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We study a model arising from porous media, electromagnetic, and signal processing of wireless
communication system −Dt

αx(t) = f(t, x(t), x′(t), x′′(t), . . . , x(n−2)(t)), 0 < t < 1, x(0) = x′(0) = · · · =
x(n−2)(0) = 0, x(n−2)(1) =

∫1
0 x

(n−2)(s)dA(s), where n − 1 < α ≤ n, n ∈ N and n ≥ 2, Dt
α is the

standard Riemann-Liouville derivative,
∫1
0 x(s)dA(s) is linear functionals given by Riemann-

Stieltjes integrals, A is a function of bounded variation, and dA can be a changing-sign measure.
The existence, uniqueness, and asymptotic behavior of positive solutions to the singular nonlocal
integral boundary value problem for fractional differential equation are obtained. Our analysis
relies on Schauder’s fixed-point theorem and upper and lower solution method.

1. Introduction

Recently, fractional-order models have proved to be more accurate than integer order
models, that is, there are more degrees of freedom in the fractional-order models.Indeed,
we can find numerous applications in viscoelasticity, electrochemistry control, porous media,
electromagnetic, and signal processing of wireless communication system. Especially, in
application of the digital signal processing, the fractional digital signal processing can
greatly improve the high frequency components of signal, enhance an intermediate frequency
component of signal, and reserve nonlinear low frequency signal. According to this analysis,
fractional differential equation applied to the edge information extraction will get higher
signal to noise ratio than that of the traditional method based on one- or-two order differential
equation.
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Many applications on digital signal processing were found recently, for example,
Hartley et al. [1] derived a closed-loop control electromagnetic and signal processing system
of equations with the Chua resistor

Dt
αx(t) = aDt

α−1(y(t) − x(t)) − b

7

(
4x(t) − x3(t)

)
,

dy(t)
dt

= x(t) − y(t).
(1.1)

Caputo [2] presented a fractional model system to describe the relationship between the
electric field E and the current density D in the study of a electrochemical polarization
medium,

γDt
νD(t) + αD(t) = σE(t) + δDt

νE(t), (1.2)

where γ, α, σ, δ are constants and ν is a real number. Anastasio [3] believed that signal
processing of communication system of vestibule visual reflex effect is fractional, which can
be described by the following model

τ1r
′(t) + r(t) = τ1τ2Dt

α+1v(t) + τ1Dt
αv(t), (1.3)

where r(t) is the vestibular reflex nerve discharge rate, v(t) is the head of the rotational
angular velocity, α is fraction.

Motivated by systems (1.1)–(1.3) and their application background in electromagnetic
and signal processing of wireless communication system, in this paper, we consider the
existence, uniqueness, and asymptotic behavior of positive solutions for the higher nonlocal
fractional differential equation

−Dt
αx(t) = f

(
t, x(t), x′(t), x′′(t), . . . , x(n−2)(t)

)
, 0 < t < 1,

x(0) = x′(0) = · · · = x(n−2)(0) = 0, x(n−2)(1) =
∫1

0
x(n−2)(s)dA(s),

(1.4)

where n − 1 < α ≤ n, n ∈ N and n ≥ 2, Dt
α is the standard Riemann-Liouville derivative,∫1

0 x(s)dA(s) is linear functionals given by Riemann-Stieltjes integrals, A is a function of
bounded variation, and dA can be a changing-sign measure, and f : (0, 1) × (0,+∞)n−1 →
[0,+∞) is continuous, f may be singular at xi = 0 and t = 0, 1.

The nonlocal integral-boundary value problems represent a class of interesting and
important problems arising in physical, biological, and chemical processes and have attracted
the attention of Khan [4], Gallardo [5], Karakostas and Tsamatos [6], Ahmad et al. [7], Feng
et al. [8], Corduneanu [9], and Agarwal and O’Regan [10].
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When α is an integer, a lot of work has been done dealing with nonlocal 3-point
boundary value problems, see [11, 12]. In [12], Eloe and Ahmad studied the following nth-
order nonlocal differential equation

u(n)(t) + a(t)f(u) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) = ηu(ξ),
(1.5)

where 0 < ξ < 1, 0 < ηξn−1 < 1. By applying the fixed point theorem in cones, the authors
prove the existence of at least one positive solution when a and f is continuous and f is either
sublinear or superlinear. Recently, Hao et al. [13] studied the existence of positive solutions
for the BVP (1.5)with integer order n, and nonlinear term is replaced by a(t)f(t, x(t)), where
a can be singular at t = 0, 1, f can be singular at x = 0 and no singularity at t = 0, 1.

If α is fractional, Yuan [14] studied the (n − 1, 1)-type conjugate boundary value
problem

Dt
αu(t) + f(t, u(t)) = 0, 0 < t < 1, n − 1 < α ≤ n, n ≥ 3,

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) = 0,
(1.6)

where f is continuous and semipositone, Dt
α is the standard Riemann-Liouville derivative.

By giving properties of Green’s function and using the Guo-Krasnosel’skii fixed-point
theorem on cones, the existence of multiple positive solutions were obtained. More recently,
Zhang [15] considered the following BVP whose nonlinear term and boundary condition
contain derivatives of unknown functions

Dt
αx(t) + q(t)f

(
x, x′, . . . , x(n−2)

)
= 0, 0 < t < 1, n − 1 < α ≤ n,

x(0) = x′(0) = · · · = x(n−2)(0) = x(n−2)(1) = 0,
(1.7)

where Dt
α is the standard Riemann-Liouville fractional derivative of order α, q may be

singular at t = 0 and f may be singular at x = 0, x′ = 0, . . . , x(n−2) = 0, by using fixed-point
theorem of the mixed monotone operator, the unique existence result of positive solution to
problem (1.7)was established. Other some recent results, see [16–20]

Motivated by the results mentioned above, in this paper, we study the existence,
uniqueness, and asymptotic behavior of positive solutions for the BVP (1.4) where the
nonlinear terms and boundary conditions all involve derivatives of unknown functions and
with Riemann-Stieltjes integral boundary condition, moreover f may be singular at xi = 0 and
t = 0, 1. Our main tool relies on Schauder’s fixed-point theorem and upper and lower solution
method.

2. Preliminaries and Lemmas

In this section, we present here the necessary definitions from fractional calculus theory.
These definitions can be found in the recent literatures.
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Definition 2.1 (see [21, 22]). The Riemann-Liouville fractional integral of order α > 0 of a func-
tion x : (0,+∞) → R is given by the following:

Iαx(t) =
1

Γ(α)

∫ t

0
(t − s)α−1x(s)ds (2.1)

provided that the right-hand side is pointwise defined on (0,+∞).

Definition 2.2 (see [21, 22]). The Riemann-Liouville fractional derivative of order α > 0 of a
function x : (0,+∞) → R is given by the following:

Dt
αx(t) =

1
Γ(n − α)

(
d

dt

)n ∫ t

0
(t − s)n−α−1x(s)ds, (2.2)

where n = [α]+1, [α] denotes the integer part of number α, provided that the right-hand side
is pointwise defined on (0,+∞).

Proposition 2.3 (see [21, 22]). (1) If x ∈ L1(0, 1), ν > σ > 0, then

IνIσx(t) = Iν+σx(t), Dt
σIνx(t) = Iν−σx(t), Dt

σIσx(t) = x(t). (2.3)

(2) If α > 0, σ > 0, then

Dt
αtσ−1 =

Γ(σ)
Γ(σ − α) t

σ−α−1. (2.4)

Proposition 2.4 (see [21, 22]). Let α > 0, and f(x) is integrable, then

IαDt
αf(x) = f(x) + c1xα−1 + c2xα−2 + · · · + cnxα−n, (2.5)

where ci ∈ R (i = 1, 2, . . . , n), n is the smallest integer greater than or equal to α.

Our discussion is based on the assumption −1 < α − n ≤ 0 in this paper.
Let x(t) = In−2y(t), y(t) ∈ C[0, 1], by standard discuss, we easily reduce order the BVP

(1.4) to the following equivalent BVP

−Dt
α−n+2y(t) = f

(
t, In−2y(t), In−3y(t), . . . , I1y(t), y(t)

)
,

y(0) = 0, y(1) =
∫1

0
y(s)dA(s).

(2.6)
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In fact, let x(t) = In−2y(t), y(t) ∈ C[0, 1], then

Dt
αx(t) =

dn

dtn
In−αx(t) =

dn

dtn
In−αIn−2y(t)

=
dn

dtn
I2n−α−2y(t) = Dt

α−n+2y(t),

x′(t) = Dt
1In−2y(t) = In−3y(t),

x′′(t) = Dt
2In−2y(t) = In−4y(t),

...

x(n−3)(t) = Dt
n−3In−2y(t) = I1y(t),

x(n−2)(t) = Dt
n−2In−2y(t) = y(t).

(2.7)

By (2.7), we have x(n−2)(0) = y(0) = 0 and

y(1) =
∫1

0
y(s)dA(s). (2.8)

Moreover −Dt
α−n+2y(t) = f(t, In−2y(t), In−3y(t), . . . , I1y(t), y(t)). Thus, (1.4) is transformed

into (2.6).
On the other hand, if y ∈ C([0, 1], [0,+∞)) is a solution for problem (2.6). Then, from

Proposition 2.3 and (2.7), one has

−Dt
αx(t) = −Dt

α−n+2y(t) = f
(
t, In−2y(t), In−3y(t), . . . , I1y(t), y(t)

)

= f
(
t, x(t), x′(t), x′′(t), . . . , x(n−2)(t)

)
, 0 < t < 1.

(2.9)

Notice for any α > 0,

Iαy(t) =
1

Γ(α)

∫ t

0
(t − s)α−1y(s)ds, (2.10)

which implies that Iαy(0) = 0. So x(0) = 0, and from (2.7), for i = 1, 2, . . . , n − 2, we have
x(i)(0) = 0, and

x(n−2)(1) =
∫1

0
x(n−2)(s)dA(s). (2.11)

Consequently, the BVP (2.6) is transformed into the BVP (1.4).
Applying Propositions 2.3 and 2.4, by standard discuss, we have the following Lemma.
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Lemma 2.5. Given y ∈ L1(0, 1), then the problem

Dt
α−n+2y(t) + h(t) = 0, 0 < t < 1,

y(0) = 0, y(1) = 0,
(2.12)

has the unique solution

y(t) =
∫1

0
G(t, s)h(s)ds, (2.13)

where G(t, s) is the Green function of the BVP (2.12) and is given by the following:

G(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

tα−n+1(1 − s)α−n+1 − (t − s)α−n+1
Γ(α − n + 2)

, 0 ≤ s ≤ t ≤ 1,

tα−n+1(1 − s)α−n+1
Γ(α − n + 2)

, 0 ≤ t ≤ s ≤ 1.

(2.14)

By Proposition 2.4, the unique solution of the problem

Dt
α−n+2y(t) = 0, 0 < t < 1,

y(0) = 0, y(1) = 1,
(2.15)

is tα−n+1. Let

C =
∫1

0
tα−n+1dA(t), (2.16)

and define

GA(s) =
∫1

0
G(t, s)dA(t). (2.17)

Then the Green function for the nonlocal BVP (2.6) is (the detail see [23] or [16])

K(t, s) =
tα−n+1

1 − C GA(s) +G(t, s). (2.18)

Throughout paper, we always assume the following holds.
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(H0)A is a function of bounded variation such that GA(s) ≥ 0 for s ∈ [0, 1] and 0 ≤ C <
1, where C is defined by (2.16).

Lemma 2.6. Suppose (H0) holds, then the Green function defined by (2.18) satisfies

(1) K(t, s) > 0, for all t, s ∈ (0, 1).

(2)

tα−n+1

1 − C GA(s) ≤ K(t, s) ≤ H(s)tα−n+1, (2.19)

where

H(s) =
(1 − s)α−n+1
Γ(α − n + 2)

+
GA(s)
1 − C . (2.20)

Proof. (1) is obvious. For (2), by (2.14) and (2.18), we have

H(t, s) =
tα−n+1

1 − C GA(s) +G(t, s) ≤ tα−n+1(1 − s)α−n+1
Γ(α − n + 2)

+
tα−n+1

1 − C GA(s)

= H(s)tα−n+1,

H(t, s) =
tα−n+1

1 − C GA(s) +G(t, s) ≥ tα−n+1

1 − C GA(s).

(2.21)

Definition 2.7. A continuous function ψ(t) is called a lower solution of the BVP (2.6), if it
satisfies

−Dt
α−n+2ψ(t)(t) ≤ f

(
t, In−2ψ(t), In−3ψ(t), . . . , I1ψ(t), ψ(t)

)
,

ψ(0) ≥ 0, ψ(1) ≥
∫1

0
ψ(s)dA(s).

(2.22)

Definition 2.8. A continuous function φ(t) is called a upper solution of the BVP (2.6), if it
satisfies

−Dt
α−n+2φ(t)(t) ≥ f

(
t, In−2φ(t), In−3φ(t), . . . , I1φ(t), φ(t)

)
,

φ(0) ≤ 0, φ(1) ≤
∫1

0
φ(s)dA(s).

(2.23)

It follows from Lemma 2.5, we have the following maximum principle.



8 Abstract and Applied Analysis

Lemma 2.9 (maximum principle). If y ∈ C([0, 1],R) satisfies

y(0) = 0, y(1) =
∫1

0
y(s)dA(s), (2.24)

and Dt
α−n+2y(t) ≤ 0 for any t ∈ (0, 1). Then

y(t) ≥ 0, t ∈ [0, 1]. (2.25)

3. Main Results

Let E = C[0, 1], and

P =
{
y ∈ E : there exist positive numbers 0 < ly < 1, Ly > 1

such that lytα−n+1 ≤ y(t) ≤ Lytα−n+1, t ∈ [0, 1]}
(3.1)

Clearly, tα−n+1 ∈ P , so P is nonempty. For any y ∈ P , define an operator T by the following:

(
Ty

)
(t) =

∫1

0
K(t, s)f

(
s, In−2y(s), In−3y(s), . . . , I1y(s), y(s)

)
ds. (3.2)

Let

κi(t) =
Γ(α − n + 2)
Γ(α − i) tα−i−1, i = 0, 1, 2, . . . , n − 2, (3.3)

then

κ0(t) = In−2sα−n+1, κ1(t) = In−3sα−n+1, . . . , κn−3(t) = I1sα−n+1, κn−2(t) = tα−n+1. (3.4)

The conditions imposed on f are the following.

(H1) f ∈ C((0, 1) × (0,∞)n−1, [0,+∞)), and f(t, x0, x1, x2, . . . , xn−2) is decreasing in
xi > 0 for i = 0, 1, 2, . . . , n − 2;

(H2) for any λi > 0, f(t, λ0tn−2, λ1tn−3, . . . , λn−3t, λn−2)/≡ 0, t ∈ (0, 1), and

0 <
∫1

0
H(s)f(s, λ0κ0(s), λ1κ1(s), λ2κ2(s), . . . , λn−2κn−2(s))ds < +∞. (3.5)
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Lemma 3.1. Suppose (H0)–(H2) hold, then T is well defined and T(P) ⊂ P .

Proof. For any y ∈ P , by the definition of P , there exists two positive numbers 0 < ly < 1, Ly >
1 such that lytα−n+1 ≤ y(t) ≤ Lyt

α−n+1 for any t ∈ [0, 1]. It follows from (2.19) and (H1)-(H2)
that

(
Ty

)
(t) =

∫1

0
K(t, s)f

(
s, In−2y(s), In−3y(s), . . . , I1y(s), y(s)

)
ds

≤
∫1

0
H(s)f

(
s, In−2lysα−n+1, . . . , I1lysα−n+1, lysα−n+1

)
ds

=
∫1

0
H(s)f

(
s, lyκ0(s), lyκ1(s), . . . , lyκn−2(s)

)
ds < +∞.

(3.6)

Now take C = maxt∈[0,1]y(t), then for any s ∈ (0, 1),

GA(s)f
(
s,

C

(n − 2)!
sn−2,

C

(n − 3)!
sn−3, . . . ,

C

1!
s, C

)
/≡ 0, (3.7)

by (H2). Thus by the continuity of f(t, x0, x1, . . . , xn−2), we have

∫1

0
GA(s)f

(
s,

C

(n − 2)!
sn−2,

C

(n − 3)!
sn−3, . . . ,

C

1!
s, C

)
ds > 0. (3.8)

This yields

∫1

0
GA(s)f

(
s, In−2C, In−3C, . . . , I1C,C

)
ds

=
∫1

0
GA(s)f

(
s,

C

(n − 2)!
sn−2,

C

(n − 3)!
sn−3, . . . ,

C

1!
s, C

)
ds > 0.

(3.9)

By (2.19) and (3.6)–(3.9), we have

(
Ty

)
(t) =

∫1

0
K(t, s)f

(
s, In−2y(s), In−3y(s), . . . , I1y(s), y(s)

)
ds

≥ tα−n+1

1 − C
∫1

0
GA(s)f

(
s, In−2C, In−3C, . . . , I1C,C

)
ds ≥ l′ytα−n+1,

(3.10)

where

l′y = min

{

1,
1

1 − C
∫1

0
GA(s)f

(
s, In−2C, In−3C, . . . , I1C,C

)
ds

}

. (3.11)
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On the other hand, it follows from (2.19) that

(
Ty

)
(t) =

∫1

0
K(t, s)f

(
s, In−2y(s), In−3y(s), . . . , I1y(s), y(s)

)
ds

≤ tα−n+1
∫1

0
H(s)f

(
s, lyκ0(s), lyκ1(s), . . . , lyκn−2(s)

)
ds,

≤ L′
yt
α−n+1,

(3.12)

where

L′
y = max

{

1,
∫1

0
H(s)f

(
s, lyκ0(s), lyκ1(s), . . . , lyκn−2(s)

)
ds

}

. (3.13)

It follows from (3.6)–(3.12) that T is well defined and T(P) ⊂ P .

Take

L = max

{

1,
∫1

0
H(s)f(s, κ0(s), κ1(s), . . . , κn−2(s))ds

}

,

l = min

{

1,
1

1 − C
∫1

0
GA(s)f(s, κ0(s), κ1(s), . . . , κn−2(s))ds

}

.

(3.14)

By (H2) and Weierstrass distinguishing method, we know

a(t) =
∫1

0
K(t, s)f(s, κ0(s), κ1(s), . . . , κn−2(s))ds (3.15)

is a continuous function on [0, 1], that is, a(t) ∈ E.

Theorem 3.2 (existence). Suppose (H0)–(H2) hold, and if

∫1

0
GA(s)f

(
s,
L

l
κ0(s),

L

l
κ1(s), . . . ,

L

l
κn−2(s),

L

l
κn−1(s)

)
ds ≥ 1 − C. (3.16)

Then the BVP (1.4) has at least a positive solution w(t).

Proof. By (2.18) and (3.2), we have

−Dt
α−n+2(Ty

)
(t) = f

(
t, In−2y(t), In−3y(t), . . . , I1y(t), y(t)

)
,

(
Ty

)
(0) = 0,

(
Ty

)
(1) =

∫1

0

(
Ty

)
(s)dA(s).

(3.17)
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It follows from (2.19) that

ltα−n+1 ≤ a(t) ≤ Ltα−n+1, (3.18)

which implies that a(t) ∈ P . Let

b(t) =
a(t)
l
, (3.19)

then we also have

tα−n+1 ≤ b(t) ≤ L

l
tα−n+1. (3.20)

Thus according to the fact that the operator T is nonincreasing relative to y, Lemma 3.1
and (3.20), we have

Tb(t) ≤ Ttα−n+1 = a(t) ≤ a(t)
l

= b(t). (3.21)

and Tb(t) ∈ P . By (2.19), (3.12), and (3.20), one has

Tb(t) ≥ 1
1 − C t

α−n+1
∫1

0
GA(s)f

(
s, In−2b(s), In−3b(s), . . . , I1b(s), b(s)

)
ds

≥ 1
1 − C t

α−n+1
∫1

0
GA(s)f

(
s,
L

l
κ0(s),

L

l
κ1(s), . . . ,

L

l
κn−2(s)

)
ds

≥ tα−n+1.

(3.22)

Thus, by (3.20), (3.21) and the operator T is nonincreasing relative to y, we have

Dt
α−n+2b(t) + f

(
t, In−2b(t), In−3b(t), . . . , I1b(t), b(t)

)

= −1
l
f
(
s, In−2tα−n+1, . . . , I1tα−n+1, tα−n+1

)
+ f

(
t, In−2b(t), . . . , I1b(t), b(t)

)

≤ −1
l
f
(
s, In−2tα−n+1, . . . , I1tα−n+1, tα−n+1

)
+ f

(
s, In−2tα−n+1, . . . , I1tα−n+1, tα−n+1

)

≤ 0,

Dt
α−n+2Tb(t) + f

(
t, In−2Tb(t), In−3Tb(t), . . . , I1Tb(t), Tb(t)

)

= −f
(
t, In−2b(t), In−3b(t), . . . , I1b(t), b(t)

)

+ f
(
t, In−2Tb(t), In−3Tb(t), . . . , I1Tb(t), Tb(t)

)

≥ 0, t ∈ [0, 1].

(3.23)
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However (3.17) implies that b(t), Tb(t) satisfy boundary conditions of BVP (2.6). Let

ψ(t) = Tb(t), φ(t) =
1
l
Ttα−n+1 =

1
l
a(t) = b(t), (3.24)

then (3.21), (3.23) imply that ψ(t), φ(t) are lower and upper solution of BVP (2.6), res-
pectively, and ψ(t), φ(t) ∈ P .

Define the function F and the operator A in E by the following:

F
(
t, y

)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f
(
t, In−2ψ(t), In−3ψ(t), . . . , I1ψ(t), ψ(t)

)
, y < ψ(t),

f
(
t, In−2y(t), In−3y(t), . . . , I1y(t), y(t)

)
, ψ(t) ≤ y ≤ φ(t),

f
(
t, In−2φ(t), In−3φ(t), . . . , I1φ(t), φ(t)

)
, y > φ(t),

(3.25)

(
By

)
(t) =

∫1

0
K(t, s)F

(
s, y(s)

)
ds, ∀y ∈ E. (3.26)

Clearly, F : [0, 1]× [0,+∞) → [0,+∞) is continuous by (3.25). Consider the following bound-
ary value problem

−Dt
α−n+2y(t) = F

(
t, y

)
, 0 < t < 1,

y(0) = 0, y(1) =
∫1

0
y(s)dA(s).

(3.27)

Obviously, a fixed point of the operator B is a solution of the BVP (3.27).
For all y ∈ E, it follows from Lemma 2.6 and (3.22) that

(
By

)
(t) ≤

∫1

0
H(s)F

(
s, y(s)

)
ds ≤

∫1

0
H(s)f

(
s, In−2ψ(s), In−3ψ(s), . . . , I1ψ(s), ψ(s)

)
ds

≤
∫1

0
H(s)f

(
s, In−2sα−n+1, . . . , I1sα−n+1, sα−n+1

)
ds

=
∫1

0
H(s)f(s, κ0(s), κ1(s), . . . , κn−2(s))ds < +∞.

(3.28)

So B is bounded. It is easy to see B : E → E is continuous from the continuity of F and K.
LetΩ ⊂ E be bounded, that is, there exists a positive constantN > 0 such that ||y|| ≤N,

for all y ∈ Ω. Let L = max0≤t≤1,0≤y≤N |F(t, y)| + 1, and since K(t, s) is uniformly continuous on
[0, 1] × [0, 1], then for any ε > 0 and s ∈ [0, 1], there exists δ > 0 such that

|K(t1, s) −K(t2, s)| < ε

L
, (3.29)
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for |t1 − t2| < δ. Then

∣
∣By(t1) − By(t2)

∣
∣ ≤

∫1

0

∣
∣K(t1, s) −K(t2, s)

∣
∣
∣
∣F

(
s, y(s)

)∣∣ds < ε. (3.30)

This implies that B(Ω) is equicontinuous.
By the means of the Arzela-Ascoli theorem, we have B : E → E is completely contin-

uous. Thus, by using Schauder’s fixed-point theorem, B has at least a fixed-pointw such that
w = Bw.

Now we prove

ψ(t) ≤ w(t) ≤ φ(t), t ∈ [0, 1]. (3.31)

Let z(t) = φ(t) −w(t), t ∈ [0, 1]. By φ(t) is upper solution of BVP (2.6) and w is fixed
point of B, we know

w(0) = 0, w(1) =
∫1

0
w(s)dA(s). (3.32)

From the definition of F and (3.22), we obtain

f
(
t, In−2φ(t), In−3φ(t), . . . , I1φ(t), φ(t)

)
≤ F(t, y(t))

≤ f
(
t, In−2ψ(t), In−3ψ(t), . . . , I1ψ(t), ψ(t)

)

≤ f
(
t, In−2tα−n+1, . . . , I1tα−n+1, tα−n+1

)
, t ∈ [0, 1].

(3.33)

Thus (3.16) and (3.33) imply

Dt
α−n+2z(t) = Dt

α−n+2φ(t) − Dt
α−n+2w(t)

= −1
l
f
(
t, In−2tα−n+1, . . . , I1tα−n+1, tα−n+1

)
+ F(t,w(t))

≤ −1
l
f
(
t, In−2tα−n+1, . . . , I1tα−n+1, tα−n+1

)

+ f
(
t, In−2tα−n+1, . . . , I1tα−n+1, tα−n+1

)
≤ 0, ∀t ∈ [0, 1].

(3.34)

By (3.32), (3.34), and Lemma 2.9, we know z(t) ≥ 0 which implies w(t) ≤ φ(t) on [0, 1]. By
the same way, it is easy to prove w(t) ≥ ψ(t) on [0, 1]. So we obtain

ψ(t) ≤ w(t) ≤ φ(t), t ∈ [0, 1]. (3.35)
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Consequently, F(t,w(t)) = f(t, In−2w(t), In−3w(t), . . . , I1w(t), w(t)), t ∈ [0, 1]. Then w(t) is a
positive solution of the BVP (2.6), which implies that x(t) = In−2w(t) is a positive solution of
the BVP (1.4).

Theorem 3.3 (asymptotic behavior). Suppose the conditions of Theorem 3.2 are satisfied. Then
there exist two constants B1,B2 such that the positive solution x(t) of the BVP (1.4) satisfies

B1t
α−1 ≤ x(t) ≤ B2t

α−1,

lim
t→ 0+

x(t)
tα−1

= 0,
(3.36)

where

B1 =
Γ(α − n + 2)

Γ(α)
, B2 = LB1. (3.37)

Proof. By (3.22) and (3.35), we know

w(t) ≥ ψ(t) ≥ tα−n+1. (3.38)

On the other hand, it follows from (3.38) and (2.19) that

w(t) =
∫1

0
K(t, s)f

(
s, In−2w(s), In−3w(s), . . . , I1w(s), w(s)

)
ds

≤ tα−n+1
∫1

0
H(s)f

(
s, In−2sα−n+1, . . . , I1sα−n+1, sα−n+1

)
ds

= tα−n+1
∫1

0
H(s)f(s, κ0(s), κ1(s), . . . , κn−2(s), κn−1(s))ds

≤ Ltα−n+1.

(3.39)

Then

tα−n+1 ≤ w(t) ≤ Ltα−n+1. (3.40)

Since

In−2tα−n+1 =
1

Γ(n − 2)

∫ t

0
(t − s)n−3sα−n+1ds = Γ(α − n + 2)

Γ(α)
tα−1, (3.41)

so it follows from (3.40) that

Γ(α − n + 2)
Γ(α)

tα−1 ≤ In−2w(t) = x(t) ≤ LΓ(α − n + 2)
Γ(α)

tα−1, (3.42)
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That is,

B1t
α−1 ≤ x(t) ≤ B2t

α−1. (3.43)

In the end, from n − 1 < α ≤ n and L’Hospital Rule, we have

Lim
t→ 0+

x(t)
tα−1

= lim
t→ 0+

x(n−2)(t)
(α − 1)(α − 2) · · · (α − n + 2)tα−n+1

= lim
t→ 0+

x(n−1)(t)
(α − 1)(α − 2) · · · (α − n + 1)tα−n

= 0.

(3.44)

Theorem 3.4 (uniqueness). Suppose the conditions of Theorem 3.2 are satisfied and α = n. Then the
positive solution x(t) of the BVP (1.4) is unique.

Proof. We only need the BVP (2.6) has unique solution. Suppose thatw1, w2 are C[0, 1] posi-
tive solutions to the BVP (2.6). We may assume, without loss of generality, that there exists
t∗ ∈ (0, 1) such that w2(t∗) −w1(t∗) = max{w2(t) −w1(t)} > 0. Let

a = inf{t1 | 0 ≤ t1 < t∗, w2(t) ≥ w1(t), t ∈ (t1, t∗]};
b = inf{t2 | t∗ < t2 ≤ 1, w2(t) ≥ w1(t), t ∈ (t∗, t2]};

z(t) =w2(t) −w1(t), t ∈ [0, 1].

(3.45)

Evidently,

t∗ ∈ (a, b), w2(t) ≥ w1(t), f
(
t, In−2w2(t), In−3w2(t), . . . , I1w2(t), w2(t)

)

≤ f
(
t, In−2w1(t), In−3w1(t), . . . , I1w1(t), w2(t)

)
, t ∈ [a, b].

(3.46)

Thus

Dt
α−n+2z(t) = z′′(t) ≥ 0, t ∈ [a, b]. (3.47)

By the boundary conditions of the BVP (2.6), it is easy to check that there exist the
following two possible cases:

(1) z(a) = 0, z(b) = 0;

(2) z(a) = 0, z(b) > 0;
(3.48)

Case 1. From z′′(t) ≥ 0 and z(a) = 0, z(b) = 0, we get that z(t) ≤ 0, t ∈ [a, b], which implies a
contradiction with w2(t∗) > w1(t∗).
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Case 2. In this case we have b = 1 and z′(t∗) = 0. Since z′(t) is increasing on [a, b], we also
have z′(t) is increasing on t ∈ [a, t∗], that is, z′(t) ≤ z′(t∗) = 0 for any t ∈ [a, t∗]. Thus z(t) is
nonincreasing on t ∈ [a, t∗], which implies that z(t∗) ≤ z(a) = 0, this is a contradiction with
w2(t∗) > w1(t∗).

Therefore the BVP (2.6) has unique solution, and the BVP (1.4) also has unique
solution.

Remark 3.5. We only get the uniqueness of positive solution for the BVP (1.4) as α is integer,
but it remains unknown as to whether an analogous unique result holds for the case n − 1 <
α < n. We believe the result should also hold and try to study this problem, but it is a pity
that we failed to find the effective method to solve this problem.

Remark 3.6. The BVP (1.4) allows the nonlinearity f(t, x0, x2, . . . , xn−2) has singularity at t =
0, 1 and xi = 0, i = 0, 1, . . . , n−2. If f(t, x0, x2, . . . , xn−2) is continuous at xi = 0, i = 0, 1, . . . , n−2,
that is

f ∈ C((0, 1) × [0,∞)n−1, [0,+∞)), and f(t, x0, x1, x2, . . . , xn−2) is decreasing in xi > 0 for
i = 0, 1, 2, . . . , n − 2;

0 <
∫1

0
H(s)f(s, 0, 0, . . . , 0)ds < +∞. (3.49)

then the BVP (1.4) has at least a positive solution x(t), and there exists a constant B3 > 0 such
that

0 ≤ x(t) ≤ B3t
α−1. (3.50)

If α = n, the positive solution of the BVP (1.4) also is unique.

Proof. In fact, in Theorem 3.2 the set P is replaced by the following:

P1 = {x ∈ E : x(t) ≥ 0, t ∈ [0, 1]} (3.51)

and (3.21) can be replaced by the following:

0 ≤ φ(t) = T(0), 0 ≤ ψ(t) = (
Tφ

)
(t) ≤ T(0) = φ(t). (3.52)

Clearly φ(t), ψ(t) ∈ P1, and

Dt
α−n+2φ(t) + f

(
t, In−2φ(t), In−3φ(t), . . . , I1φ(t), φ(t)

)

= −f(t, 0, 0, . . . , 0) + f
(
t, In−2T(0), In−3T(0), . . . , I1T(0), T(0)

)
≤ 0,
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Dt
α−n+2ψ(t) + f

(
t, In−2ψ(t), In−3ψ(t), . . . , I1ψ(t), ψ(t)

)

= −f
(
t, In−2φ(t), In−3φ(t), . . . , I1φ(t), φ(t)

)
+ f

(
t, In−2ψ(t), In−3ψ(t), . . . , I1ψ(t), ψ(t)

)

≥ 0, t ∈ [0, 1].

(3.53)

Thus the rest of proof is similar to those of Theorem 3.2.
On the other hand, by Lemma 2.6 and (G2), the positive solution of the BVP (2.6)

satisfies

0 ≤ w(t) ≤ φ(t) = T0 =
∫1

0
K(t, s)f(s, 0, 0, . . . , 0)ds

≤
∫1

0
H(s)f(s, 0, 0, . . . , 0)dstα−n+1,

(3.54)

and then

0 ≤ In−2w(t) = x(t) ≤ B3t
α−1, (3.55)

where

B3 =
Γ(α − n + 2)

Γ(α)

∫1

0
H(s)f(s, 0, 0, . . . , 0)ds. (3.56)

Moreover if α = n, the positive solution of the BVP (1.4) also is unique.

Example 3.7. Consider the existence of positive solutions for the nonlinear fractional
differential equation

−Dt
7/2x(t) = 10t−1/4

[(
x′)−1/3 + x−1/8

]
, 0 < t < 1,

x(0) = x′(0) = 0, x′(1) =
∫1

0
x′(s)dA(s),

(3.57)

where

A(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t ∈
[
0,

1
2

)
,

3
2
, t ∈

[
1
2
,
3
4

)
,

1, t ∈
[
3
4
, 1
]
.

(3.58)
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Then the BVP (3.58) is equivalent to the following 4-point BVP with coefficients of both signs

−Dt
7/2x(t) = 10t−1/4

[(
x′)−1/3 + x−1/8

]
, 0 < t < 1,

x(0) = x′(0) = 0, x′(1) =
3
2
x′
(
1
2

)
− 1
2
x′
(
3
4

)
,

(3.59)

Conclusion: The BVP (3.59) has at least a positive solution x(t) such that

2
5
t5/2 ≤ x(t) ≤ 14.886t5/2. (3.60)

Proof. Clearly,

0 ≤ C =
∫1

0
t5/2dA(t) = 1 −

[∫3/4

1/2

3
2
dt5/2 +

∫1

3/4
dt5/2

]

≈ 0.0217 < 1,

G(t, s) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G1(t, s) =
t3/2(1 − s)3/2

Γ(5/2)
, 0 ≤ t ≤ s ≤ 1,

G2(t, s) =
t3/2(1 − s)3/2 − (t − s)3/2

Γ(5/2)
, 0 ≤ s ≤ t ≤ 1.

(3.61)

Thus,

GA(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
2
G2

(
1
2
, s

)
− 1
2
G2

(
3
4
, s

)
, 0 ≤ s < 1

2
,

3
2
G1

(
1
2
, s

)
− 1
2
G2

(
3
4
, s

)
,

1
2
≤ s < 3

4
,

3
2
G1

(
1
2
, s

)
− 1
2
G1

(
3
4
, s

)
,

3
4
≤ s ≤ 1,

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
(3/2)

√
2 − (3/4)

√
3
)
(1 − s)3/2 + 2((3/4) − s)3/2 − 6((1/2) − s)3/2

3
√
π

, 0 ≤ s < 1
2
,

(
(3/2)

√
2 − (3/4)

√
3
)
(1 − s)3/2 + 2((3/4) − s)3/2

3
√
π

,
1
2
≤ s < 3

4
,

(
(3/2)

√
2 − (3/4)

√
3
)
(1 − s)3/2

3
√
π

,
3
4
≤ s ≤ 1,

H(s) =
(1 − s)3/2
Γ(5/2)

+
GA(s)
0.9783

.

(3.62)

Clearly, (H0) and (H1) hold.
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On the other hand, for any λi > 0, i = 0, 1, f(t, λ0t, λ1) = λ−1/80 t−3/8 + λ−1/31 t−1/4 /≡ 0,
t ∈ (0, 1), and

κ0(s) =
2
5
s5/2, κ1(s) = s3/2,

0 <
∫1

0
H(s)f(s, λ0κ0(s), λ1κ1(s))ds

= 10
∫1

0

[
(1 − s)3/2
Γ(5/2)

+
GA(s)
0.9783

][(
2
5
λ0

)−1/8
s−9/16 + λ−1/31 s−3/4

]

ds < +∞.

(3.63)

Thus (H2) is satisfied.
Now we compute L, l. Since

∫1

0
GA(s)f(s, κ0(s), κ1(s))ds = 10

∫1

0
GA(s)

[(
2
5

)−1/8
s−9/16 + s−3/4

]

ds

= 10
∫1/2

0

⎡

⎢
⎣

(
(3/2)

√
2 − (3/4)

√
3
)
(1 − s)3/2 + 2((3/4) − s)3/2 − 6((1/2) − s)3/2

3
√
π

⎤

⎥
⎦

×
[(

2
5

)−1/8
s−9/16 + s−3/4

]

ds

+ 10
∫3/4

1/2

(
(3/2)

√
2 − (3/4)

√
3
)
(1 − s)3/2 + 2((3/4) − s)3/2

3
√
π

[(
2
5

)−1/8
s−9/16 + s−3/4

]

+ 10
∫1

3/4

(
(3/2)

√
2 − (3/4)

√
3
)
(1 − s)3/2

3
√
π

[(
2
5

)−1/8
s−9/16 + s−3/4

]

ds = 2.600,

∫1

0
H(s)f(s, κ0(s), κ1(s))ds = 10

∫1

0
H(s)

[(
2
5

)−1/8
s−9/16 + s−3/4

]

ds

= 10
∫1

0

[
(1 − s)3/2
Γ(5/2)

+
GA(s)
0.9783

][(
2
5

)−1/8
s−9/16 + s−3/4

]

ds = 37.215.

(3.64)

Thus

L = max

{

1,
∫1

0
H(s)f(s, κ0(s), κ1(s))ds

}

= max{1, 37.215} = 37.215,

l = min

{

1,
1

1 − C
∫1

0
GA(s)f(s, κ0(s), κ1(s))ds

}

= min{1, 2.658} = 2.658.

(3.65)
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So

∫1

0
GA(s)f

(
s,
L

l
κ0(s),

L

l
κ1(s)

)
ds = 10

∫1

0
GA(s)

[(
14 × 2

5

)−1/8
s−9/16 + 14−1/3s−3/4

]

ds

= 4.540 ≥ 1 − C = 0.9783,

(3.66)

which implies that (3.16) holds. Then the BVP (1.4) has at least a positive solution x(t), and
there exist two constants

B1 =
Γ(α − n + 2)

Γ(α)
=

2
5
, B2 = LB1 = 14.886, (3.67)

such that

2
5
t5/2 ≤ x(t) ≤ 14.886t5/2. (3.68)
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