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The nth-order derivative fuzzy integro-differential equation in parametric form is converted to
its crisp form, and then the new iterative method with a reliable algorithm is used to obtain an
approximate solution for this crisp form. The analysis is accompanied by numerical examples
which confirm efficiency and power of this method in solving fuzzy integro-differential equations.

1. Introduction

In 1975 Zadeh and then Dubois and Prade [1] introduced fuzzy numbers and fuzzy
arithmetic. This concept propagated widely to various problems, for example, fuzzy linear
systems [2, 3], fuzzy differential equations [4, 5], fuzzy integral equations [6–8], and
fuzzy integro-differential equations [9–12]. Additional topics can be found in [13, 14].
Recently, several numerical methods were suggested to solve integro-differential equations,
for example, Sine-Cosine wavelet used by Tavassoli Kajani et al. to obtain a solution of linear
integro-differential equations [15] and variational iteration method used by Abbasbandy and
Hashemi to formulate and solve fuzzy integro-differential equation [12], by Saberi-Nadjafi
and Tamamgar for solving system of integro-differential equations [16], and by Shang and
Han for solving nth-order integro-differential equations [17]. Some other worthwhile works
can be found in [18, 19]. Recently, Daftardar-Gejji and Jafari [20, 21] proposed the new
iterative method. This method has proven useful for solving a variety of linear and nonlinear
equations such as algebraic equations, integral equations, ordinary and partial differential
equations of integer and fractional order, and system of equations as well. The new iterative
method is simple to understand and easy to implement using computer packages and



2 Journal of Applied Mathematics

yields better results [21] than the existing Adomian decomposition method [22], homotopy
perturbation method [23], or variational iteration method [24]. For more details, see [25–40].

In the present work we apply the new iterative method with a reliable algorithm to
solve the nth-order derivative fuzzy integro-differential equation in its crisp form.

2. Preliminaries

In this section we set up the basic definitions of fuzzy numbers and fuzzy functions.

Definition 2.1 (see [2, 3, 12]). A fuzzy number in parametric form is an ordered pair of
functions (u(r), u(r)), 0 ≤ r ≤ 1 which satisfy the following requirements:

(1) u(r) is a bounded left continuous nondecreasing function over [0, 1],

(2) u(r) is a bounded left continuous nonincreasing function over [0, 1],

(3) u(r) ≤ u(r), 0 ≤ r ≤ 1.

Remark 2.2 (see [6, 12]). Let u(r) = (u(r), u(r)), 0 ≤ r ≤ 1 be a fuzzy number, and we can take

uc(r) =
1
2
(
u(r) + u(r)

)
, ud(r) =

1
2
(
u(r) − u(r)

)
. (2.1)

It is clear that ud(r) ≥ 0, u(r) = uc(r)−ud(r) and u(r) = uc(r)+ud(r), and also a fuzzy number
u ∈ E is said symmetric if uc(r) is independent of r for all 0 ≤ r ≤ 1.

Let f : [a, b] → E for each partition P = {t0, . . . , tn} of [a, b] and for arbitrary ξi ∈
ti−1 − ti], 1 ≤ i ≤ n suppose that RP =

∑n
i=1 f(ξi)(ti − ti−1) and Δ = max{|ti − ti−1|, i = 1, . . . , n}.

The definite integral of f(t) over [a, b] is
∫b
a f(t)dt = limΔ→ 0 RP provided that this limit exists

in the metric D. If the fuzzy function f(t) is continuous in the metric D, its definite integral

exists. Also we have (
∫b
a f(t, r)dt) =

∫b
a f(t, r)dt and (

∫b
a f(t, r)dt) =

∫b
a f(t, r)dt.

Definition 2.3 (see [33]). Let f : (a, b) → RF and t0 ∈ (a, b). We say that f ′ is Hukuhara
differentiable at t0 if there exists an element f ′(t0) ∈ RF , such that for all h > 0 sufficiently
small, ∃f(t0 + h)�Hf(t0), f(t0)�Hf(t0 − h) and

lim
h→ 0

f(t0 + h)�Hf(t0)
h

= lim
h→ 0

f(t0)�Hf(t0 − h)
h

= f ′(t0), (2.2)

where �H is Hukuhara difference, RF is the set of fuzzy numbers, and the limit is in the
metric D.

In parametric form, if f = (f, f), then f ′ = (f ′, f
′
), where f ′, f

′
are Hukuhara differ-

entiable of f, f , respectively.

From (2.2), the nth-order Hukuhara differentiable, f (n), of f at t0 can be defined as in
the following definition.

Definition 2.4. Let f (n−1) : (a, b) → RF and t0 ∈ (a, b)where f (n−1) is (n− 1)th-orderHukuhara
differentiable of f at t0 for all n > 1. We say that f (n) is nth-order Hukuhara differentiable at
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t0 if there exists an element f (n)(t0) ∈ RF such that for all h > 0 sufficiently small, ∃f (n−1)(t0 +
h)�Hf (n−1)(t0),f (n−1)(t0)�Hf (n−1)(t0 − h) and

lim
h→ 0

f (n−1)(t0 + h)�Hf (n−1)(t0)
h

= lim
h→ 0

f (n−1)(t0)�Hf (n−1)(t0 − h)
h

= f (n)(t0), (2.3a)

n = 1, 2, . . .. In parametric form, as above, if = (f, f), then f (n) = (f (n), f
(n)

), where f (n), f
(n)

are nth-order Hukuhara differentiable of f, f , respectively. From (2.3a), in case n = 1, we
obtain (2.2).

3. Fuzzy Integro-Differential Equation

Consider the nth-order derivative integro-differential equation [12] as follows:

u(n)(t) + u(t) + λ

∫T

0
k(s, t)u(m)(s)ds = g(t), (3.1a)

where m, n ∈ N, m < n, t ∈ [0, T], λ ∈ R, g(t) is a known function and the kernel k(s, t) ≥ 0
with the initial conditions as follows:

u(k)(0) = hk, k = 0, 1, . . . , n − 1, hk ∈ R, (3.1b)

in the fuzzy case; that is, u and g be fuzzy functions. Let

u(t, r) =
(
u(t, r), u(t, r)

)
, g(t, r) =

(
g(t, r), g(t, r)

)
,

u(n)(t, r) =
(
u(n)(t, r), u(n)(t, r)

)
, g(n)(t, r) =

(
g(n)(t, r), g(n)(t, r)

)
,

(3.2)

where all derivatives are, with respect to t, fuzzy functions. Therefore, related fuzzy integro-
differential equation of (3.1a) can be written as follows:

u(n)(t, r) + u(t, r) + λ

∫T

0
k(s, t)u(m)(s, r)ds = g(t, r), (3.3a)

u(n)(t, r) + u(t, r) + λ

∫T

0
k(s, t)u(m)(s, r)ds = g(t, r), (3.3b)

and its two crisp equations can be written as follows:

uc(n)(t, r) + uc(t, r) + λ

∫T

0
k(s, t)uc(m)(s, r)ds = gc(t, r), (3.4a)

ud(n)(t, r) + ud(t, r) + λ

∫T

0
k(s, t)ud(m)(s, r)ds = gd(t, r). (3.4b)
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4. New Iterative Method

For simplicity, we present a review of the new iterative method [20, 21, 34–39, 41], and then
we introduce a suitable algorithm of this method for solving the nth-order derivative fuzzy
integro-differential equations.

Consider the following general functional equation:

u = f +N(u), (4.1)

where N is a nonlinear operator from a Banach space B → B, and f is a known function.
We are looking for a solution u of (4.1) having the series form:

u =
∞∑

i=0

ui. (4.2)

The nonlinear operator N can be decomposed as follows:

N

( ∞∑

i=0

ui

)

= N(u0) +
∞∑

i=0

⎧
⎨

⎩
N

⎛

⎝
i∑

j=0

uj

⎞

⎠ −N

⎛

⎝
i−1∑

j=0

uj

⎞

⎠

⎫
⎬

⎭
. (4.3)

From (4.2) and (4.3), (4.1) is equivalent to

∞∑

i=0

ui = f +N(u0) +
∞∑

i=1

⎧
⎨

⎩
N

⎛

⎝
i∑

j=0

uj

⎞

⎠ −N

⎛

⎝
i−1∑

j=0

uj

⎞

⎠

⎫
⎬

⎭
. (4.4)

We define the recurrence relation:

u0 = f,

u1 = N(u0),

un+1 = N(u0 + u1 + · · · + un) −N(u0 + u1 + · · · + un−1), n = 1, 2, . . . .

(4.5)

Then

(u1 + · · · + un+1) = N(u0 + · · · + un), n = 1, 2, . . . ,

∞∑

i=0

ui = f +
∞∑

i=1

ui.
(4.6)

The n-term approximate solution of (4.1) is given by u = u0 + u1 + · · · + un−1.
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4.1. Reliable Algorithm

After the above presentation of the new iterative method, we introduce a reliable algorithm
of this method for solving any nth-order derivative fuzzy integro-differential equation.
Consider the nth-order derivative integro-differential equation (3.1a) and (3.1b) defined as

u(n)(t) + u(t) + λ

∫T

0
k(s, t)u(m)(s)ds = g(t), (4.7a)

with the following initial conditions:

u(k)(0) = hk, k = 0, 1, . . . , n − 1, hk ∈ R. (4.7b)

The initial value problem (4.7a) and (4.7b) is equivalent to the following integral equation:

u(t) = u0(t) − Int

[

u(t) + λ

∫T

0
k(s, t)u(m)(s)ds

]

= u0(t) −N(u), (4.8)

where u0(t) is the solution of the nth-order differential equation:

dnu0

dtn
= g(t), u

(k)
0 (0) = hk, k = 0, 1, 2, . . . , n − 1, hk ∈ R, (4.9a)

N(u) = Int

[

u(t) + λ

∫T

0
k(s, t)u(m)(s)ds

]

, (4.9b)

and Int is an integral operator of order n. Also, the two crisp equations (3.4a) and (3.4b) are
equivalent to the two integral equations:

uc(t, r) = uc
0(t, r) − Int

[

uc(t, r) + λ

∫T

0
k(s, t)uc(m)(s, r)ds

]

= uc
0(t, r) −N(uc), (4.10a)

ud(t, r) = ud
0 (t, r) − Int

[

ud(t, r) + λ

∫T

0
k(s, t)ud(m)(s, r)ds

]

= ud
0 (t, r) −N

(
ud
)
, (4.10b)

where uc
0(t, r) and ud

0 (t, r) are the solutions of the nth-order differential equations:

dnuc
0

dtn
= gc(t), u

c(k)
0 (0) = hc

k, k = 0, 1, 2, . . . , n − 1, hc
k ∈ R, (4.10c)

dnud
0

dtn
= gd(t), u

d(k)
0 (0) = hd

k, k = 0, 1, 2, . . . , n − 1, hd
k ∈ R. (4.10d)
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N(uc) and N(ud) are the following two integral equations:

N(uc) = Int

[

uc(t, r) + λ

∫T

0
k(s, t)uc(m)(s, r)ds

]

, (4.10e)

N(uc) = Int

[

ud(t, r) + λ

∫T

0
k(s, t)uc(m)(s, r)ds

]

. (4.10f)

We get the solution of (4.8) or the two (4.10a), (4.10b) by employing the recurrence relation
(4.5).

4.2. Convergence of the New Iterative Method

Now, we introduce the condition of convergence of the new iterative method, which is
proposed by Daftardar-Gejji and Jafari in (2006) [20], also called (DJM) [39]. From (4.3), the
nonlinear operator N is decomposed as follows [39]:

N(u) = N(u0) + [N(u0 + u1) −N(u0)] + [N(u0 + u1 + u2) −N(u0 + u1)] + · · · . (4.11)

Let G0 = N(u0) and

Gn = N

(
n∑

i=0

ui

)

−N

(
n−1∑

i=0

ui

)

, n = 1, 2, . . . . (4.12)

Then N(u) =
∑∞

i=0 Gi.
Set

u0 = f, (4.13)

un = Gn−1, n = 1, 2, . . . . (4.14)

Then

u =
∞∑

i=0

ui (4.15)

is a solution of the general functional equation (4.1). Also, the recurrence relation (4.5)
becomes

u0 = f,

un = Gn−1, n = 1, 2, . . . .
(4.16)
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Using Taylor series expansion for Gi, i = 1, 2, . . . , n, we have

G1 = N(u0 + u1) −N(u0) = N(u0) +N ′(u0)u1 +N ′′(u0)
u2
1

2!

+ · · · −N(u0) =
∞∑

k=1

N(k)(u0)
uk
1

k!
,

G2 = N(u0 + u1 + u2) −N(u0 + u1) = N ′(u0 + u1)u2 +N ′′(u0 + u1)
u2
2

2!

+ · · · =
∞∑

j=1

[ ∞∑

i=0

N(i+j)(u0)
ui
1

i!

]
u
j

2

j!
,

G3 =
∞∑

i3=1

∞∑

i2=0

∞∑

i1=0

N(i1+i2+i3)(u0)
ui3
3

i3!
ui2
2

i2!
ui1
1

i1!
.

(4.17)

In general:

Gn =
∞∑

in=1

∞∑

in−1=0

· · ·
∞∑

i1=0

⎡

⎣N(
∑n

k=1 ik)(u0)

⎛

⎝
n∏

j=1

u
ij
j

ij !

⎞

⎠

⎤

⎦. (4.18)

In the following theorem we state and prove the condition of convergence of the method.

Theorem 4.1. If N is C(∞) in a neighborhood of u0 and

∥∥∥N(n)(u0)
∥∥∥ = sup

{
N(n)(u0)(h1, . . . , hn) : ‖hi‖ ≤ 1, 1 ≤ i ≤ n

}
≤ L, (4.19a)

for any n and for some real L > 0 and ‖ui‖ ≤ M < 1/e, i = 1, 2, . . ., then the series
∑∞

n=0 Gn is
absolutely convergent, and, moreover,

‖Gn‖ ≤ LMnen−1(e − 1), n = 1, 2, . . . . (4.19b)

Proof. In view of (4.18),

‖Gn‖ ≤ LMn
∞∑

in=1

∞∑

in−1=0

· · ·
∞∑

i1=0

⎛

⎝
n∏

j=1

u
ij
j

ij !

⎞

⎠ = LMnen−1(e − 1). (4.19c)

Thus, the series
∑∞

n=1 ‖Gn‖ is dominated by the convergent series LM(e − 1)
∑∞

n=1(Me)n−1,
where M < 1/e. Hence,

∑∞
n=0 Gn is absolutely convergent, due to the comparison test.

For more details, see [39].
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5. Numerical Examples

Example 5.1. Consider the following fuzzy integro-differential equation:

u′(t, r) + λ

∫1

0
k(s, t)u(s, r)ds = g(t, r), 0 ≤ t, r ≤ 1, (5.1)

where u(t, r) = (u(t, r), u(t, r)) = (−2rt, 4 + rt) is the exact solution for (5.1), g(t, r) =
(g(t, r), g(t, r)) = (−2r − 2rt/3, r + 2t + rt/3, k(s, t) = st, and λ = 1, with the initial
conditions u(0, r) = 0, u(0, r) = 4. Taking gc(t, r) = (1/2)(g(t, r) + g(t, r)) = −r/2 + t − rt/6,

gd(t, r) = (1/2)(g(t, r)−g(t, r)) = 3r/2+t+rt/2. The exact solution for related crisp equations

is uc(t, r) = 2 − rt/2, ud(t, r) = 2 + 3rt/2. At first, we identify uc(t, r) and ud(t, r). From (3.4a)
and (3.4b), (5.1), where n = 1, we have

uc′(t, r) +
∫1

0
stuc(s, r)ds = gc(t, r), uc(0, r) = 2, (5.2a)

ud′
(t, r) +

∫1

0
stud(s, r)ds = gd(t, r), ud(0, r) = 2. (5.2b)

From (4.10c), (4.10d), we obtain

uc
0(t, r) = 2 − rt

2
+
t2

2
− rt2

12
, ud

0 (t, r) = 2 +
3rt
2

+
t2

2
+
rt2

4
. (5.3)

Therefore, from (4.10a), (4.10b) the fuzzy integro-differential equations (5.2a) and (5.2b) are
equivalent to the following integral equations:

uc(t, r) = 2 − rt

2
+
t2

2
− rt2

12
− It

[∫1

0
stuc(s, r)ds

]

,

ud(t, r) = 2 +
3rt
2

+
t2

2
+
rt2

4
− It

[∫1

0
stud(s, r)ds

]

.

(5.4)
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Let N(uc) = −It[
∫1
0 stu

c(s, r)ds],N(ud) = −It[
∫1
0 stu

d(s, r)ds]. Therefore, from (4.5), we can
obtain easily the following first few components of the new iterative solution for (5.1):

uc
0(t, r) = 2 − rt

2
+
t2

2
− rt2

12
, ud

0 (t, r) = 2 +
3rt
2

+
t2

2
+
rt2

4
,

uc
1(t, r) = N

(
uc
0

)
= −9t

2

16
+
9rt2

96
, ud

1 (t, r) = N
(
ud
0

)
= −9t

2

16
− 9rt2

32
,

uc
2(t, r) =

9t2

128
− 9rt2

768
, ud

2 (t, r) =
9t2

128
+
9rt2

256
,

...

uc
5(t, r) = − 9t2

65536
+

9rt2

393216
, ud

5 (t, r) = − 9t2

65536
− 9rt2

131072
,

(5.5)

and so on. The 6-term approximate solution is

uc(t, r) =
5∑

n=0

uc
n = 2 − rt

2
− t2

65536
+

rt2

393216
,

ud(t, r) =
5∑

n=0

ud
n = 2 +

3rt
2

− t2

65536
− rt2

131072
.

(5.6)

It is clear that the iterations converge to the exact solution of the two crisp equations uc, ud

as the number of iteration converges to ∞, that is, limn→∞ uc
n(t, r) = 2 − rt/2 = uc

Exact, and
limn→∞ud

n(t, r) = 2+ 3rt/2 = ud
Exact. From the relations between u, u, uc, ud, and u in Section 2,

it follows immediately that this solution is the solution of the fuzzy integro-differential
equation (5.1).

Example 5.2. Consider the following fuzzy integro-differential equation:

u′′(t, r) + λ

∫1

0
k(s, t)u(s, r)ds = g(t, r), 0 ≤ t, r ≤ 1. (5.7)

In this example u(t, r) = (u(t, r), u(t, r)) = (2rt, 4rt) is the exact solution for (5.7), g(t, r) =
(g(t, r), g(t, r)) = 2rt/3, 4rt/3, k(s, t) = st, λ = 1, and the initial conditions are u(0, r) = 0,

u′(0, r) = 2r, u(0, r) = 0, u
′
(0, r) = 4r. Also, the exact solution for related crisp equations

is uc(t, r) = 3rt, ud(t, r) = rt with gc(t, r) = rt, gd(t, r) = rt/3. At first, we identify uc(t, r),
ud(t, r). From (3.4a) and (3.4b), (5.7), where n = 2, we have

uc′′(t, r) +
∫1

0
stuc(s, r)ds = gc(t, r), uc(0, r) = 0, uc′(0, r) = 3r, (5.8a)

ud′′
(t, r) +

∫1

0
stud(s, r)ds = gd(t, r), ud(0, r) = 0, ud′

(0, r) = r. (5.8b)
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From (4.10c), (4.10d), we obtain

uc
0(t, r) = 3rt +

rt3

6
, ud

0 (t, r) = rt +
rt3

18
. (5.9)

Therefore, from (4.10a), (4.10b), the fuzzy integro-differential equations (5.8a) and (5.8b) are
equivalent to the following integral equations:

uc(t, r) = 3rt +
rt3

6
− I2t

[∫1

0
stuc(s, r)ds

]

,

ud(t, r) = rt +
rt3

18
− I2t

[∫1

0
stud(s, r)ds

]

.

(5.10)

Let N(uc) = −I2t [
∫1
0 stu

c(s, r)ds], N(ud) = −I2t [
∫1
0 stu

d(s, r)ds]. Therefore, from (4.5), we can
obtain easily the following first few components of the new iterative solution for (5.7):

uc
0(t, r) = 3rt +

rt3

6
, ud

0 (t, r) = rt +
rt3

18
,

uc
1(t, r) = N

(
uc
0

)
= −31rt

3

180
, ud

1 (t, r) = N
(
ud
0

)
= −31rt

3

540
,

uc
2(t, r) =

31rt3

5400
, ud

2 (t, r) =
31rt2

16200
,

...

uc
5(t, r) = − 31rt3

145800000
, ud

5 (t, r) = − 29rt2

437400000
,

(5.11)

and so on. The 6-term approximate solution is

uc(t, r) =
5∑

n=0

uc
n = 3rt − rt3

145800000
, ud(t, r) =

5∑

n=0

ud
n = rt − rt3

437400000
. (5.12)

It is clear that the iterations converge to the exact solution of uc, ud as n → ∞, that is,
limn→∞ uc

n(t, r) = 3rt = uc
Exact, limn→∞ ud

n(t, r) = rt = ud
Exact. As the above example the solution

of (5.7) follows immediately.

Example 5.3. The third example is the fuzzy integro-differential equation:

u′′(t, r) + λ

∫1

0
k(s, t)u′(s, r)ds = g(t, r), 0 ≤ t, r ≤ 1, (5.13)

where u(t, r) = (u(t, r), u(t, r)) = (rt, 4 − 3rt) is the exact solution for (5.13), g(t, r) =
(g(t, r), g(t, r)) = (−rt/2, 3rt/2), k(s, t) = st, λ = −1, and the initial conditions are u(0, r) = 0,
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u′(0, r) = r, u(0, r) = 4, u
′
(0, r) = −3r. The exact solution for related crisp equations is

uc(t, r) = 2 − rt, ud(t, r) = 2 − 2rt with gc(t, r) = rt/2, gd(t, r) = rt. At first, we identify
uc(t, r), ud(t, r), and from (3.4a) and (3.4b), (5.13), where n = 2, we have

uc′′(t, r) −
∫1

0
stuc′(s, r)ds = gc(t, r), uc(0, r) = 2, uc′(0, r) = −r, (5.14a)

ud′′
(t, r) −

∫1

0
stud′

(s, r)ds = gd(t, r), ud(0, r) = 2, ud′
(0, r) = −2r. (5.14b)

From (4.10c), (4.10d), we obtain

uc
0(t, r) = 2 − rt +

rt3

12
, ud

0 (t, r) = 2 − 2rt +
rt3

6
. (5.15)

Therefore, from (4.10a) and (4.10b), the fuzzy integro-differential equations (5.14a) and
(5.14b) are equivalent to the integral equations:

uc(t, r) = 2 − rt +
rt3

12
+ I2t

[∫1

0
stuc′(s, r)ds

]

,

ud(t, r) = 2 − 2rt +
rt3

6
+ I2t

[∫1

0
stud′

(s, r)ds

]

.

(5.16)

Let N(uc) = I2t [
∫1
0 stu

c′(s, r)ds], N(ud) = I2t [
∫1
0 stu

d′
(s, r)ds]. Therefore, from (4.5), we can

obtain easily the following first few components of the new iterative solution for (5.13):

uc
0(t, r) = 2 − rt +

rt3

12
, ud

0 (t, r) = 2 − 2rt +
rt3

6
,

uc
1(t, r) = N

(
uc
0

)
= −7rt

3

96
, ud

1 (t, r) = N
(
ud
0

)
= −7rt

3

48
,

uc
2(t, r) = −7rt

3

768
, ud

2 (t, r) = −7rt
3

384
,

...

uc
5(t, r) = − 7rt3

393216
, ud

5 (t, r) = − 7rt3

196608
,

(5.17)

and so on. The 6-term approximate solution is

uc(t, r) =
5∑

n=0

uc
n = 2 − rt +

rt3

393216
, ud(t, r) =

5∑

n=0

ud
n = 2 − 2rt +

rt3

196608
. (5.18)
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It is clear that the iterations converge to the exact solution of uc, ud as n → ∞, that is,
limn→∞ uc

n(t, r) = 2 − rt = uc
Exact, limn→∞ ud

n(t, r) = 2 − 2rt = ud
Exact. Therefore the solution

of (5.13) follows immediately.

Example 5.4. Let us consider the following fuzzy integro-differential equation:

u′′(t, r) + u(t, r) + λ

∫1

0
k(s, t)u(s, r)ds = g(t, r), 0 ≤ t, r ≤ 1, (5.19)

with the exact solution u(t, r) = (u(t, r), u(t, r)) = (3rt, 8 − rt), g(t, r) = (g, g) = (2rt, 8 − 4t −
(2rt/3)), k(s, t) = st, λ = −1, and the initial conditions u(0, r) = 0, u′(0, r) = 3r, u(0, r) = 8,
u

′
(0, r) = −r. The exact solution for related crisp equations is uc(t, r) = 4+ rt, ud(t, r) = 4− 2rt

with gc(t, r) = 4 − 2t + 2rt/3, gd(t, r) = 4 − 2t − 4rt/3. From (3.4a), (3.4b), and (5.19), where
n = 2, the two crisp equations are

uc′′(t, r) + uc(t, r) −
∫1

0
stuc(s, r)ds = gc(t, r), uc(0, r) = 4, uc′(0, r) = r, (5.20a)

ud′′
(t, r) + ud(t, r) −

∫1

0
stud(s, r)ds = gd(t, r), ud(0, r) = 4, ud′

(0, r) = −2r. (5.20b)

From (4.10c), (4.10d) we obtain

uc
0(t, r) = 4 + rt + 2t2 − t3

3
+
rt3

9
, ud

0 (t, r) = 4 − 2rt + 2t2 − t3

3
− 2rt3

9
. (5.21)

Therefore, from (4.10a), (4.10b), the fuzzy integro-differential equations (5.20a) and (5.20b)
are equivalent to the following integral equations:

uc(t, r) = 4 + rt + 2t2 − t3

3
+
rt3

9
+ I2t

[

−uc(t, r) +
∫1

0
stuc(s, r)ds

]

,

ud(t, r) = 4 − 2rt + 2t2 − t3

3
− 2rt3

9
+ I2t

[

−ud(t, r) +
∫1

0
stud(s, r)ds

]

.

(5.22)

Let

N(uc) = I2t

[

−uc(t, r) +
∫1

0
stuc(s, r)ds

]

,

N
(
ud
)
= I2t

[

−ud(t, r) +
∫1

0
stud(s, r)ds

]

.

(5.23)
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Therefore, from (4.5), we can obtain the following first approximate solutions for (5.19):

uc
0(t, r) = 4 + rt + 2t2 − t3

3
+
rt3

9
, ud

0 (t, r) = 4 − 2rt + 2t2 − t3

3
− 2rt3

9
,

uc
1(t, r) = −2t2 + 73t3

180
− 29rt3

270
− t4

6
+

t5

60
− rt5

180
,

ud
1 (t, r) = −2t2 + 73t3

180
+
29rt3

135
− t4

6
+

t5

60
+
rt5

90
,

uc
2(t, r) = −311t

3

4200
− 421rt3

113400
+
t4

6
− 73t5

3600
+
29rt5

5400
+

t6

180
− t7

2520
+

rt7

7560
,

ud
2 (t, r) = −311t

3

4200
+
421rt3

56700
+
t4

6
− 73t5

3600
− 29rt5

2700
+

t6

180
− t7

2520
− rt7

3780
,

...

(5.24)

and so on. In the same manner the rest of components can be obtained. The 5-term approxi-
mate solution is

uc(t, r) =
4∑

n=0

uc
n = 4 + rt +

2.8739t3

3143448
− 0.1019rt3

9430344
+
0.0523t5

27216
+
0.0023rt5

20412

− 0.023t7

10584
− 0.001rt7

95256
− 0.13t9

108864
− 0.01rt9

163296
+
0.01t10

9072
− 0.01t11

199584
+
0.01rt11

598752
,

ud(t, r) =
4∑

n=0

ud
n = 4 − 2rt +

2.8739t3

3143448
+
0.1019rt3

4715172
+
0.0523t5

27216
− 0.0023rt5

10206

− 0.023t7

10584
+
0.001rt7

47628
− 0.13t9

108864
+
0.01rt9

81648
+
0.01t10

9072
− 0.01t11

199584
− 0.01rt11

299376
.

(5.25)

Now, let us define the absolute value of the nth-term error by |en(t, r)| = |u∗(t, r) −
un(t, r)|, where u∗(t, r) is the exact solution and un(t, r) is the nth-term approximate solution
respectively. It is clear from previous above solutions that the smallest value of the absolute
nth-term error is at t = r = 0, that is, |en(0, 0)| = (|ecn(0, 0)|, |edn(0, 0)|) = (0, 0), n = 0, 1, . . . , 4
and the largest value is at t = r = 1 as shown in Table 1. Therefore the iterations converge to
the exact solution of uc, ud, that is, limn→∞ uc

n(t, r) = 4+ rt = uc
Exact, limn→∞ ud

n(t, r) = 4−2rt =
ud
Exact, and the solution of (5.19) follows immediately.

Example 5.5. The final example is the following fuzzy integro-differential equation:

u′′(t, r) + u(t, r) + λ

∫1

0
k(s, t)u′(s, r)ds = g(t, r), 0 ≤ t, r ≤ 1, (5.26)
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Table 1

n 0 1 2 3 4

|ecn | 1.777778 7.9629629−2 3.395065−4 4.588−5 5.67−7

|edn | 1.444444 7.4074074−2 1.543214−4 4.3601−5 3.96−7

with the exact solution u(t, r) = (u(t, r), u(t, r)) = (3rt, 4 + rt), g(t, r) = (g, g) = (2rt, 4 + 2rt/3,

k(s, t) = s2t, λ = −1 and the initial values u(0, r) = 0, u′(0, r) = 3r, u(0, r) = 4, u
′
(0, r) = r.

The exact solution for related crisp equations is uc(t, r) = 2+2rt, ud(t, r) = 2−rtwith gc(t, r) =
2 + 4rt/3, gd(t, r) = 2 − 2rt/3. As above, where n = 2, the two crisp equations are

uc′′(t, r) + uc(t, r) −
∫1

0
s2tuc′(s, r)ds = gc(t, r), uc(0, r) = 2, uc′(0, r) = 2r,

(5.27a)

ud′′
(t, r) + ud(t, r) −

∫1

0
s2tud′

(s, r)ds = gd(t, r), ud(0, r) = 2, ud′
(0, r) = −r.

(5.27b)

As the above examples, we obtain

uc
0(t, r) = 2 + 2rt + t2 +

2rt3

9
, ud

0 (t, r) = 2 − rt + t2 − rt3

9
. (5.28)

Therefore, the fuzzy integro-differential equations (5.27a) and (5.27b) are equivalent to the
following integral equations:

uc(t, r) = 2 + 2rt + t2 +
2rt3

9
+ I2t

[

−uc(t, r) +
∫1

0
s2tuc′(s, r)ds

]

,

ud(t, r) = 2 − rt + t2 − rt3

9
+ I2t

[

−ud(t, r) +
∫1

0
s2tud′

(s, r)ds

]

.

(5.29)

Let

N(uc) = I2t

[

−uc(t, r) +
∫1

0
s2tuc′(s, r)ds

]

,

N
(
ud
)
= I2t

[

−ud(t, r) +
∫1

0
s2tud′

(s, r)ds

]

.

(5.30)
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Table 2

n 0 1 2 3 4
|ecn| 1.2222222 1.1111111−2 2.2222222−3 1.757303−4 4.3324−6

|edn | 8.888889−1 5.5555556−3 2.23412699−3 1.3038902−4 1.19612−6

Therefore, we obtain

uc
0(t, r) = 2 + 2rt + t2 +

2rt3

9
, ud

0 (t, r) = 2 − rt + t2 − rt3

9
,

uc
1(t, r) = −t2 + t3

12
− rt3

5
− t4

12
− rt5

90
,

ud
1 (t, r) = −t2 + t3

12
+
rt3

10
− t4

12
+

rt5

180
,

uc
2(t, r) = − 91t3

1080
− 403rt3

18900
+

t4

12
− t5

240
+

rt5

100
+

t6

360
+

rt7

3780
,

ud
2 (t, r) = − 91t3

1080
+
403rt3

37800
+

t4

12
− t5

240
− rt5

200
+

t6

360
− rt7

7560
,

...

(5.31)

and so on. The 5-term approximate solution is

uc(t, r) =
4∑

n=0

uc
n = 2 + 2rt − 0.337t3

27216
− 5.0753rt3

1571724
+
0.073t5

6048
+
0.0041rt5

10206

− 0.01t7

9072
+
0.017rt7

15876
− 0.1t9

72576
− 0.01rt9

27216
+
0.01t10

18144
+

0.01t11

299376
,

ud(t, r) =
4∑

n=0

ud
n = 2 − rt − 0.337t3

27216
+
5.0753rt3

3143448
+
0.073t5

6048
− 0.0041rt5

20412

− 0.01t7

9072
− 0.017rt7

31752
− 0.1t9

72576
+
0.01rt9

54432
+
0.01t10

18144
− 0.01t11

598752
.

(5.32)

As the previous example, it is clear from the obtained results that the smallest value of
the absolute nth-term error is |en(0, 0)| = (|ecn(0, 0)|, |edn(0, 0)|) = (0, 0), n = 0, 1, . . . , 4, and the
largest value is at t = r = 1 as shown in Table 2. Therefore, the iterations converge to the exact
solution of uc, ud, that is, limn→∞ uc

n(t, r) = 2 + 2rt = uc
Exact, limn→∞ ud

n(t, r) = 2 − rt = ud
Exact.

Therefore, the solution of (5.26) follows immediately.
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6. Conclusion

In this work, the new iterative method used with a reliable algorithm to solve the nth-order
derivative fuzzy integro-differential equations in crisp form and the cases of first- and second-
order derivatives are taken into account. The obtained results concluded that the approximate
solutions are in high agreement with corresponding exact solutions, which means that this
method is suitable and effective to solve fuzzy integro-differential equations. Moreover, the
solutions of the higher order fuzzy integro-differential equations can be calculated, as a future
prospects, in a similar manner.
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