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We investigate a class of multigroup dengue epidemic model. We show that the global dynamics
are determined by the basic reproductive number R0. We present that when R0 ≤ 1, there is a
unique disease-free equilibrium which is globally asymptotically stable; when R0 > 1, there exists
a unique endemic equilibrium and it is globally asymptotically stable proved by a graph-theoretic
approach to the method of global Lyapunov function.

1. Introduction

To understand and control the spread of infectious disease in population, mathematical epi-
demic models have been paid more attention. One essential assumption in most classical epi-
demic models is that the individuals are homogeneously mixed. However, many infectious
diseases, such asmeasles, mumps, and gonorrhea, occur in heterogeneous host population, so
multigroup epidemic models seem more reasonable. One of the earliest multigroup models
is analysed by Lajmanovich and Yorke [1] for gonorrhea in a nonhomogeneous population.
However, because of the large scale and complexity of multigroup models, progresses
in the mathematical analysis of their global dynamics have been slow, particularly, the
question of uniqueness and global stability of the endemic equilibrium. Recently, a graph-
theoretic approach to the method of global Lyapunov functions in [2, 3] was proposed to
resolve the open problem on the uniqueness and global stability of the endemic equilibrium.
Subsequently, a series of good results were produced about multigroup epidemic models in
[4–8].

In this paper, we study a multigroup dengue disease transmission model by the meth-
od in [2, 3]. In the model, the population is divided into n groups. Each group is divided
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into five disjoint classes: susceptible individuals, infective individuals, removed individuals,
susceptible mosquitoes, and infective mosquitoes whose numbers of individuals at time t are
denoted by SHi(t), IHi(t), RHi(t), SVi(t), IVi(t), respectively. The model to be studied takes the
following form:

S′
Hi

= AHi −
n∑

j=1

βHij SHiIVj − μHiSHi ,

I ′Hi
=

n∑

j=1

βHij SHiIVj −
(
μHi + γHi

)
IHi ,

R′
Hi

= γHiIHi − μHiRHi ,

S′
Vi
= AVi −

n∑

j=1

βVij SViIHj − μViSVi ,

I ′Vi
=

n∑

j=1

βVij SViIHj − μViIVi ,

(1.1)

where i = 1, 2, . . . , n. Here AHi and AVi represent the recruitment rate of the humans and
the mosquitoes in the ith group, βHij represents the contact rate between susceptible humans
SHi and infectious mosquitoes IVj , βVij is the contact rate between infected people IHj and
susceptible mosquitoes SVi , μHi and μVi represent the death rate of the humans and the
mosquitoes in the ith group, and γHi represents the recovery rate of the humans in the ith
group. All parameter values are assumed to be nonnegative and AHi,AVi , μHi , μVi > 0.

Dengue fever (DF) is an acute mosquito-transmitted disease, with a recorded
prevalence in 101 countries [9–11]. An estimated 50–100 million people per year are infected,
with approximately 25,000 deaths annually [12]. Thus, the study of DF is perceived as
signification and receives much attention. When n = 1, the model (1.1) had been studied
extensively. For example, the global stability of the equilibria was proved with the results of
the theory of competitive systems and stability of periodic orbits in [13]; in [14], the global
stability of the equilibria was proved with Lyapunov functions under some conditions.

The organization of this paper is as follows. In Section 2, we quote some results from
graph theory which will be used in the proof of our main results. In Section 3, we present a
global analysis of the system (1.1). At Section 4, we give a further discussion.

2. Preliminaries

In this section, we will give some previous results which will be useful for our main results.

Definition 2.1 (see [15]). Let U = (uij)n×n. We say that U ≥ 0 (U is nonnegative), if all its entries
uij are real and nonnegative.

If U = (uij)n×n and W = (wij)n×n are both nonnegative, we write U ≥ W if uij ≥ wij for
all i and j, and U > W if uij ≥ wij and U/=W .
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Definition 2.2 (see [15]). A matrixU = (uij)n×n is said to be reducible if either

(i) n = 1 and U = 0; or

(ii) n ≥ 2, there is a permutation matrix P ,

PUPT =

(
U1 0

U2 U3

)
, (2.1)

where U1 andU3 are square matrices. Otherwise, U is irreducible.

Let Γ(U) denote the directed graph of (uij)n×n. We have the following proposition.

Proposition 2.3 (see [16]). For matrixU, one has

(i) If U is nonnegative, then the spectral radius ρ(U) of U is an eigenvalue, and U has a
nonnegative eigenvector corresponding to ρ(U).

(ii) IfU is nonnegative and irreducible, then ρ(U) is a simple eigenvalue, andU has a positive
eigenvector x corresponding to ρ(U).

(iii) If 0 < W < U, then ρ(W) ≤ ρ(U). Moreover, if 0 < W < U and W + U is irreducible,
then ρ(W) < ρ(U).

(iv) IfU is nonnegative and irreducible, andW is diagonal and positive (namely, all of its entries
are positive), thenUW is irreducible.

(v) MatrixU is irreducible if and only if Γ(U) is strongly connected.

3. Mathematical Analysis

From the first and the fourth equation in (1.1), we know

lim sup
t−→∞

SHi ≤
AHi

μHi

, lim sup
t−→∞

SVi ≤
AVi

μVi

. (3.1)

For each i, adding the five equations in (1.1), we obtain

(SHi + IHi + RHi + SVi + IVi)
′ = AHi +AVi − μHi(SHi + IHi + RHi) − μVi(SVi + IVi)

≤ AHi +AVi − μ∗
i (SHi + IHi + RHi + SVi + IVi),

(3.2)

where μ∗
i = min{μHi , μVi}. Thus,

lim sup
t−→∞

(SHi + IHi + RHi + SVi + IVi) ≤
AHi +AVi

μ∗
i

. (3.3)
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Before going into any detail, we simplify the system. For each i-group, since the variable RHi

dose not appear in the first two and the last two equations of (1.1), it suffices to consider the
following reduced system:

S′
Hi

= AHi −
n∑

j=1

βHij SHiIVj − μHiSHi ,

I ′Hi
=

n∑

j=1

βHij SHiIVj −
(
μHi + γHi

)
IHi ,

S′
Vi
= AVi −

n∑

j=1

βVij SViIHj − μViSVi ,

I ′Vi
=

n∑

j=1

βVij SViIHj − μViIVi ,

(3.4)

where i = 1, 2, . . . , n, in the feasible region

D =
{
(S, I) ∈ R4n

+ | SHi ≤
AHi

μHi

, SVi ≤
AVi

μVi

, SHi + IHi + SVi + IVi

≤ AHi +AVi

μ∗
i

, i = 1, 2, . . . , n

}
,

(3.5)

where S = (SH, SV ), I = (IH, IV ), SH = (SH1 , . . . , SHn), SV = (SV1 , . . . , SVn), IH = (IH1 , . . . , IHn),
and IV = (IV1 , . . . , IVn). It can be verified that D is positively invariant with respect to system
(3.4). Behaviors of RHi can then be determined from the third equation in (1.1). Our results
in this paper will be stated for system (3.4) in D and can be translated straightforwardly to

system (1.1). Let
◦
D denote the interior of D.

An equilibrium (S, I) of (3.4) satisfies

AHi −
n∑

j=1

βHij SHiIVj − μHiSHi = 0,

n∑

j=1

βHij SHiIVj −
(
μHi + γHi

)
IHi = 0,

AVi −
n∑

j=1

βVij SViIHj − μViSVi = 0,

n∑

j=1

βVij SViIHj − μViIVi = 0,

(3.6)

where i = 1, 2, . . . , n. It is easy to see that the disease-free equilibrium denoted by E0 = (S0, I0)
exists for all positive parameter values, where S0

Hi
= AHi/μHi , S

0
Vi
= AVi/μVi , and I0Hi

= I0Vi
= 0,

i = 1, 2, . . . , n.
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Denote

M(S) =

(
0 MH(S)

MV (S) 0

)
, (3.7)

where MH(S) = (βHij SHi/μHi + γHi)n×n, MV (S) = (βVij SVi/μVi)n×n. We also denote
MH(S0

H) = MH0 and MV (S0
V ) = MV0

M0 =

(
0 MH0

MV0 0

)
. (3.8)

We know that for all S ∈ D, S ≤ S0, so for all S ∈ D, M(S) ≤ M0. We define the basic
reproduction number R0 as the spectral radius of M0; that is R0 = ρ(M0). We set

BH =

⎛
⎜⎜⎜⎜⎜⎜⎝

βH11 βH21 · · · βHn1

βH12 βH22 · · · βHn2

...
...

. . .
...

βH1n βH2n · · · βHnn

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.9)

BV =

⎛
⎜⎜⎜⎜⎜⎜⎝

βV11 βV21 · · · βVn1

βV12 βV22 · · · βVn2

...
...

. . .
...

βV1n βV2n · · · βVnn

⎞
⎟⎟⎟⎟⎟⎟⎠

, BM =

(
0 BH

BV 0

)
. (3.10)

Theorem 3.1. Assume that BH , BV , and BM are irreducible.

(1) If R0 ≤ 1, then the disease-free equilibrium E0 of system (3.4) is globally asymptotically
stable in D.

(2) If R0 > 1, then E0 is unstable and system (3.4) is uniformly persistent in
◦
D.

Proof. Since BM is irreducible and nonnegative, we know that M(S) and M0 are irreducible
and nonnegative. Therefore, by Proposition 2.3(ii), there exists a left eigenvector ω =
(ωH,ωV ) > 0 of M0 corresponding to ρ(M0), where ωH = (ωH1 , ωH2 , . . . , ωHn), ωV =
(ωV1 , ωV2 , . . . , ωVn); that is, ωρ(M0) = ωM0. Define

L =
n∑

i=1

(
ωHi

μHi + γHi

IHi +
ωVi

μVi

IVi

)
. (3.11)
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Denote the transpose of I as IT . Differentiating L along the solution of system (3.4), we obtain

L′ =
n∑

i=1

⎧
⎨

⎩
ωHi

μHi + γHi

⎡

⎣
n∑

j=1

βHij SHiIVj −
(
μHi + γHi

)
IHi

⎤

⎦

+
ωVi

μVi

⎛

⎝
n∑

j=1

βVij SViIHj − μViIVi

⎞

⎠

⎫
⎬

⎭

=
n∑

i=1

⎡

⎣ωHi

⎛

⎝
n∑

j=1

βHij SHiIVj

μHi + γHi

− IHi

⎞

⎠ +ωVi

⎛

⎝
n∑

j=1

βVij SViIHj

μVi

− IVi

⎞

⎠

⎤

⎦

= ω
(
M(S)IT − IT

)

≤ ω
(
M0I

T − IT
)

=
(
ρ(M0) − 1

)
ωIT

≤ 0.

(3.12)

Therefore, we obtain

(i) if R0 < 1, L′ = 0 ⇔ I = 0;

(ii) if R0 = 1, L′ = 0 ⇔ S = S0 or I = 0.

Thus, we know that the singleton {E0} is the only compact invariant subset of {L′ = 0}. By
LaSalle’s Invariance Principle [17], E0 is globally asymptotically stable in D, if R0 ≤ 1.

If R0 > 1 and I > 0, it is easy to see that

ω
(
M0I

T − IT
)
=
(
ρ(M0) − 1

)
ωIT > 0. (3.13)

Then, according to continuity, there exists a neighborhood B(E0) of E0, B(E0) ⊆ D, such that
for all (S, I) ∈ B(E0)

L′ = ω
(
M(S)IT − IT

)
> 0. (3.14)

This implies that E0 is unstable. Using a uniform persistence result from [18] and a similar
argument as in the proof of Proposition 3.3 of [19], we know that, when R0 > 1, the instability
of E0 implies the uniform persistence of (3.4). The proof is complete.

Uniform persistence of (3.4), together with uniform boundedness of solutions in
◦
D,

implies the existence of an equilibrium of system (3.4) in
◦
D [20, 21].

Corollary 3.2. Assume BH , BV , and BM are irreducible. IfR0 > 1, then (3.4) has at least one endemic
equilibrium.
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Denote the endemic equilibrium by E∗ = (S∗, I∗), where S∗
Hi
, S∗

Vi
, I∗Hi

, I∗Vi
> 0, i =

1, 2, . . . , n. One has the following result on the endemic equilibrium E∗.

Theorem 3.3. Assume that BH , BV , and BM are irreducible. If R0 > 1, then the endemic equilibrium

E∗ of system (3.4) is globally asymptotically stable in
◦
D.

Proof. The uniqueness of endemic equilibrium is obvious in
◦
D, if we prove that the endemic

equilibrium E∗ is globally stable when R0 > 1. We denote βHij
= βHij S

∗
Hi
I∗Vj

,βVij
= βVij S

∗
Vi
I∗Hj

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑

k,j /= 1

βV1j
βH1k

−
n∑

k /= 1

βV21
βHk1

· · · −
n∑

k /= 1

βVn1
βHk1

−
n∑

k /= 2

βV12
βHk2

n∑

k,j /= 2

βV2j
βH2k

· · · −
n∑

k /= 2

βVn2
βHk2

...
...

. . .
...

−
n∑

k /=n

βV1n
βHkn

−
n∑

k /=n

βV2n
βHk2

· · ·
n∑

k,j /=n

βVnj
βHnk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.15)

It is easy to see that

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑

k,j /= 1

βV1j
βH1k

0 · · · 0

0
n∑

k,j /= 2

βV2j
βH2k

· · · 0

...
...

. . .
...

0 0 · · ·
n∑

k,j /=n

βVnj
βHnk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑

k /= 1

βHk1
0 · · · 0

0
n∑

k /= 2

βHk2
· · · 0

...
...

. . .
...

0 0 · · ·
n∑

k /=n

βHkn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 βV21
· · · βVn1

βV12
0 · · · βVn2

...
...

. . .
...

βV1n
βV2n

· · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.16)

Since BH is irreducible and nonnegative, we get
∑n

k /= j βHkj
/= 0, j = 1, 2, . . . , n. Together with

BV being irreducible and nonnegative, by Proposition 2.3(iv), we know that B is irreducible.
Let Cij denote the cofactor of the (i, j) entry of B. According to Lemma 2.1 in [2], we have
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that the equation Bv = 0 has a positive solution v = (v1, v2, . . . , vn), where vi = Cii > 0 for
i = 1, 2, . . . , n. Define a Lyapunov function as follows:

V =
n∑

i=1

vi

[
n∑

k=1

βVik

(
SHi − S∗

Hi
lnSHi + IHi − I∗Hi

ln IHi

)

+
n∑

k=1

βHik

(
SVi − S∗

Vi
lnSVi + IVi − I∗Vi

ln IVi

)]
.

(3.17)

Together with (3.6), we get the derivative of V along the solution of system (3.4)

V ′ =
n∑

i=1

vi

⎧
⎨

⎩

n∑

k=1

βVik

⎡

⎣AHi − μHiSHi −
S∗
Hi

SHi

⎛

⎝AHi −
n∑

j=1

βHij SHiIVj − μHiSHi

⎞

⎠

−(μHi + γHi

)
IHi −

I∗Hi

IHi

⎛

⎝
n∑

j=1

βHij SHiIVj −
(
μHi + γHi

)
IHi

⎞

⎠

⎤

⎦

+
n∑

k=1

βHik

⎡

⎣AVi − μViSVi −
S∗
Vi

SVi

⎛

⎝AVi −
n∑

j=1

βVij SViIHj − μViSVi

⎞

⎠

−μViIVi −
I∗Vi

IVi

⎛

⎝
n∑

j=1

βVij SViIHj − μViIVi

⎞

⎠

⎤

⎦

⎫
⎬

⎭,

=
n∑

i,k=1

vi

[
βVik

μHiS
∗
Hi

(
2 − SHi

S∗
Hi

−
S∗
Hi

SHi

)
+ βHik

μViS
∗
Vi

(
2 − SVi

S∗
Vi

−
S∗
Vi

SVi

)]

+
n∑

i,k=1

viβVik

⎛

⎝2
n∑

j=1

βHij
−
S∗
Hi

SHi

n∑

j=1

βHij
+

n∑

j=1

βHij

IVj

I∗Vj

− IHi

I∗Hi

n∑

j=1

βHij
−

I∗Hi

IHi

n∑

j=1

βHij SHiIVj

⎞

⎠

+
n∑

i,k=1

viβHik

⎛

⎝2
n∑

j=1

βVij
−
S∗
Vi

SVi

n∑

j=1

βVij
+

n∑

j=1

βVij

IHj

I∗Hj

− IVi

I∗Vi

n∑

j=1

βVij
−
I∗Vi

IVi

n∑

j=1

βVij SViIHj

⎞

⎠.

(3.18)

According to (x1/x2) + (x2/x1) ≥ 2 for each x1, x2 > 0, with equality holding if and only if
x1 = x2, we have

μHiS
∗
Hi

(
2 −

S∗
Hi

SHi

− SHi

S∗
Hi

)
≤ 0,

μViS
∗
Vi

(
2 −

S∗
Vi

SVi

− SVi

S∗
Vi

)
≤ 0,

(3.19)



Journal of Applied Mathematics 9

where i = 1, 2, . . . , n and equalities hold, respectively, if and only if

SHi = S∗
Hi
, SVi = S∗

Vi
, i = 1, 2, . . . , n. (3.20)

Hence,

V ′ ≤
n∑

i,k=1

viβVik

⎛

⎝2
n∑

j=1

βHij
−
S∗
Hi

SHi

n∑

j=1

βHij
+

n∑

j=1

βHij

IVj

I∗Vj

− IHi

I∗Hi

n∑

j=1

βHij
−
I∗Hi

IHi

n∑

j=1

βHij SHiIVj

⎞

⎠

+
n∑

i,k=1

viβHik

⎛

⎝2
n∑

j=1

βVij
−
S∗
Vi

SVi

n∑

j=1

βVij
+

n∑

j=1

βVij

IHj

I∗Hj

− IVi

I∗Vi

n∑

j=1

βVij
−
I∗Vi

IVi

n∑

j=1

βVij SViIHj

⎞

⎠

=
n∑

i=1

vi

⎡

⎣
n∑

k=1

βVik

⎛

⎝
n∑

j=1

βHij

IVj

I∗Vj

− IHi

I∗Hi

n∑

j=1

βHij

⎞

⎠ +
n∑

k=1

βHik

⎛

⎝
n∑

j=1

βVij

IHj

I∗Hj

− IVi

I∗Vi

n∑

j=1

βVij

⎞

⎠

⎤

⎦

+
n∑

i,j,k=1

viβVik
βHij

(
4 −

S∗
Hi

SHi

−
S∗
Vi

SVi

−
I∗Hi

SHiIVj

IHiS
∗
Hi
I∗Vj

−
I∗Vi

SViIHj

IViS
∗
Vi
I∗Hj

)

=: K1 +K2.

(3.21)

We first show K1 ≡ 0 for all (S, I) ∈
◦
D. It follows from Bv = 0 that

n∑

k,j=1

βVij
βHik

vi =
n∑

k,j=1

βVji
βHki

vj , (3.22)

i = 1, 2, . . . , n. This implies that

n∑

i=1

vi

n∑

k=1

βVik

n∑

j=1

βHij

IVj

I∗Vj

=
n∑

j=1

IVj

I∗Vj

n∑

k=1

n∑

i=1

viβVik
βHij

=
n∑

j=1

IVj

I∗Vj

vj

n∑

k,i=1

βVjk
βHji

.

(3.23)

Thus,

n∑

i=1

vi

n∑

k=1

βVik

n∑

j=1

βHij

IVj

I∗Vj

−
n∑

i=1

vi

n∑

k=1

βHik

IVi

I∗Vi

n∑

j=1

βVij
= 0. (3.24)

Similarly, we produce

n∑

i=1

vi

n∑

k=1

βHik

n∑

j=1

βVij

IHj

I∗Hj

−
n∑

i=1

vi

n∑

k=1

βVik

IHi

I∗Hi

n∑

j=1

βHij
= 0. (3.25)

Therefore, K1 ≡ 0 for all (S, I) ∈
◦
D.
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Γ(B) has vertices {1, 2, . . . , n} with a directed arc (i, j) from i to j if and only if
∑n

k /= j βVij
βHkj

/= 0. Since B is irreducible, by a similar argument in [2], we obtain K2 ≤ 0 for

all (S, I) ∈
◦
D. Furthermore, we produce that

V ′ ≤ 0. (3.26)

If (3.20) holds, we have

K2 = 0 ⇐⇒ IHi = ηI∗Hi
, IVi = ηI∗Vi

, i = 1, 2, . . . , n, (3.27)

where η is arbitrary positive numbers.
According to (3.20) and (3.27), we know that V ′ = 0 ⇔ SHi = S∗

Hi
, SVi = S∗

Vi
, IHi =

ηI∗Hi
, IVi = ηI∗Vi

, i = 1, 2, . . . , n. Substituting (3.20) and (3.27) into system (3.4), we obtain

0 = AHi − η
n∑

j=1

βHij S
∗
Hi
I∗Vj

− μHiS
∗
Hi
,

0 = AVi − η
n∑

j=1

βViS
∗
Vi
I∗Hj

− μViS
∗
Vi
.

(3.28)

Since the right-hand side of (3.28) is strictly decreasing in η, by (3.6), we get that (3.28)
holds if and only if η = 1, namely, at E∗. By LaSalle’s Invariance Principle, E∗ is globally

asymptotically stable in
◦
D. The proof is complete.

From the process of proof of Theorem 3.3 and the definition of matrix B, it is easy to
get a corollary as follows.

Corollary 3.4. Assume that BV and BM are irreducible and
∑n

k /= j βHkj /= 0 (or BH , BM are irreducible
and

∑n
k /= j βVkj /= 0), j = 1, 2, . . . , n. If R0 > 1, then the endemic equilibrium E∗ of system (3.4) is

globally asymptotically stable in
◦
D.

4. Discussion

Taking the basic reproduction number R0 as a sharp threshold parameter, we establish the
global dynamics of system (3.4). Our result implies that, if R0 ≤ 1, then the dengue disease
always dies out in all groups; if R0 > 1, then the dengue disease always persists at the unique
endemic equilibrium level in all groups, independent of the initial condition.

Biologically, our assumptions in Theorem 3.3 and Corollary 3.4 mean that mosquitoes
in IVj can infect ones in individuals SHi directly or indirectly; individuals in IHj can infect
ones in mosquitoes SVi directly or indirectly, and individuals in IHj can infect ones in SHi by
mosquitoes indirectly, respectively.
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[21] N. P. Bhatia and G. P. Szegő, Dynamical Systems: Stability Theory and Applications, vol. 35 of Lecture

Notes in Mathematics, Springer-Verlag, Berlin, Germany, 1967.


