any fixed
y ∈ [0, 1] and any u(x) ∈W , K(x, y) must satisfy

〈
u(x), K

(
x, y
)〉

= u
(
y
)
. (2.4)
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By (2.2), we get

〈
u(x), K

(
x, y
)〉

= u′′
(
η
)∂2K

(
x, y
)

∂x2

∣
∣
∣
∣
∣
x=η

+ u(4)(0)
∂4K
(
x, y
)

∂x4

∣
∣
∣
∣
∣
x=0

+
∫1

0
u(5)(x)

∂5K
(
x, y
)

∂x5
dx.

(2.5)

We have the following equality using the integration by parts:

∫1

0
u(5)(x)

∂5K
(
x, y
)

∂x5
dx =

4∑

i=0
(−1)4−iu(i)(x) ∂

9−iK
(
x, y
)

∂x9−i

∣
∣
∣
∣
∣

1

0

−
∫1

0
u(x)

∂10K
(
x, y
)

∂x10
dx. (2.6)

Substituting (2.6) in (2.5), we get

〈
u(x), K

(
x, y
)〉

= u′′
(
η
)
⎛

⎝ ∂2K
(
x, y
)

∂x2

∣∣∣∣∣
x=η

−β∂
7K
(
x, y
)

∂x7

∣∣∣∣∣
x=1

⎞

⎠

+ u(4)(0)

(
∂4K
(
x, y
)

∂x4

∣∣∣∣∣
x=0

−∂
5K
(
x, y
)

∂x5

∣∣∣∣∣
x=0

)

+u(3)(0)
∂6K
(
x, y
)

∂x6

∣∣∣∣∣
x=0

+
1∑

i=0
(−1)4−iu(i)(1) ∂

9−iK
(
x, y
)

∂x9−i

∣∣∣∣∣
x=1

+
4∑

i=3
(−1)4−iu(i)(1) ∂

9−iK
(
x, y
)

∂x9−i

∣∣∣∣∣
x=1

−
∫1

0
u(x)

∂10K
(
x, y
)

∂x10
dx.

(2.7)

Therefore, by (2.4) K(x, y) is the solution of the following generalized differential equation:

∂2K
(
x, y
)

∂x2

∣∣∣∣∣
x=η

−β∂
7K
(
x, y
)

∂x7

∣∣∣∣∣
x=1

= 0,

∂4K
(
x, y
)

∂x4

∣∣∣∣∣
x=0

−∂
5K
(
x, y
)

∂x5

∣∣∣∣∣
x=0

= 0,

∂6K
(
x, y
)

∂x6

∣∣∣∣∣
x=0

= 0,

∂9−iK
(
x, y
)

∂x9−i

∣∣∣∣∣
x=1

= 0, i = 0, 1, 3, 4,

−∂
10K
(
x, y
)

∂x10
= δ
(
x − y),

(2.8)
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where δ denotes δ function. For x /=y, it is known thatK(x, y) is the solution of the following
linear homogeneous differential equation:

∂10K
(
x, y
)

∂x10
= 0, (2.9)

with the boundary value conditions:

∂2K
(
x, y
)

∂x2

∣
∣
∣
∣
∣
x=η

−β∂
7K
(
x, y
)

∂x7

∣
∣
∣
∣
∣
x=1

= 0,

∂4K
(
x, y
)

∂x4

∣
∣
∣
∣
∣
x=0

−∂
5K
(
x, y
)

∂x5

∣
∣
∣
∣
∣
x=0

= 0,

∂6K
(
x, y
)

∂x6

∣∣∣∣∣
x=0

= 0,

∂9−iK
(
x, y
)

∂x9−i

∣∣∣∣∣
x=1

= 0, i = 0, 1, 3, 4.

(2.10)

We find that (2.9) has characteristic equation λ10 = 0, and the eigenvalue λ = 0 is a root whose
multiplicity is 10. Applying the feature of functions inW , the general solution of (2.9) is given
by the universal representation as (2.3), in which every function ki(x, y) (i = 1, 2, 3, . . . , 6) has
the situation in Figure 1. Next we will calculate 60 coefficients in (2.3).

By integrating repeatedly ∂10K(x, y)/∂t10 = −δ(x − y) from y − ε to y + ε with respect
to x, we have

∂9K
(
x, y
)

∂x9

∣∣∣∣∣

y+ε

x=y−ε
= −1, ∂iK

(
x, y
)

∂xi

∣∣∣∣∣

y+ε

x=y−ε
= 0, i = 8, 7, 6, . . . , 0, (2.11)

and the following 20 equations are inferred as ε → 0

∂9k1
(
x, y
)

∂x9

∣∣∣∣∣
x=y

−∂
9k6
(
x, y
)

∂x9

∣∣∣∣∣
x=y

= −1,

∂9k3
(
x, y
)

∂x9

∣∣∣∣∣
x=y

−∂
9k4
(
x, y
)

∂x9

∣∣∣∣∣
x=y

= −1,

∂ik1
(
x, y
)

∂xi

∣∣∣∣∣
x=y

− ∂ik6
(
x, y
)

∂xi

∣∣∣∣∣
x=y

= 0, i = 8, 7, 6, . . . , 0,

∂ik3
(
x, y
)

∂xi

∣∣∣∣∣
x=y

− ∂ik4
(
x, y
)

∂xi

∣∣∣∣∣
x=y

= 0, i = 8, 7, 6, . . . , 0.

(2.12)
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Figure 1: Plot of distribution for ki(x, y), i = 1, 2, . . . , 6.

By (2.10), one can obtain 14 equations. In view of boundary value conditions, the following 8
equations can be obtained:

∂ik5
(
x, y
)

∂xi

∣∣∣∣∣
x=0

= 0 (i = 0, 1, 2),
∂ik6
(
x, y
)

∂xi

∣∣∣∣∣
x=0

= 0 (i = 0, 1, 2),

∂2k2
(
x, y
)

∂x2

∣∣∣∣∣
x=1

−β∂
2k2
(
x, y
)

∂xi

∣∣∣∣∣
x=η

= 0,
∂2k3

(
x, y
)

∂x2

∣∣∣∣∣
x=1

−β∂
2k4
(
x, y
)

∂xi

∣∣∣∣∣
x=η

= 0.

(2.13)

Finally, due to the smoothing of functions inW , we get 18 equations for i = 0, 1, 2, . . . , 8

∂ik1
(
x, y
)

∂xi

∣∣∣∣∣
x=η

−∂
ik2
(
x, y
)

∂xi

∣∣∣∣∣
x=η

= 0,

∂ik4
(
x, y
)

∂xi

∣∣∣∣∣
x=η

−∂
ik5
(
x, y
)

∂xi

∣∣∣∣∣
x=η

= 0.

(2.14)

Hence, the unknown coefficients of K(x, y) are governed by solving the 60 independent
equations by (2.10)–(2.14).
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3. Description of the Proposed Numerical Method

The method consists of two steps. In the first step, a normal orthogonal basis is established in
the reproducing kernel spaceW , and in the second step, it is used to successively obtain the
approximate solution of (1.1). Let us consider these steps in detail.

3.1. A Normal Orthogonal Basis in W

Define a bounded linear operator T :W[0, 1] → L1[0, 1] satisfying

Tu(x) = Dα
0+u(x). (3.1)

The proof of existence and uniqueness of solution for (1.1) has been studied in [35].
Therefore T is reversible. Now, (1.1) is turned into the following operator equation inW :

Tu(x) = f(x, u(x)). (3.2)

Choosing a countable dense subset {xi}∞i=1 on [0, 1], for the reproducing kernel K(x, y) ofW ,
we define a complete system inW as

ψi(x) = (TK(x, (·)))(xi) = 1
Γ(4 − α)

∂4

∂x4
i

∫xi

0

K
(
x, y
)

(
xi − y

)α−3dy. (3.3)

Then the orthogonal system ofW is derived from Gram-Schmidt orthogonalization process,
namely,

ψ̃i(x) =
i∑

k=1

βikψk(x). (3.4)

Next, the complexity estimation of the orthogonal basis is discussed. We know that the
orthogonal basis is obtained by orthogonalization of complete system ψi(x). The algorithm
with time complexity may be analyzed as following.

Step 1 (Computing 〈ψi(x), ψk(x)〉). In fact, according to the properties of reproducing kernel
and bounded linear operator, we have

〈
ψi(x), ψk(x)

〉
= Tψi(xk). (3.5)

Thus, we only need to calculate the specific function value Tψi(xk) instead of the usual
integral. Denote the computing time of the specific function value by T . It needs (((n(n +
1)))/2)T to compute those 〈ψi(x), ψk(x)〉 k = 1, 2, . . . , i, i = 1, 2, . . . , n.
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Step 2. Orthogonalization can be obtained by the following cycle.
Firstly, let β11 = 1/‖ψ1‖ and

Cij =
〈
ψi, ψ̃j

〉
H

=

〈

ψi,
i∑

k=1

βjkψk

〉

=
i∑

k=1

βjk
〈
ψi, ψk

〉
. (3.6)

For 1 ≤ j ≤ i − 1, it takes (i(i − 1))/2 times multiplication operations for computing Cij .
Secondly, we denote

βim =
−∑i−1

k=m Cikβkm∥
∥ψ̃i
∥
∥ , (3.7)

where

∥∥ψ̃i
∥∥ =

⎛

⎝
∥∥ψi
∥∥2 −

i−1∑

k=1

|Cik|
2
⎞

⎠

1/2

=

(
〈
ψi, ψi

〉 −
i−1∑

k=1

C2
ik

)1/2

. (3.8)

For 1 ≤ m ≤ i − 1, ((i + 2)(i − 1))/2 times multiplication operations are demanded to compute
βim. Finally, for 2 ≤ i ≤ n, it uses all (n(n − 1)(2n + 3))/4 times multiplication operations. To
sum up, from Step 1 and Step 2, we get orthogonal basis complexity result of (n(n − 1)(2n +
3))/4 times multiplication operations plus ((n(n + 1))/2)T . Therefore, the construction of
orthogonal basis costs a total of O(n3) operations.

3.2. The Approximate Solution of (3.2) in W

Theorem 3.1. If u(x) is the solution of (3.2), then

u(x) =
∞∑

i=1

i∑

k=1

βikf(xk, u(xk))ψ̃i(x). (3.9)

Proof. According to the orthogonal basis {ψ̃i(x)}∞i=1 ofW , we have

u(x) =
∞∑

i=1

〈
u(·), ψ̃i(x)

〉
ψ̃i(x) =

∞∑

i=1

i∑

k=1

βik
〈
u(·), ψk(x)

〉
ψ̃i(x)

=
∞∑

i=1

i∑

k=1

βik〈u(·), (TK(xk, ·))〉ψ̃i(x) =
∞∑

i=1

i∑

k=1

βik(T〈u(·), K(xk, ·)〉)ψ̃i(x)

=
∞∑

i=1

i∑

k=1

βik(Tu)(xk)ψ̃i(x) =
∞∑

i=1

i∑

k=1

βikf(xk, u(xk))ψ̃i(x).

(3.10)
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Denoting αk = f(xk, u(xk)), (3.9) can be rewritten as

u(x) =
∞∑

i=1

i∑

k=1

βikαkψ̃i(x). (3.11)

To obtain αk, we truncate the series of the left-hand side of (3.11)

un(x) =
n∑

i=1

i∑

k=1

βikαkψ̃i(x). (3.12)

Then we get αk based on the minimum point of function

J(α1, α2, . . . , αn) =
n∑

k=1

[
f(xk, un(xk)) − αk

]2
. (3.13)

Consequently, the approximate solution of (3.2) can be obtained.

Lemma 3.2. The approximate solution un(x) and its derivatives u(i)n (x), (i = 1, 2, 3, 4) uniformly
converge to exact solution u(x) and its derivatives, respectively.

Proof. For any x ∈ [0, 1], according to the boundedness of ‖∂ixK(x, y)‖(i = 0, 1, 2, 3, 4) and
reproducing property of K(x, y), the following conclusion is obtained as n → ∞

∣∣∣u(i)n (x) − u(i)(x)
∣∣∣ =
∣∣∣(un(x) − u(x))(i)

∣∣∣ =
∣∣∣∂ix
〈
un
(
y
) − u(y), K(x, y)〉

∣∣∣

=
∣∣∣
〈
un
(
y
) − u(y), ∂ixK

(
x, y
)〉∣∣∣

≤ ‖un − u‖
∥∥
∥∂ixK

(
x, y
)∥∥
∥ ≤M‖un − u‖ → 0.

(3.14)

Finally, we give the process to obtain αk:

(1◦) pick any initial value α0
k
;

(2◦) substitute α0k into (3.12) and get un(x);

(3◦) substitute α0
k
, un(x) into (3.13) and compute the value J(α01, α

0
2, . . . , α

0
n);

(4◦) if J(α01, α
0
2, . . . , α

0
n) < 10−20 then the computations terminate, otherwise substituting

un(x) into (3.13) yields a new minimum point α1
k
;

(5◦) calculate J(α11, α
1
2, . . . , α

1
n);

(6◦) if J(α11, α
1
2, . . . , α

1
n) < J(α01, α

0
2, . . . , α

0
n) then replace α0k with α1k and return to 2◦,

otherwise give up α1
k
and return to 1◦ and pick another initial value.
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Theorem 3.3. |un(x) − u(x)| = o(1/n).

Proof. Firstly, because of denseness, for any x ∈ [0, 1] and n ∈ N, we take xi ∈ {x1, x2, . . .},
i ≤ n such that |x − xi| < 1/n. Then due to the reproducing property and the property of
projector Pn, it follows that

Tun(xi) = 〈un(·),TK(xi, ·)〉 =
〈
Pnu(·), ψi(·)

〉
=
〈
u(·), Pnψi(·)

〉

=
〈
u(·), ψi(·)

〉
= T〈u(·), K(xi, ·)〉 = Tu(xi).

(3.15)

This implies that

Tun(x) − Tu(x) = Tun(x) − Tun(xi) − (Tu(x) − Tu(xi))

= 〈un(·),TK(x, ·) − TK(xi, ·)〉 − 〈u(·),TK(x, ·) − TK(xi, ·)〉
= 〈un(·) − u(·),TK(x, ·) − TK(xi, ·)〉.

(3.16)

By the mean value theorem, we have

TK(x, ·) − TK(xi, ·) = (x − xi) ∂
∂y

TK
(
y, ·). (3.17)

Finally, the following conclusion follows from above:

|un(x) − u(x)| =
〈
un − u,T−1(TK(x, ·) − TK(xi, ·))

〉

≤
∥∥∥T−1

∥∥∥‖un − u‖ ‖TK(x, ·) − TK(xi, ·)‖

≤
∥∥∥T−1

∥∥∥‖un − u‖ |x − xi|
∥∥∥∥
∂

∂y
TK
(
y, ·)
∥∥∥∥.

(3.18)

Thus, according to ‖un − u‖ → 0, |x − xi| < 1/n and the boundedness of ‖(∂/∂y) TK(y, ·)‖,
we get |un(x) − u(x)| = o(1/n).

4. Numerical Experiments

In this section, we give some computational results of three numerical experiments with
methods based on preceding sections, to support our theoretical discussion.

Example 4.1. Consider the following three-point boundary value problem of nonlinear
fractional differential equation [35]:

D7/2
0+ u(x) = f(x, u(x)), 0 < x < 1,

u(0) = u′(0) = u′′(0) = 0, u′′(1) = u′′
(
1
4

)
,

(4.1)



Abstract and Applied Analysis 11

with an exact solution u(x) = (x3/100)(425 + 170x − 128x3). Here f(x, u(x)) = ln(2 +
((17x3)/4) + ((17x4)/10)+((32x6)/25))+(1275+4080x−24576x3)/50

√
x Γ(0.5)− ln(2+u(x)).

For this example, we solved the three-point boundary value problem, by applying the
technique described in preceding section as following.

Step 1. By using the representation formula for calculation of reproducing kernel in Section 2,
the concrete expression of K(x, y) for the three-point boundary value conditions in (4.1) is
given as

k1
(
x, y
)
=

y3

5095276462080

×
(
−21x3(−3141613209 + 64x(16138815 + x(3227763 + 4x(−219394 + 3007x))))

+ 20160x3
(
−1075921 + 4x

(
108017 − 336x + 64x3

))
y

+ 4032x3
(
−1075921 + 4x

(
108017 − 336x + 64x3

))
y2

− 768x2
(
−658182 + x

(
21049 + 64x

(
−105 − 21x + 4x3

)))
y4

−126370944xy5 + 14041216y6
)
;

k2
(
x, y
)
=

y3

81524423393280

×
(
105
(
1889+64y

)
+4
(
−21x(66115+4x(−198345

+x(−3140290909 + 16x(64224685 + 652592x(21 + (−7 + x)x)))))
− 6720x(7 + 4x(−21 + x(3227903 + 4x(−324191 + 64x(21 + (−7 + x)x)))))y
− 336(−1 + 4x(7 + 4x(−21

+x(3227903 + 4x(−324191 + 64x(21 + (−7 + x)x))))))y2

+ 64(−1 + 4x(7 + 4x(1974525

+x(−63007 + 16x(1225 + 16x(21 + (−7 + x)x))))))y4

−505483xy5 + 56164y6
))

;

k3
(
x, y
)
=

1
3913172322877440

×
((

− 1 + 28y + 4
(
x(7 + 4x(−21 + x(595175 + 16x(1225 + 16x(21 + (−7 + x)x)))))

− 28x(7 + 4x(−21 + x(595175 + 16x(1225 + 16x(21 + (−7 + x)x)))))y

+ 84(−1 + 4x(7 + 4x(−21 + x(59575 + 16x(1225 + 16x(21 + (−7 + x)x))))))y2

− 28(−85025 + 4x(595175 + 4x(−1785525
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+x(−28250714681 + 16x(5780465 + 5873648x(21 + (−7 + x)x))))))y3

− 15680(−5 +4x(35 + 4x(−105

+x(16515619 + 256x(−26062 + 5x(21 + (−7 + x)x))))))y4

− 21504
(
−1 + 4x

(
7 + 4x

(
−21 + x

(
25697y5

+516677y6+16x(1225+(−7+x)x)y7−242632xy8+269591y9
)))))))

;

k4
(
x, y
)
= k3

(
y, x
)
; k5

(
x, y
)
= k2

(
y, x
)
; k6

(
x, y
)
= k1

(
y, x
)
.

(4.2)

Step 2. According to the numerical algorithm in Section 3, we get

ψi(x) =
1

Γ(0.5)
∂4

∂x4
i

∫xi

0

K
(
x, y
)

√
xi − y dy. (4.3)

By (3.4) we get the orthogonalization coefficients βik and ψ̃i(x). Then the approximate
solution un(x) can be obtained iteratively by (3.12).

The obtained numerical results are displayed in Table 1. Furthermore, the graph of
u(x) and un(x) for n = 128 is plotted in Figure 2. It can be shown that the numerical solutions
agree with exact solution by means of the proposed method.

Due to the multipoint boundary value conditions, to our knowledge, there is no
the same example as (1.1) in the literature about numerical method. For the purpose
of comparison, we compare the approximate solution of our method, together with the
approximate solution by Adomian Decomposition (AD)method given in [41].

Example 4.2. In this example, we consider the following nonlinear fourth-order fractional
integrodifferential equation of the form:

Dα
0+y(x) = 1 +

∫x

0
e−ty2(t)dt, 0 < x < 1, 3 < α ≤ 4,

y(0) = y′′(0) = 1, y(1) = y′′(1) = e.

(4.4)

In this case, a similar numerical method can be proposed as (1.1). In brief, the conditions
u(0) = u′(0) = u′′(0) = 0, u′′(1) = βu′′(η) in the reproducing kernel space W are replaced by
y(0) = y′′(0) = 1, y(1) = y′′(1) = e. There are some slight changes in the process of derivation.
The obtained numerical results for α = 3.25 are displayed in Table 2.
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Table 1: Numerical results for n = 128 for Example 4.1.

Node Exact solution Approximate solution Absolute error

1/8 0.00871094 0.0087107 2.39103e − 07

1/4 0.0727344 0.0727329 1.46440e − 06

3/8 0.25418 0.254176 4.14403e − 06

1/2 0.61750 0.617491 8.61550e − 06

5/8 1.22070 1.22069 1.51075e − 05

3/4 2.10305 2.10302 2.36936e − 05

7/8 3.26922 3.26918 3.42573e − 05

1 4.67000 4.66995 4.65042e − 05

4

3

2

1

0.2 0.4 0.6 0.8 1

Exa
Axp

Figure 2: Comparison of the approximate solution un(x) and u(x) at n = 128 for Example 4.1.

Table 2: The approximate solution in our method and in [41] for Example 4.2.

Node Present method AD method in [41]

0.1 1.12257 1.1202485492579

0.2 1.27641 1.2624009459051

0.3 1.42190 1.4293559759369

0.4 1.64819 1.6248578688995

0.5 1.90926 1.8534779619798

0.6 2.18762 2.1206550639506

0.7 2.50183 2.4327620675062

0.8 2.83318 2.7971904644190

0.9 3.29015 3.2224499000323

Example 4.3. Consider the nonlinear fifth-order fractional differential equation with three-
point boundary value conditions as following:

D9/2
0+ u(x) = sin

(
19x5 − (760/93)x7) +

1520
√
x
(
93 − 448x2)

31Γ(0.5)
− sinu(x), 0 < x < 1,

u(0) = u′(0) = u′′(0) = u′′′(0) = 0, u′′(1) = u′′
(
1
2

)
.

(4.5)
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Table 3: Numerical results for n = 128 for Example 4.3.

Node Exact solution Approximate solution Absolute error

1/8 0.00533087 0.00533148 6.11643e − 08

1/4 0.0194715 0.0194721 6.18588e − 07

3/8 0.135717 0.135719 2.27009e − 06

1/2 0.529906 0.529911 4.71005e − 06

5/8 1.48634 1.48635 9.38315e − 06

3/4 3.34208 3.3421 1.43306e − 05

7/8 6.59401 6.59403 2.51263e − 05

1 10.8280 10.8280 5.46427e − 05

0.2 0.4 0.6 0.8 1

2

4

6

8

10

Axp
Exa

Figure 3: Comparison of the approximate solution un(x) and u(x) at n = 128 for Example 4.3.

According to the numerical scheme above, one can obtain the approximation un(x) of u(x)
for n = 128. The numerical results are displayed in Table 3 and Figure 3, which show that the
numerical solutions agree with exact solution.

5. Conclusion

In this paper, the RKSM is applied to derive approximate analytical solution of nonlinear
fractional-order differential equations with three-point boundary value conditions. We have
constructed a novel reproducing kernel space and give the way to express the reproducing
kernel function, while traditional RKSM still can not be mentioned. The explicit series
solution is obtained using the orthogonal basis established in the new reproducing kernel
space. The numerical results given in the previous section demonstrate the better accuracy
of our algorithms. Moreover, the numerical algorithms introduced in this paper can be well
suited for handling general linear and nonlinear fractional-order differential equations with
multipoint boundary conditions. We note that the corresponding analytical and numerical
solutions are obtained using Mathematica 7.0.
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