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This paper illustrates the presence of chaos in rank-one chaotic systems with delay via a binary test
(called 0-1 test) for chaos. Chaotic synchronization between two rank-one chaotic systems without
and with delay is achieved by means of Lyapunov functional and linear delayed feedback control
method. Numerical simulations are implemented to verify the effectiveness of the proposed chaos
synchronization scheme.

1. Introduction

The introduction of the notion of chaotic synchronization by Pecora and Carroll [1] has
stimulated a wide range of research activity in various fields. In 1999, Mainieri and Rehacek
proposed a new method of synchronization, that is, projective synchronization [2]. Since
then, many papers have been published on the projective synchronization of chaotic systems
(see [3–14] and references cited therein). For some recent works on the synchronization of
delayed chaotic systems, we refer the reader to [14–16].

Wang and Young first developed a general theory of rank-one attractors, that is,
attractors with a single direction of instability and strong contraction in all other directions,
then applied it to prove the existence of rank-one attractors in certain systems of differential
equations [17–19]. In 2005, Wang and Oksasoglu presented a new mechanism of producing
rank-one chaos in Chua’s system [20]. In 2009, Chen and Han studied the existence of rank-
one chaos in the neighborhood of a periodically kicked stable limit cycle close to a heteroclinic
cycle of a planar equation [21]. However, to our knowledge, few papers have been published
on the synchronization of rank-one chaotic systems.
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In this paper, we study the synchronization between rank-one chaotic systems without
and with delay using linear control method. The detailed arrangement is as follows: in
Section 2, the rank-one chaotic systems proposed in [20, 21] are briefly described. The pres-
ence of chaos in rank-one chaotic systems with delay are tested using the 0-1 test for chaos
recently proposed in [22]. In Section 3, the linear delayed feedback control method is adopted
to realize the synchronization between two rank-one chaotic systems without and with delay.
In Section 4, numerical simulations are shown to verify the validity and feasibility of the
proposed method, and finally some conclusions are given in Section 5.

2. Systems Description

Let

PT,p(t) =
1
p

+∞∑

n=−∞
Fn,T,p(t), (2.1)

where

Fn,T,p(t) =

⎧
⎨

⎩
1, nT ≤ t < nT + p,

0, elsewhere.
(2.2)

PT,p(t) is a periodic pulse train with a pulse width of p and a period of T .
The rank-one chaotic system proposed in [20] can be described as follows:

ẋ = α
[
y − β1x − β3x

3
]
+ ηxPT,p(t),

ẏ = x − y + z,

ż = −βy,

(2.3)

where η is used for controlling the magnitude of the forcing. When the system parameters
are taken as the following values:

α = 2, β = 2.31135, β1 = 0.2495, β3 = −1, η = 0.15, p = 0.5, (2.4)

there exist rank-one attractors in system (2.3) for large enough T , such as T = 95 [20].
The rank-one chaotic system proposed in [21] can be described as follows:

ẋ = 2Bxy + ε
(
x + ax2

)
− ε1x(t)PT,p(t),

ẏ = 1 − 2Ax − By2,

(2.5)

where ε1 is used to control the magnitude of the forcing. WhenA = 1, B = 1, ε = −1, a = −1.23,
p = 0.5, ε1 = 0.4, there exist rank-one attractors in system (2.5) for T = 10 and T = 8 [21].
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Without the particular statement, the above parameter values are adopted in this
whole paper.

Incorporating delays into (2.3), (2.5) due to the effect of propagation delay in practical
circuits, we consider the following systems:

ẋ = α
[
y(t − τ) − β1x(t) − β3x

3(t)
]
+ ηx(t)PT,p(t),

ẏ = x(t − τ) − y(t) + z(t − τ),

ż = −βy(t − τ);

(2.6)

ẋ = 2Bx(t)y(t) + ε
[
x(t) + ax2(t)

]
− ε1x(t)PT,p(t),

ẏ = 1 − 2Ax(t − τ) − By2(t).
(2.7)

The presence of chaos in systems (2.6), (2.7)will be confirmed via the 0-1 test for chaos.
For convenience, we briefly describe the test as follows. For more details, we refer the reader
to [22–24].

Consider a set of discrete data φ(n)(n = 1, 2, 3, . . .), representing a one-dimensional
observable dataset obtained from the underlying dynamics, such as a set of experimental
data or a set of discrete data obtained from numerical solutions. For c ∈ (0, π), define the
translation variables as follows:

pc(n) =
n∑

j=1

φ
(
j
)
cos jc, qc(n) =

n∑

j=1

φ
(
j
)
sin jc, n = 1, 2, 3, . . . ,N. (2.8)

To determine the growth of pc and qc, it is convenient to look at themean square displacement
(MSD), defined as

Mc(n) = lim
N→∞

1
N

N∑

j=1

[(
pc
(
j + n

) − pc
(
j
))2 +

(
qc
(
j + n

) − qc
(
j
))2]

. (2.9)

The test for chaos is based on the asymptotic growth rate kc ofMc(n) as a function of n, which
can be estimated as follows:

kc = lim
n→∞

logMc(n)
logn

. (2.10)

Numerically, kc is determined by fitting a straight line to the graph of logMc(n) versus logn
through minimizing the absolute deviation.

For different c values, different kc values can be calculated. The underlying dynamics
should be examined by whether the median k of kc values approach 0 or 1. Specifically, k
is close to 0, signifying nonchaotic dynamics (i.e., periodic or quasi-periodic), or k is close
to 1, signifying chaotic dynamics. Moreover, the dynamics of the translation components
(p, q) are corresponding to the underlying dynamics. Bounded trajectories are corresponding
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to periodic or quasi-periodic dynamics and Brownian-like (unbounded) trajectories are
corresponding to chaotic dynamics.

For a sampled time series x(t) for system (2.6), we have the following results:

(1) k = 0.9980 for τ = 0.001, k = 0.9974 for τ = 0.003, k = 0.9978 for τ = 0.01, indicating
that the dynamics of system (2.6) are chaotic. (a), (b), and (c) in Figure 1 depict
Brownian-like trajectories, confirming that the dynamics of system (2.6) are chaotic
for τ = 0.001, τ = 0.003, τ = 0.01;

(2) k = 0.0561 for τ = 0.06, indicating that the dynamics of system (2.6) are nonchaotic.
(d) in Figure 1 depicts a bounded trajectory, confirming that the dynamics of system
(2.6) is nonchaotic for τ = 0.06.

For a sampled time series x(t) for system (2.7), we have the following results: k =
0.9977 for τ = 0.03, T = 8, and k = 0.9978 for τ = 0.03, T = 10, indicating that the dynamics of
system (2.7) are chaotic. (a) and (b) in Figure 2 depict Brownian-like trajectories, confirming
that the dynamics of system (2.7) are chaotic for T = 8, T = 10, and τ = 0.03.

3. Synchronization between Two Rank-one Chaotic Systems
without and with Delay

The aim of this section is to achieve chaos synchronization for two rank-one chaotic systems
without and with delay using linear delayed feedback control method.

We define the drive and response systems as follows:

Ẋd = F(t, Xd(t)), (3.1)

Ẋr = G(t, Xr(t), Xr(t − τ)) +U(t), (3.2)

where Xd(t) = [X1
d
(t), . . . , Xm

d
(t)]T ∈ Rm, Xr(t) = [X1

r (t), . . . , X
n
r (t)]

T ∈ Rn, τ ≥ 0, and U(t) =
[u1(t), . . . , un(t)]

T is a controller and that can be called the control function.
For brevity, let us define the synchronous error as follows:

[e1(t), . . . , en(t)]T = Xr(t) −Kn×mXd(t), (3.3)

where Kn×m is a constant scaling matrix.
Before presenting the main results, we introduce the following Barbalat’s lemma and

definition.

Lemma 3.1 (Barbalat’s Lemma, [25, Lemma 1.2.2, page 4]). Let f be a nonnegative function
defined on [0,+∞) such that f is integrable on [0,+∞) and is uniformly continuous on [0,+∞).
Then, limt→+∞f(t) = 0.

Definition 3.2 (See [2]). The drive system (3.1) and the response system (3.2) are said to realize
projective synchronization, if there exists a tracking control U(t) = [u1(t), . . . , un(t)]

T such
that the synchronous errors satisfy

lim
t→+∞

ei(t) = 0 (i = 1, 2, . . . , n). (3.4)
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Figure 1: Dynamics of the translation components (p, q) of system (2.6): (a), (b), and (c) show Brownian-
like trajectories for τ = 0.001, τ = 0.003, τ = 0.01, respectively; (d) shows a bounded trajectory for τ = 0.06.

Consider the drive system (3.5) and the response system (3.6):

ẋ1 = α
[
y1(t) − β1x1(t) − β3x

3
1(t)

]
+ ηx1(t)PT,p(t),

ẏ1 = x1(t) − y1(t) + z1(t),

ż1 = −βy1(t),

(3.5)

ẋ2 = α
[
y2(t − τ) − β1x2(t) − β3x

3
2(t)

]
+ ηx2(t)PT,p(t) + u1(t),

ẏ2 = x2(t − τ) − y2(t) + z2(t − τ) + u2(t),

ż2 = −βy2(t − τ) + u3(t),

(3.6)

where u(t) = [u1(t), u2(t), u3(t)]
T is the control function.
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Figure 2: Dynamics of the translation components (p, q) of system (2.7) with τ = 0.03: (a) and (b) show
Brownian-like trajectories for T = 8, T = 10, respectively.

In this case, we define the synchronous errors as follows:

e1(t) = x2(t) − k1x1(t),

e2(t) = y2(t) − k2y1(t),

e3(t) = z2(t) − k3z1(t).

(3.7)

Now, we present the main result for the synchronization between system (3.5) and
system (3.6).

Theorem 3.3. If the linear controller u(t) = [u1(t), u2(t), u3(t)]
T is given as follows:

u1(t) = α
[
k1y1(t) − k2y1(t − τ)

] −m1[x2(t) − k1x1(t)],

u2(t) = k2x1(t) − k1x1(t − τ) + k2z1(t) − k3z1(t − τ) −m2
[
y2(t) − k2y1(t)

]
,

u3(t) = β
[
k2y1(t − τ) − k3y1(t)

] −m3[z2(t) − k3z1(t)],

(3.8)

where k1 = ±1, m1 > 1 + η/p − αβ1 − 0.1875αβ3, m2 > α + β − 1, m3 > 1. Then, the drive system
(3.5) and the response system (3.6) realize projective synchronization.

Proof. Because |x1(t)| < 0.25 for sufficiently large t ≥ t∗0 [20], we make the following prior
assumption:

|x2(t)| < 0.25, t ≥ t0
(
t0 ≥ t∗0

)
. (3.9)

Consider the Lyapunov functional defined by

V (t) = |e1(t)| + |e2(t)| + |e3(t)| +
∫ t

t−τ

[|e1(s)| +
(
α + β

)|e2(s)| + |e3(s)|
]
ds, t ≥ t0. (3.10)



Journal of Applied Mathematics 7

Calculating the upper right Dini derivativeD+V (t) of V (t) along the solutions of system (3.5)
and system (3.6), we get

D+V (t) ≤ D̃1(t) + D̃2(t) + D̃3(t) + |e1(t)| − |e1(t − τ)|
+
(
α + β

)
[|e2(t)| − |e2(t − τ)|] + |e3(t)| − |e3(t − τ)|,

(3.11)

where

D̃i(t) = D+|ei(t)| =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ėi(t), ei(t) > 0,

−ėi(t), ei(t) < 0,

|ėi(t)|, ei(t) = 0,

(i = 1, 2, 3). (3.12)

There are the following three cases to consider for D̃1(t).

(i) If e1(t) > 0 (i.e., x2(t) > k1x1(t)), then

D̃1(t) = −(αβ1 +m1
)
e1(t) + αe2(t − τ) − αβ3

[
x3
2(t) − k1x

3
1(t)

]
+ ηe1(t)PT,p(t)

≤ −
(
αβ1 −

η

p
+m1

)
|e1(t)| + α|e2(t − τ)| − αβ3|e1(t)|

∣∣∣x2
2(t) + k1x1(t)x2(t) + k2

1x
2
1(t)

∣∣∣

≤ −
[
αβ1 −

η

p
+ 0.1875αβ3 +m1

]
|e1(t)| + α|e2(t − τ)|.

(3.13)

(ii) If e1(t) < 0 (i.e., x2(t) < k1x1(t)), then

D̃1(t) =
(
αβ1 +m1

)
e1(t) − αe2(t − τ) + αβ3

[
x3
2(t) − k3

1x
3
1(t)

]
− ηe1(t)PT,p(t)

≤ −
[
αβ1 −

η

p
+ 0.1875αβ3 +m1

]
|e1(t)| + α|e2(t − τ)|.

(3.14)

(iii) If e1(t) = 0 (i.e., x2(t) = k1x1(t)), then

D̃1(t) = α|e2(t − τ)| = −
[
αβ1 −

η

p
+ 0.1875αβ3 +m1

]
|e1(t)| + α|e2(t − τ)|. (3.15)

From (i)–(iii), we have

D̃1(t) ≤ −
[
αβ1 −

η

p
+ 0.1875αβ3 +m1

]
|e1(t)| + α|e2(t − τ)|, t ≥ t0. (3.16)
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It is easy to see that

D̃2(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e1(t − τ) − (1 +m2)e2(t) + e3(t − τ), e2(t) > 0,

−e1(t − τ) + (1 +m2)e2(t) − e3(t − τ), e2(t) < 0,

|e1(t − τ) + e3(t − τ)|, e2(t) = 0,

D̃3(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−βe2(t − τ) −m3e3(t), e3(t) > 0,

βe2(t − τ) +m3e3(t), e3(t) < 0,

β|e2(t − τ)|, e3(t) = 0.

(3.17)

Considering D̃2(t), D̃3(t) in the same way, we can obtain

D̃2(t) ≤ −(1 +m2)|e2(t)| + |e1(t − τ)| + |e3(t − τ)|, t ≥ t0,

D̃3(t) ≤ −m3|e3(t)| + β|e2(t − τ)|, t ≥ t0.

(3.18)

Hence, we have

D+V (t) ≤ D̃1(t) + D̃2(t) + D̃3(t) + |e1(t)| − |e1(t − τ)|

+
(
α + β

)
[|e2(t)| − |e2(t − τ)|] + |e3(t)| − |e3(t − τ)|

≤ −
[
αβ1 −

η

p
+ 0.1875αβ3 +m1 − 1

]
|e1(t)| −

(
1 +m2 − α − β

)|e2(t)|

− (m3 − 1)|e3(t)|, t ≥ t0.

(3.19)

So there exists c > 0 such that

D+V (t) ≤ −c(|e1(t)| + |e2(t)| + |e3(t)|), t ≥ t0. (3.20)

Integrating on both sides of the above inequality leads to

V (t) + c

∫ t

t0

[|e1(s)| + |e2(s)| + |e3(s)|]ds ≤ V (t0) < +∞, t ≥ t0, (3.21)

which implies

|e1(t)| + |e2(t)| + |e3(t)| ∈ L1[0,+∞). (3.22)
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From the boundedness of xi(t), yi(t), and zi(t) (i = 1, 2), it follows that e1(t), e2(t), e3(t), and
their derivatives remain bounded on [0,+∞). Hence, |e1(t)| + |e2(t)| + |e3(t)| is uniformly
continuous. By Lemma 3.1, it follows that

lim
t→+∞

(|e1(t)| + |e2(t)| + |e3(t)|) = 0. (3.23)

Hence,

lim
t→+∞

|e1(t)| = 0, lim
t→+∞

|e2(t)| = 0, lim
t→+∞

|e3(t)| = 0. (3.24)

The proof is complete.

Remark 3.4. When k1 = k2 = k3 = 1, τ = 0, the linear controller u(t) = [u1(t), u2(t), u3(t)]
T is

given as follows:

u1(t) = −m1[x2(t) − x1(t)], u2(t) = −m2
[
y2(t) − y1(t)

]
, u3(t) = −m3[z2(t) − z1(t)].

(3.25)

In this case, the drive system (3.5) and the response system (3.6) realize complete
synchronization.

Remark 3.5. When k1 = k2 = k3 = −1, τ = 0, the linear controller u(t) = [u1(t), u2(t), u3(t)]
T is

given as follows:

u1(t) = −m1[x2(t) + x1(t)], u2(t) = −m2
[
y2(t) + y1(t)

]
, u3(t) = −m3[z2(t) + z1(t)].

(3.26)

In this case, the drive system (3.5) and the response system (3.6) realize antisynchronization.

Consider the drive system (3.27) and the response system (3.28):

ẋ1 = 2Bx1(t)y1(t) + ε
[
x1(t) + ax2

1(t)
]
− ε1x1(t)PT,p(t),

ẏ1 = 1 − 2Ax1(t) − By2
1(t),

(3.27)

ẋ2 = 2Bx2(t)y2(t) + ε
[
x2(t) + ax2

2(t)
]
− ε1x2(t)PT,p(t) + u1(t),

ẏ2 = 1 − 2Ax2(t − τ) − By2
2(t) + u2(t),

(3.28)

where u = [u1(t), u2(t)]
T is the control function.

Our goal is to determine the control function u = [u1(t), u2(t)]
T . For brevity, let us

define

e1(t) = x2(t) − x1(t), e2(t) = y2(t) − y1(t). (3.29)
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Now, we present the main result for the synchronization between system (3.27) and system
(3.28).

Theorem 3.6. If the linear controller u = [u1(t), u2(t)]
T is given as follows:

u1(t) = −m1[x2(t) − x1(t)],

u2(t) = 2A[x1(t − τ) − x1(t)] −m2
[
y2(t) − y1(t)

]
,

(3.30)

where m1 > 2A + εa, m2 > 4B. Then, e1, e2 converge to zero as time t tends to infinity, that is, the
drive system (3.27) and the response system (3.28) asymptotically synchronize.

Proof. Because 0 < x1(t) < 1, |y1(t)| < 1 for sufficiently large t ≥ t∗0 [21], we make the following
prior assumption:

0 < x2(t) < 1,
∣∣y2(t)

∣∣ < 1, t ≥ t0
(
t0 ≥ t∗0

)
. (3.31)

Consider the Lyapunov functional defined by

V (t) = |lnx2(t) − lnx1(t)| +
∣∣y2(t) − y1(t)

∣∣ + 2A
∫ t

t−τ
|x2(s) − x1(s)|ds, t ≥ t0. (3.32)

Calculating the upper right Dini derivative D+V (t) of V (t) along the solutions of system
(3.27) and system (3.28), we get

D+V (t) ≤ D̃1(t) + D̃2(t) + 2A[|x2(t) − x1(t)| − |x2(t − τ) − x1(t − τ)|], (3.33)

where

D̃1(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ2

x2
− ẋ1

x1
= 2B

[
y2(t) − y1(t)

]
+
[
εa − m1

x2(t)

]
[x2(t) − x1(t)], x2(t) > x1(t),

ẋ1

x1
− ẋ2

x2
= −2B[y2(t) − y1(t)

] −
[
εa − m1

x2(t)

]
[x2(t) − x1(t)], x2(t) < x1(t),

∣∣∣∣
ẋ2

x2
− ẋ1

x1

∣∣∣∣ = 2B
∣∣y2(t) − y1(t)

∣∣, x2(t) = x1(t),

D̃2(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẏ2 − ẏ1 = −2A[x2(t − τ) − x1(t − τ)] − [
B
(
y2(t) + y1(t)

)
+m2

]
e2(t), y2(t) > y1(t),

ẏ1 − ẏ2 = 2A[x2(t − τ) − x1(t − τ)] +
[
B
(
y2(t) + y1(t)

)
+m2

]
e2(t), y2(t) < y1(t),

∣∣ẏ2 − ẏ1
∣∣ = 2A|x2(t − τ) − x1(t − τ)|, y2(t) = y1(t).

(3.34)

There are the following three cases to consider for D̃1(t).
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(i) If x2(t) > x1(t), then

D̃1(t) = 2B
[
y2(t) − y1(t)

]
+
[
εa − m1

x2(t)

]
[x2(t) − x1(t)]

≤ 2B
∣∣y2(t) − y1(t)

∣∣ + (εa −m1)|x2(t) − x1(t)|.
(3.35)

(ii) If x2(t) < x1(t), then

D̃1(t) = −2B[y2(t) − y1(t)
] −

[
εa − m1

x2(t)

]
[x2(t) − x1(t)]

≤ 2B
∣∣y2(t) − y1(t)

∣∣ + (εa −m1)|x2(t) − x1(t)|.
(3.36)

(iii) If x2(t) = x1(t), then

D̃1(t) = 2B
∣∣y2(t) − y1(t)

∣∣

= 2B
∣∣y2(t) − y1(t)

∣∣ + (εa −m1)|x2(t) − x1(t)|.
(3.37)

From (i)–(iii), we have

D̃1(t) ≤ (εa −m1)|x2(t) − x1(t)| + 2B
∣∣y2(t) − y1(t)

∣∣, t ≥ t0. (3.38)

Considering D̃2(t) in the same way, we can obtain

D̃2(t) ≤ 2A|x2(t − τ) − x1(t − τ)| + (2B −m2)
∣∣y2(t) − y1(t)

∣∣, t ≥ t0. (3.39)

Hence, we have

D+V (t) ≤ D̃1(t) + D̃2(t) + 2A[|x2(t) − x1(t)| − |x2(t − τ) − x1(t − τ)|]
≤ (2A + εa −m1)|x2(t) − x1(t)| + (4B −m2)

∣∣y2(t) − y1(t)
∣∣, t ≥ t0.

(3.40)

So there exists α > 0 such that

D+V (t) ≤ −α(|x2(t) − x1(t)| +
∣∣y2(t) − y1(t)

∣∣), t ≥ t0. (3.41)

Integrating on both sides of the above inequality leads to

V (t) + α

∫ t

t0

(|x2(s) − x1(s)| +
∣∣y2(s) − y1(s)

∣∣)ds ≤ V (t0) < +∞, t ≥ t0, (3.42)
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Figure 3: Synchronization errors e1(t), e2(t), and e3(t) for the drive system (3.5) and response system (3.6).
(a) τ = 0.001, m1 = 1.1761, m2 = 3.31136, m3 = 1.001, k1 = 1, k2 = −3, k3 = −3. (b) τ = 0.003, m1 = 1.1761,
m2 = 3.31136,m3 = 1.001, k1 = −1, k2 = 3, k3 = 3. (c) τ = 0.01,m1 = 1.1761,m2 = 3.31136,m3 = 1.001, k1 = 1,
k2 = −1, k3 = 2.

which implies

|x2(t) − x1(t)| +
∣∣y2(t) − y1(t)

∣∣ ∈ L1[0,+∞). (3.43)

From the boundedness of xi(t) and yi(t)(i = 1, 2), it follows that x2(t)−x1(t), y2(t)−y1(t) and
their derivatives remain bounded on [0,+∞). Hence, |x2(t)−x1(t)|+ |y2(t)−y1(t)| is uniformly
continuous. By Lemma 3.1, it follows that

lim
t→+∞

(|x2(t) − x1(t)| +
∣∣y2(t) − y1(t)

∣∣) = 0. (3.44)
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Figure 4: Synchronization errors e1(t), e2(t) for the drive system (3.27) and response system (3.28). (a)
τ = 0.03, T = 8, m1 = 3.301, m2 = 4.1. (b) τ = 0.03, T = 10, m1 = 3.231, m2 = 4.01.

Hence,

lim
t→+∞

|x2(t) − x1(t)| = 0, lim
t→+∞

∣∣y2(t) − y1(t)
∣∣ = 0. (3.45)

This result implies that e1(t), e2(t) converge to zero as time t tends to infinity, that is, the
drive system (3.27) and the response system (3.28) asymptotically synchronize. The proof is
complete.

4. Numerical Simulations

In this section, simulation results are given below to illustrate the validity of the proposed
method. Numerical simulations are carried out using MATLAB. DDE23 solver is adopted to
solve delay differential equations in Section 3.

The initial values of the drive and response systems in simulations are chosen as
follows:

(1) the initial values of systems (3.5) and (3.6): x1(s) = 0.01, y1(s) = −0.01, z1(s) =
−0.018 and x2(s) = 0.02, y2(s) = −0.03, z2(s) = −0.01, for all s ∈ [−τ, 0];

(2) the initial values of systems (3.27) and (3.28): (i) when T = 8, x1(s) = 0.85, y1(s) =
0.5 and x2(s) = −0.65, y2(s) = −0.5, for all s ∈ [−τ, 0]. (ii) when T = 10, x1(s) = 0.85,
y1(s) = −0.5 and x2(s) = −0.65, y2(s) = 0.5, for all s ∈ [−τ, 0].

The dynamics of synchronization errors for the drive and response systems are shown
in Figures 3 and 4. It can be seen in these figures that the synchronization errors will rapidly
converge to zero, that is to say, with the passage of time, by means of the linear control
method, rank-one chaotic systems without and with delay are ultimately synchronous.
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5. Conclusions

In this paper, the presence of chaos in rank-one chaotic systems with delay are confirmed
via a binary test (called 0-1 test) for chaos. The synchronization problems for rank-one
chaotic systems are discussed. The linear delayed feedback control is used to achieve
the synchronization between two rank-one chaotic systems without and with delay. The
numerical simulations are in excellent agreement with the analytical results.
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[10] G. Álvarez, S. Li, F. Montoya, G. Pastor, and M. Romera, “Breaking projective chaos synchronization
secure communication using filtering and generalized synchronization,” Chaos, Solitons and Fractals,
vol. 24, no. 3, pp. 775–783, 2005.

[11] J. H. Park, “Adaptive controller design for modified projective synchronization of Genesio-Tesi chaot-
ic system with uncertain parameters,” Chaos, Solitons and Fractals, vol. 34, no. 4, pp. 1154–1159, 2007.

[12] G. H. Li, “Generalized projective synchronization of two chaotic systems by using active control,”
Chaos, Solitons and Fractals, vol. 30, no. 1, pp. 77–82, 2006.

[13] W. He and J. Cao, “Generalized synchronization of chaotic systems: An auxiliary system approach
via matrix measure,” Chaos, vol. 19, no. 1, Article ID 013118, 2009.

[14] J. Cao, D. W. C. Ho, and Y. Yang, “Projective synchronization of a class of delayed chaotic systems via
impulsive control,” Physics Letters, Section A: General, Atomic and Solid State Physics, vol. 373, no. 35,
pp. 3128–3133, 2009.

[15] W. Xia and J. Cao, “Pinning synchronization of delayed dynamical networks via periodically
intermittent control,” Chaos, vol. 19, no. 1, Article ID 013120, 2009.

[16] J. Cao, Z. Wang, and Y. Sun, “Synchronization in an array of linearly stochastically coupled networks
with time delays,” Physica A: Statistical Mechanics and its Applications, vol. 385, no. 2, pp. 718–728, 2007.

[17] Q. Wang and L. S. Young, “Strange attractors with one direction of instability,” Communications in
Mathematical Physics, vol. 218, no. 1, pp. 1–97, 2001.



Journal of Applied Mathematics 15

[18] Q. Wang and L. S. Young, “From invariant curves to strange attractors,” Communications in Mathe-
matical Physics, vol. 225, no. 2, pp. 275–304, 2002.

[19] Q. Wang and L. S. Young, “Strange Attractors in Periodically-Kicked Limit Cycles and Hopf Bifur-
cations,” Communications in Mathematical Physics, vol. 240, no. 3, pp. 509–529, 2003.

[20] Q. Wang and A. Oksasoglu, “Strange attractors in periodically kicked Chua’s circuit,” International
Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 15, no. 1, pp. 83–98, 2005.

[21] F. Chen and M. Han, “Rank one chaos in a class of planar systems with heteroclinic cycle,” Chaos, vol.
19, no. 4, Article ID 043122, 2009.

[22] G. A. Gottwald and I. Melbourne, “A new test for chaos in deterministic systems,” Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 460, no. 2042, pp. 603–611, 2004.

[23] G. A. Gottwald and I. Melbourne, “Testing for chaos in deterministic systems with noise,” Physica D:
Nonlinear Phenomena, vol. 212, no. 1-2, pp. 100–110, 2005.

[24] G. A. Gottwald and I. Melbourne, “On the implementation of the 0 − 1 test for chaos,” SIAM Journal
on Applied Dynamical Systems, vol. 8, no. 1, pp. 129–145, 2009.

[25] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, vol. 74
ofMathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, The Netherlands,
1992.


