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This paper analyzes linear least squares problems with absolute quadratic constraints. We develop
a generalized theory following Bookstein’s conic-fitting and Fitzgibbon’s direct ellipse-specific
fitting. Under simple preconditions, it can be shown that a minimum always exists and can
be determined by a generalized eigenvalue problem. This problem is numerically reduced to
an eigenvalue problem by multiplications of Givens’ rotations. Finally, four applications of this
approach are presented.

1. Introduction

The least squares methods cover a wide range of applications in signal processing and
system identification [1–5]. Many technical applications need robust and fast algorithms for
fitting ellipses to given points in the plane. In the past, effective methods were Bookstein’s
conic-fitting or Fitzgibbon’s direct ellipse-specific fitting, where an algebaic distance with
a quadratic constraint is minimized [6, 7]. In this paper, we develop an extended theory of
minimization of least squares with a quadratic constraint based on the ideas of Bookstein and
Fitzgibbon. Thereby, we show the existence of a minimal solution and present the uniqueness
regarding to the smallest positive generalized eigenvalue. So, arbitrary conic fitting problems
with quadratic constraints are possible.

Let A ∈ R
n×m be matrix with n ≥ m ≥ 2, C ∈ R

m×m be symmetric matrix, and d ∈ R a
real value. We consider the problem of finding a vector x ∈ R

m which minimizes the function
F : R

m → R defined by

F(x) := ‖Ax‖22 subject to xtCx = d. (1.1)
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The side condition xtCx = d introduces an absolute quadratic constraint. The problem (1.1) is
not a special case of Gander’s optimization as presented in [8], because in our case C is a real
symmetric matrix in contrast to the approach of Gander, where the side condition considers
real symmetric matrices CtC which are positive definite. For our considerations, we require
the following three assumptions

Assumption 1.1. By replacing C by (−C), we consider d ≥ 0. For d = 0, the trivial solution
x = 0 ∈ R

m fulfills (1.1). Therefore, we demand d > 0.

Assumption 1.2. The set N := {x ∈ R
m, xtCx = d} is not empty, that is, the matrix C has not

been less than one positive eigenvalue. If we assume thatC has only nonpositive eigenvalues,
it would be negative semidefinite and

xtCx ≤ 0 (1.2)

holds. With d > 0 it follows that the set N would be empty in this case.

Assumption 1.3. In the following, we set S = AtA and assume that S is regular. S is sometimes
called scatter matrix.

In the following two sections, we introduce the theoretical basics of this optimization.
The main result is the solution of a generalized eigenvalue problem. Afterwards, we reduce
this system numerically to an eigenvalue problem. In Section 5, we present four typical
applications for conic fitting problems with quadratic constraints. These approximations
contain the ellipse fitting of Fitzgibbon, the hyperbola fitting of O’Leary, the conic fitting
of Bookstein, and an optical application of shrinked aspheres [6, 7, 9, 10].

2. Existence of a Minimal Solution

Theorem 2.1. If S ∈ R
m×m is regular, then there exists a global minimum to the problem (1.1).

Proof. The real regular matrix S = AtA is symmetric and positive definite. Therefore, a
Cholesky decomposition S = RtR exists with a regular upper triangular matrix R ∈ R

m×m.
In (1.1), we are looking for a solution x ∈ R

m minimizing

F(x) = ‖Ax‖2 = xtSx = xtRtRx subject to xtCx = d. (2.1)

With R regular we substitute x by R−1y for y ∈ R
m. Thus, we obtain an equivalent problem

to (2.1), where we want to find a vector y ∈ R
m, minimizing

F
(
y
)
= yty =

∥∥y
∥∥2 subject to yt

(
R−1
)t
CR−1y = d. (2.2)

Now, we define G : R
m → R with G(y) = yt(R−1)tCR−1y − d and look for a solution y on the

zero-set NG of G with minimal distance to the point of origin. Let y0 ∈ NG /= ∅ and Km
r0 (0) be
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the closed sphere of R
m in 0 with radius r0 = ‖y0‖. Because of y0 ∈ NG ∩Km

r0 (0) and G being
continuous, the set

NG

⋂
Km

r0 (0) =
{
y ∈ Km

r0 (0), G
(
y
)
= 0
}

(2.3)

is nonempty, closed and bounded. Therefore, for the continuous function F(y) = ‖y‖2 exists
a minimal value yM on NG ∩Km

r0 (0) with

min
y∈NG∩Km

r0 (0)
F
(
y
) ≤ r20 . (2.4)

For all y from NG \ Km
r0 (0), it is F(y) > r20 . So, yM is a minimal value of F in NG. By the

equivalence of (2.1), and (2.2) the assumption follows.

3. Generalized Eigenvalue Problem

The minimization problem in (1.1) induces a generalized eigenvalue problem. The following
theorem is already proven by Bookstein and Fitzgibbon for the special case of ellipse-fitting
[6, 7].

Theorem 3.1. If xs is an extremum of F(x) subject to xtCx = d, then a positive λ0 ∈ R exists with

(S − λ0C)xs = 0, (3.1)

that is, xs is an eigenvector to the generalized eigenvalueλ0 and

F(xs) = λ0 · d (3.2)

holds.

Proof. LetG : R
m → R be a defined asG(x) := d−xtCx. ForG(x) = 0 and d > 0 follows x /= 0.

Further, G is continuously differentiable with dG/dx = −2Cx/= 0 for all x of the zero-set of
G. So, if xs is a local extremum of F(x) subject to G(x) = 0, then it is rank(dG/dx)(xs) = 1.
Since F is also a continuously differentiable function in R

m with m > 1, it follows by using a
Lagrange multiplier [11]: if xs is a local extremum of F(x) subject to G(x) = 0, then a λ0 ∈ R

exists, such that the Lagrange function φ : R
m+1 → R given as

φ(x, λ) = F(x) + λG(x) = xtAtAx + λ
(
d − xtCx

)
(3.3)

has a critical point in (xs, λ0). Therefore, xs fulfills necessarily the equations:

gradxφ(x, λ) = 2Sx − 2λCx = 0, (3.4)

dφ(x, λ)
dλ

= xtCx − d = 0. (3.5)
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The first equation describes a generalized eigenvalue problem with

(S − λ · C)x = 0. (3.6)

With d > 0, xs /= 0 and xs fulfills (3.6), λ must be a generalized eigenvalue, and xs is a
corresponding eigenvector to λ of (3.6), so that (S − λC) is a singular matrix. If λ0 is an
eigenvalue and x0 /= 0 a corresponding eigenvector to λ0 of (3.6), then every vector αx0 is
also a solution of (3.6) for λ0. Now, we are looking for α, such that xs = αx0 satisfies (3.5). For
λ0 /= 0 and (3.4), it follows

d = α2xt
0Cx0 =

α2xt
0Sx0

λ0
. (3.7)

Because the left side and the numerator are positive, the denominator must also be chosen
positive, that is, only positive eigenvalues solve (3.4) and (3.5). By the multiplication with λ0,

d · λ0 = α2xt
0Sx0 = xt

sSxs = F(xs) (3.8)

follows and xs = α · x0 fulfills the constraint G(xs) = 0.

Remark 3.2. Let x0 be a generalized eigenvector to a positive eigenvalue λ0 of problem (3.6).
Then

x1,2 = ±
√

dλ0

xt
0Sx0

x0 (3.9)

are solutions of (3.8).

Lemma 3.3. If S is regular and C is symmetric, then all eigenvalues of (3.1) are real-valued and
different to zero.

Proof. With det(S)/= 0, λ0 /= 0 in (3.1). The Cholesky decomposition S = RtR with a regular
upper triangular matrix R yields (3.1)

(
RtR − λ0C

)
xs = Rt

(
I − λ0

(
Rt)−1CR−1

)
Rxs = 0. (3.10)

With R invertible and the substitution μ0 = λ−10 , ys = Rxs, we obtain an eigenvalue problem
to the matrix (Rt)−1CR−1:

(
μ0I −

(
Rt)−1CR−1

)
ys = 0. (3.11)

Furthermore, we have

((
Rt)−1CR−1

)t
=
(
R−1
)t
Ct
((

Rt)−1
)t

=
(
Rt)−1CtR−1 =

(
Rt)−1CR−1. (3.12)
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Therefore, the matrix (Rt)−1CR−1 is symmetric and all eigenvalues μ0 are real. With λ0 = μ−1
0

for μ0 /= 0 follows the proposition.

Remark 3.4. Because of S regular and λ/= 0 in

(S − λ0C)xs = 0, (3.13)

we can consider the equivalent problem with μ0 = λ−10 instead of (3.11):

(
μ0I − S−1C

)
xs = 0. (3.14)

This system is called inverse eigenvalue problem to (3.1). Here, the eigenspaces to the
generalized eigenvalue λ0 in (3.1) and to the eigenvalue 1/λ0 in (3.14) are identical. Therefore,
the generalized eigenvectors in (3.1) are perpendicular.

Definition 3.5. The set of all eigenvalues of a matrix C is called spectrum σ(C). We call the set
of all eigenvalues to the generalized eigenvalue problem in (3.1) also spectrum and denote
σ(S,C). σ+(S,C) is defined as the set of all positive values in σ(S,C).

Remark 3.6. In case of rg(C) < m = rg(S), the inverse problem in (3.14) has eigenvalue 0
with multiplicity rg(S) − rg(C). Otherwise, for μ/= 0 and μ ∈ σ(S−1C) follows 1/μ ∈ σ(S,C).
Analogously, for μ ∈ σ((Rt)−1CR−1)with μ/= 0, 1/μ ∈ σ(S,C).

The following lemma is a modified result of Fitzgibbon [7].

Lemma 3.7. The signs of the generalized eigenvalues of (3.1) are the same as those of C.

Proof. With S being nonsingular, every generalized eigenvalue λ0 of (3.1) is not zero.
Therefore, it follows for the equivalent problem (3.11) that μ0 = λ−10 is also a positive eigen-
value to (R−1)tCR−1, where R is an upper triangular matrix to the Cholesky decomposition
of S. With Sylvester’s Inertia Law, we know that the signs of eigenvalues of the matrices
(R−1)tCR−1 are the same as those of C.

For the following proofs, we need the lemma of Lagrange (see, e.g., [12]).

Lemma 3.8 (Lemma of Lagrange). For M ⊂ R
n, f : M → R, g = (g1, . . . , gk) : M → R

k,
and Ng = {x ∈ M,g(x) = 0 ∈ R

k}, let λ ∈ R
k, so that xs ∈ Ng is a minimal value of the function

Φλ : M → R with

Φλ(x) = f(x) +
k∑

i=1

λigi(x). (3.15)

Then xs is a minimal solution of f inNg .

Definition 3.9. Let λ∗ be the smallest positive value of σ+(S,C) and x∗
s a corresponding

generalized eigenvector to λ∗ to the constraint x∗t
s Cx

∗
s = d.
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Lemma 3.10. Let S − λC be a positive semidefinite matrix for λ ∈ σ+(S,C). Then a generalized
eigenvector xs corresponding to λ is a local minimum of (1.1).

Proof. We consider Φ : R
m → R with

Φ(x) = xtSx + λ
(
d − xtCx

)
. (3.16)

With gradxΦ(x) = 2(Sx − λCx) holds gradxΦ(xs) = 0 and since the Hessian matrix (S − λC)
ofΦ is positive semidefinite, the vector xs is a minimal solution ofΦ. Then, xs minimizes also
F(x) subject to xtCx = d by the Lemma 3.8.

Remark 3.11. In fact, in Lemma 3.10, we require only a semidefinite matrix, because xs /= 0
fulfills xt

s(S − λC)xs = 0 in (3.1).

Lemma 3.12. The matrix (S − λ∗C) is positive semidefinite.

Proof. Let μ be an arbitrary eigenvalue of ((λ∗)−1I − (Rt)−1CR−1), where R is the upper
triangular matrix of the Cholesky decomposition from S. With

det
(
(λ∗)−1I − (Rt)−1CR−1 − μI

)
= det

((
(λ∗)−1 − μ

)
I − (Rt)−1CR−1

)
= 0, (3.17)

it follows that ((λ∗)−1−μ) is an eigenvalue of (Rt)−1CR−1. This value is corresponding in (3.11)
with the inverse eigenvalue of problem (3.1). Furthermore, it yields

1
λ∗

− μ ≤ max
{
1
λ
, λ ∈ σ+(S,C)

}
=

1
min{λ, λ ∈ σ+(S,C)} =

1
λ∗

. (3.18)

So μ ≥ 0 follows, that is, ((λ∗)−1I − (Rt)−1CR−1) is positive semidefinite, and for y ∈ R
m we

obtain

yt
(
(λ∗)−1I − (Rt)−1CR−1

)
y ≥ 0. (3.19)

By setting y = Rx and with regular R, we get

0 ≤ xt
(
(λ∗)−1RtR − C

)
x = xt

(
(λ∗)−1S − C

)
x. (3.20)

With λ∗ > 0, xt(S − λ∗C)x ≥ 0 for x ∈ R
m, that is, S − λ∗C is positive semidefinite.

Theorem 3.13. For the smallest value λ∗ in σ+(S,C) exists a corresponding generalized eigenvector
x∗
s, which minimizes F(x) subject to xtCx = d.

Proof. The matrix (S − λ∗C) is positive semidefinite by Lemma 3.12, and with Lemma 3.10 it
follows that x∗

s is a local minimum of problem (1.1). Furthermore, we know by Theorem 3.1
that if xs is a local extremum of F(x) subject to xtCx = d, then a positive value λs exists with

(S − λsC)xs = 0 (3.21)
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and it is F(xs) = λsd. Because of the existence of a minimum xE in Theorem 2.1 a value λE ∈
σ+(S,C) exists in problem (3.21) regarding to xE. Otherwise, for an arbitrary local minimum
xs,

F(x∗
s) = λ∗d = min {λd, λ ∈ σ+(S,C)} ≤ λsd = F(xs). (3.22)

So, λ∗ = λE follows and x∗
s is a minimum of F(x) subject to xtCx = d.

Example 3.14. We minimize F : R
2 → R with F(ξ1, ξ2) = ξ21 + ξ22 subject to ξ21 − ξ22 = 1. So, we

have d = 1, S the identity matrix I2 ∈ R
2×2, and C ∈ R

2×2 a diagonal matrix with values −1
and 1. Then, we get the following generalized eigenvalue problem:

det(I2 − λC) = (1 − λ)(−1 − λ) = 0 (3.23)

with eigenvalues 1 and −1. Because of Theorem 3.1, we consider a generalized eigenvector
(α, 0)t with α ∈ R \ {0} only for λ = 1. Then, (1, 0)t and (−1, 0)t are solutions subject to
ξ21 − ξ22 = 1. This result is conform to the geometric interpretation, since we are looking for
x = (ξ1, ξ2)

t on the hyperbola ξ21 − ξ22 = 1 with minimal distance to the origin.

4. Reduction to an Eigenvalue Problem of Dimension rg(C)

In numerical applications, a generalized eigenvalue problem is mostly reduced to an
eigenvalue problem, for example, by multiplication with S−1. Thus, we obtain the inverse
problem (3.14) from (3.1) (see, e.g., [13]). But, S may be ill-conditioned, so that a solution of
(3.14)may be numerical instable. Therefore, we present another reduction of (3.1).

Many times, C is a sparse matrix with r := rank(C) ≤ rank(S). This symmetric matrix
C is diagonalizable in C = PtDP with P orthogonal andD diagonal. Further, we assume that
the first r diagonal entrees inD are different to 0. For the characteristic polynomial in (3.1), it
follows

p(λ) = det(S − λC) = det
(
PSPt − λD

)
= 0. (4.1)

The order of p is r. We decompose these matrices in

PSPt =

(
S1 S2

St2 S3

)

, D =

(
D1 0

0 0

)

(4.2)

with S1, D1 ∈ R
r×r , S2 ∈ R

r×(m−r), and S3 ∈ R
(m−r)×(m−r). Now, we eliminate S2 in PSPt by

multiplications with Givens rotations Gk ∈ R
m×m, k = 1, . . . , l, so that it follows:

Gl · · ·G2G1PSP
t =

(
Σ1 0

Σ2 Σ3

)

, Gl · · ·G2G1D =

(
Δ1 0

Δ2 0

)

(4.3)
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with Σ1,Δ1 ∈ R
r×r , Σ2,Δ2 ∈ R

(m−r)×r , and Σ3 ∈ R
(m−r)×(m−r). In (4.1), we achieve with

orthogonal Gk, k = 1, . . . , l

p(λ) = det
(
PSPt − λD

)
= det

(
Gl · · ·G2G1

(
PSPt − λD

))

= det

(
Σ1 − λΔ1 0

Σ2 − λΔ2 Σ3

)

= det(Σ3)det(Σ1 − λΔ1) = 0.
(4.4)

Because of p(0) = det(PSPt) = det(S)/= 0 and p(0) = det(Σ3)det(Σ1), the submatrices Σ1,Σ3

are regular and the generalized eigenvalues of det(Σ1 − λΔ1) are different to zero. So, with
y ∈ R

r

(Σ1 − λΔ1)y = 0 (4.5)

can be transformed to an equivalent eigenvalue problem with

(
Δ−1

1 Σ1 − λI
)
y = 0. (4.6)

This system can be solved by finding the matrix X with Δ1X = Σ1 using the Gaussian
elimination and determining the eigenvalues ofX computing theQR algorithm [13]. Because
all steps are equivalent, we have σ(Δ−1

1 Σ1) = σ(S,C), that is, the eigenvalues of (3.1) and (4.6)
are the same.

With Theorem 3.13, we are looking for the smallest value λ∗ ∈ σ+(S,C) and a
corresponding generalized eigenvector x∗

s to minimize the problem (3.1). So,

0 = (S − λ∗C)x∗
s =
(
SPt − λ∗CPt)Px∗

s (4.7)

yields. By substitution of y∗
s for Px

∗
s, we obtain

0 = Gl · · ·G2G1
(
PSPt − λ∗D

)
y∗
s =

(
Σ1 − λ∗Δ1 0

Σ2 − λ∗Δ2 Σ3

)

y∗
s. (4.8)

We decompose y∗
s into the subvectors y∗

s,r ∈ R
r and y∗

s,m−r ∈ R
m−r with (y∗

s)
t = (y∗

s,r |y∗
s,m−r)

t.
Then, y∗

s,r is a generalized eigenvector for λ∗ of the problems (4.5) and (4.6).
Let y∗

s,r be an eigenvector to the smallest positive eigenvalue λ∗ of (4.6). Since Σ3 is
regular, it follows in (4.8)

y∗
s,m−r = Σ−1

3 (Σ2 − λ∗Δ2)y∗
s,r (4.9)

and a generalized eigenvector x∗
s for λ

∗ in (3.1) is given as:

x∗
s = Pt

(
y∗
s,r

Σ−1
3 (Σ2 − λ∗Δ2)y∗

s,r

)

. (4.10)
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5. Applications in Conic Fitting

5.1. Fitzgibbon’s Ellipse Fitting

First, we would like to find an ellipse for a given set of points in R
2. Generally, a conic in R

2 is
implicitly defined as the zero set of f : R

6×R
2 → R to a constant parameter a = (α1, . . . , α6)

t ∈
R

6:

f
(
a, ξ, η

)
= α1ξ

2 + α2ξη + α3η
2 + α4ξ + α5η + α6. (5.1)

The equation f(a, ξ, η) = 0 can also be written with x = (ξ, η)t as

0 = xtAx + btx + c with A =

(
α1 α2/2

α2/2 α3

)

, b =

(
α4

α5

)

, c = α6. (5.2)

The eigenvalues λ1, λ2 ofA characterize a conic uniquely [14]. Thus, we need 4λ1λ2 = 4α1α3−
α2
2 > 0 for ellipses in f(a, x) = 0. Furthermore, every scaled vector μa with μ ∈ R \ {0}

describes the same zero-set of f . So, we can impose the constraint for ellipses with 4α1α3−α2
2 =

1. For n (n ≥ 6) given points (ξi, ηi)
t ∈ R

2, we want to find a parameter a ∈ R
6, which

minimizes F : R
6 → R with

F(a) =
n∑

i=1

f
(
a, ξi, ηi

)2 subject to 4α1α3 − α2
2 = 1. (5.3)

This ellipse fitting problem is established and solved by Fitzgibbon [7]. With the following
matrices D ∈ R

n×6, C ∈ R
6×6

D =

⎛

⎜⎜⎜⎜⎜⎜
⎝

ξ21 ξ1η1 η2
1 ξ1 η1 1

ξ22 ξ2η2 η2
2 ξ1 η2 1

...
...

...
...

...
...

ξ2n ξnηn η2
n ξn ηn 1

⎞

⎟⎟⎟⎟⎟⎟
⎠

, C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 2 0 0 0

0 −1 0 0 0 0

2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (5.4)

and F(a) =
∑n

i=1 f(a, ξi, ηi)
2 = ‖Da‖22, we achieve the equivalent problem:

min
a∈R6

‖Da‖22 subject to atCa = 1. (5.5)

For S = DtD, we have a special case of (1.1). Assuming S is a regular matrix and since the
eigenvalues of C are −2, −1, 0, and 2, by lemma 3.3 we know that the generalized eigenvalue
problem

(S − λC)a = 0 (5.6)
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has exactly one positive solution λ∗ ∈ R. Because of Theorem 3.13 a corresponding
generalized eigenvector a∗ to λ∗ minimizes the problem (5.5) and a∗ consists of the
coefficients of an implicit given ellipse.

A numerically stable noniterative algorithm to solve this optimization problem is
presented byHalir and Flusser [15]. In comparisonwith Section 4, their method uses a special
block decomposition of the matrices D and C.

5.2. Hyperbola Fitting

Instead of ellipses, O’Leary and Zsombor-Murray want to find a hyperbola to a set of
scattered data xi ∈ R

2 [9]. A hyperbola is a conic, which can uniquely be characterized by
4λ1λ2 = 4α1α3 − α2

2 < 0 [14]. So, we consider the constraint α2
2 − 4α1α3 = 1 and obtain the

optimization problem:

min
a∈R6

‖Da‖22 subject to at(−C)a = 1 (5.7)

withD andC being chosen in 5.1. Thematrix (−C) has two positive eigenvalues. In this case, a
solution is given by a generalized eigenvector to the smallest value in σ+(S,−C). But O’Leary
and Zsombor-Murray determine the best hyperbolic fit by evaluation of κi = α2

2,i − 4α1,iα3,i,
where the eigenvector ai = (ai,1, . . . , ai,6)

t is associated to a positive value of σ+(S,−C).

5.3. Bookstein’s Conic Fitting

In Bookstein’s method, the conic constraint is restricted to

2
(
trace2A − 2detA

)
= 2
(
λ21 + λ22

)
= 2α2

1 + α2
2 + 2α2

3 = 1, (5.8)

where λ1, λ2 are the eigenvalues of A in f [6]. There, it is λ1,2 ∈ [−√2/2,
√
2/2] and at least

one of them different to 0. But the constraint (5.8) is not a restriction to a class of conics. Here,
we determine an arbitrary conic, which minimizes

F(a) =
n∑

i=1

f
(
a, ξi, ηi

)2 subject to 2α2
1 + α2

2 + 2α2
3 = 1. (5.9)

The resulting data matrix D ∈ R
n×6 is the same as for Fitzgibbon’s problem. The constraint

matrix C ∈ R
6×6 has a diagonal shape with the entrees (2, 1, 2, 0, 0, 0), that is, all eigenvalues

of C are nonnegative. In the case of a regular matrix S, the problem (5.9) is solved for a
generalized eigenvector to the smallest value in σ+(S,C).
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5.4. Approximation of Shrinked Aspheres

After the molding process in optical applications, the shrinkage of rotation-symmetric
aspheres is implicitly defined for x = (ξ, ζ)t in

α1ζ
2 + α2ζ + α3 + α4ξ

2 = 0 subject to α2
2 − 4α1α3 = 4r2, (5.10)

where r ∈ R \ {0} and a = (a1, . . . , a4)
t are aspheric-specific constants [10]. For i = 1, . . . , n

with n ≥ 4, the scattered data xi = (ξi, ζi)
t ∈ R

2 of a shrinked asphere are given in this
approximation problem. Here, we are looking for the conic parameter a = (α1, . . . , α4)

t for a
fixed value rref, which minimizes

F(a) =
n∑

i=1

(
α1ζ

2
i + α2ζi + α3 + α4ξ

2
i

)2
subject to α2

2 − 4α1α3 = 4r2ref. (5.11)

Analogously to Fitzgibbon, we have the matrices D ∈ R
n×4 and C ∈ R

4×4 with

D =

⎛

⎜⎜⎜⎜⎜⎜
⎝

ζ21 ζ1 1 ξ21

ζ22 ζ2 1 ξ22
...

...
...

...

ζ2n ζn 1 ξ2n

⎞

⎟⎟⎟⎟⎟⎟
⎠

, C =

⎛

⎜⎜⎜⎜⎜
⎝

0 0 −2 0

0 1 0 0

−2 0 0 0

0 0 0 0

⎞

⎟⎟⎟⎟⎟
⎠

(5.12)

and with F(a) = ‖Da‖22 we get the following optimization problem:

min
a∈R4

‖Da‖22 subject to atCa = 4r2ref. (5.13)

This is also an application of (1.1). The matrix C has the eigenvalues −2, 0, 1, and 2. So, the
generalized eigenvalue problem in (3.1)with regular S = DtD ∈ R

4×4 has two positive values
in σ+(S,C). With Theorem 3.13, a generalized eigenvector a∗ ∈ R

4 to the smaller of both
values solves (5.13).

The coefficients αi in the problems (5.5) and (5.13) correspond not to the same
monomials ξkζl. Hence, we have different matrices D and C.

6. Conclusion

In this paper, we present a minimization problem of least squares subject to absolute
quadratic constraints. We develop a closed theory with the main result that a minimum is
a solution of a generalized eigenvalue problem corresponding to the smallest positive eigen-
value. Further, we show a reduction to an eigensystem for numerical calculations. Finally,
we study four applications about conic approximations. We analyze Fitzgibbon’s method
for direct ellipse-specific fitting, O’Leary’s direct hyperbola approximation, Bookstein’s conic
fitting, and an optical application of shrinked aspheres. All these systems are attribute to the
general optimization problem.
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