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An investigation is carried out on the systematic analysis of the dynamic behavior of the
hybrid squeeze-film damper (HSFD) mounted a rotor-bearing system with strongly nonlinear
oil-film force and nonlinear rub-impact force in the present study. The dynamic orbits of the
system are observed using bifurcation diagrams plotted using the dimensionless rotating speed
ratio as control parameters. The onset of chaotic motion is identified from the phase diagrams,
power spectra, Poincaré maps, bifurcation diagrams, maximum Lyapunov exponents, and fractal
dimension of the rotor-bearing system. The dynamic behaviors are unlike the usual ways into
chaos (1T ⇒ 2T ⇒ 4T ⇒ 8T ⇒ 16T ⇒ 32T · · · ⇒ chaos or periodic ⇒ quasi-periodic ⇒ chaotic), it
suddenly gets in chaos from the periodic motion without any transition. The results presented in
this study provide some useful insights into the design and development of a rotor-bearing system
for rotating machinery that operates in highly rotating speed and highly nonlinear regimes.

1. Introduction

Squeeze-film damper (SFD) bearing is actually a special type of journal bearing with its
journal mechanically prevented from rotating but free to vibrate within the clearance space.
The hybrid squeeze-film damper (HSFD) and the porous squeeze-film damper (PSFD)
are the well-known applications of SFD and also useful for industry. Some literatures
discussed dynamic behaviors in SFD bearings and also found many interesting and useful
results. Holmes et al. [1] published a paper dealing with aperiodic behavior in journal
bearings and what may very well have been the first paper about aperiodic behavior
in journal bearing systems. Nikolajsent and Holmes [2] reported their observation of
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nonsynchronous vibrations in a test rig of a flexible, symmetric rotor on two identical plain
journal bearings supported by centralized squeeze-film dampers. Sykes and Holmes [3]
showed experimental observations of subharmonic motion in squeeze film bearings and
linked this to possible precursors of chaotic motion. At the same time, Kim and Noah
[4] analyzed the bifurcation of a modified Jeffcott rotor with bearing clearance. Ehrich
[5] used a simple numerical model of a Jeffcott rotor mounted on a nonlinear spring. It
was found that the vibratory response in the transition zone midway between adjacent
zones of subharmonic response has all the characteristics of chaotic behavior. Zhao et al.
[6] discussed the subharmonic and quasiperiodic motions of an eccentric squeeze film
damper-mounted rigid rotor system. Brown [7] studied a simple model of a rigid and
hydrodynamically supported journal bearing, using a short bearing theory. Theoretical
and experimental investigations were reported by Adiletta et al. [8–10] in which a rigid
rotor in short bearings would have subharmonic, quasiperiodic, and chaotic motion for
suitable values of the system parameters. Sundararajan and Noah [11] proposed a simple
shooting scheme along with an arc-length continuation algorithm with applications to
periodically forced rotor systems. The occurrence of periodic, quasiperiodic and chaotic
motions was predicted for various ranges of rotor speeds. Chang-Jian and Chen [12–
16] presented a series of papers discussing about flexible rotor supported by journal
bearings under nonlinear suspension and also combined with rub-impact effect, turbulent
effect and micropolar lubricant into consideration. They found very bountiful nonperiodic
responses occurring in rotor-bearing systems, and the studies would help engineers
or scientists escape undesired motions in either designing or operating rotor-bearing
systems.

Although virtually all physical phenomena in the real world can be regarded as
nonlinear, most of these phenomena can be simplified to a linear form given a sufficiently
precise linearization technique. However, this simplification is inappropriate for high-power,
high rotating speed system and its application during the design and analysis stage may
result in a flawed or potentially dangerous operation. As a result, nonlinear analysis methods
are generally preferred within engineering and academic circles. The current study performs
a nonlinear analysis of the dynamic behavior of a rotor-bearing system equipped with hybrid
squeeze-film damper under nonlinear rub-impact force effect. The nondimensional equation
of the rotor-bearing system is then solved using the fourth-order Runge-Kutta method. The
nonperiodic behavior of this system is characterized using phase diagrams, power spectra,
Poincaré maps, bifurcation diagrams, Lyapunov exponents, and the fractal dimension of the
system.

2. Mathematical Modeling

Figure 1 shows a rotor supported on HSFDs in parallel with retaining springs. The
bearing consists of four hydrostatic chambers and four hydrodynamic regions. The oil
film supporting force is dependent on the integrated action of hydrodynamic pressure and
hydrostatic pressure of HSFD. Figure 2(a) represents the cross-section of HSFD and rub-
impact rotor-stator model. The structure of this kind bearing should be popularized to consist
of 2N (N = 2, 3, 4 . . .) hydrostatic chambers and 2N hydrodynamic regions. In this study, oil
pressure distribution model in the HSFD is proposed to integrate the pressure distribution of
dynamic pressure region and static pressure region.
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Figure 2: Cross-section of HSFD model and rub-impact rotor-stator model.

2.1. The Instant Oil Film Supporting Force for HSFD

To analyze the pressure distribution, the Reynolds equation for constant lubricant properties
and noncompressibility should be assumed, then the Reynolds equation is introduced as
follows [12]:

1
R2

∂
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(
h3 ∂p
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)
+

1
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∂

∂z

(
h3 ∂p

∂z
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+ 12μ

∂h
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. (2.1)

The supporting region of HSFD should be divided into three regions: static pressure region,
rotating direction dynamic pressure region, and axial direction dynamic pressure region,
as shown in Figure 2. In the part of HSFD with −a ≤ z ≤ a, the long bearing theory is
assumed and Reynolds equation is solved with the boundary condition of static pressure
region pc,i acquiring the pressure distribution p0(θ). In the part of HSFD with a ≤ |z| ≤ L/2,
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the short bearing theory is assumed and solves the Reynolds equation with the boundary
condition of p(z, θ)|z=±a = p0(θ) and p(z, θ)|z=±L/2 = 0, yielding the pressure distribution in
axis direction dynamic pressure region p(z, θ). Finally, a formula of pressure distribution in
whole supporting region is obtained.

According to the above conditions, the instant oil film pressure distribution is as
follows. The instant pressure in rotating direction within the range of −a ≤ z ≤ a is
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The instant pressure in the axis direction within the range of a ≤ |z| ≤ L/2 is
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The instant oil film forces of the different elements are determined by integrating (2.2)
and (2.5) over the area of the journal sleeve. In the static pressure region, the forces are

Frs =
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In the rotating direction dynamics pressure region, the forces are
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In the axial direction dynamic pressure region, the forces are
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The resulting damper forces in the radial and tangential directions are determined by sum-
ming the above supporting forces. It is as follows:

Fr = Frs + Frc + Fra,

Fτ = Fτs + Fτc + Fτa.
(2.10)
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2.2. Rub-Impact Force

Figure 2(b) shows the radial impact force f1 and the tangential rub force f2. f1 and f2 could
be expressed as [17]

f1 = (e − δ)kc

f2 =
(
f + bv

)
f1, if e ≥ δ.

(2.11)

Then we could get the rub-impact forces in the horizontal and vertical directions as follows:

Rx = − (e − δ)kc
e

[
X − (

f + bv
)
Y
]

Ry = − (e − δ)kc
e

[(
f + bv

)
X + Y

]
.

(2.12)

2.3. Dynamics Equation

The equations of rotor motion in the Cartesian coordinates can be written as

mẍ + dẋ + kx = mρω2 cosωt + fx + kx0 + Rx,

mÿ + dẏ + ky = mρω2 sinωt + fy + ky0 + Ry.
(2.13)

The origin of the o-xyz-coordinate system is taken to be the bearing center Ob. Dividing these
two equations by mcω2 and defining a nondimensional time φ = ωt and a speed parameter
s = ω/ωn, one obtains the following nondimensionalized equations of motion:
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Equations (2.14)∼(2.15) describe a nonlinear dynamic system. In the current study, the
approximate solutions of these coupled nonlinear differential equations are obtained using
the fourth-order Runge-Kutta numerical scheme.

3. Analytical Tools for Observing Nonlinear Dynamics of
Rotor-Bearing System

In the present study, the nonlinear dynamics of the rotor-bearing system equippedwithHSFD
shown in Figure 1 are analyzed using Poincaré maps, bifurcation diagrams, the Lyapunov
exponent and the fractal dimension. The basic principles of each analytical method are
reviewed in the following subsections.



Journal of Applied Mathematics 7

3.1. Dynamic Trajectories and Poincaré Maps

The dynamic trajectories of the rotor-bearing system provide a basic indication as to whether
the system behavior is periodic or nonperiodic. However, they are unable to identify the
onset of chaotic motion. Accordingly, some other form of analytical method is required. In
the current study, the dynamics of the rotor-bearing system are analyzed using Poincaré maps
derived from the Poincaré section of the rotor system. A Poincaré section is a hypersurface in
the state-space transverse to the flow of the system of interest. In nonautonomous systems,
points on the Poincaré section represent the return points of a time series corresponding to
a constant interval T , where T is the driving period of the excitation force. The projection of
the Poincaré section on the y(nT) plane is referred to as the Poincaré map of the dynamic
system. When the system performs quasiperiodic motion, the return points in the Poincaré
map form a closed curve. For chaotic motion, the return points form a fractal structure
comprising many irregularly distributed points. Finally, for nT-periodic motion, the return
points have the form of n discrete points.

3.2. Power Spectrum

In this study, the spectrum components of the motion performed by the rotor-bearing system
are analyzed by using the Fast Fourier Transformation method to derive the power spectrum
of the displacement of the dimensionless dynamic transmission error. In the analysis, the
frequency axis of the power spectrum plot is normalized using the rotating speed, ω.

3.3. Bifurcation Diagram

A bifurcation diagram summarizes the essential dynamics of a rotor-train system and is
therefore a useful means of observing its nonlinear dynamic response. In the present analysis,
the bifurcation diagrams are generated using two different control parameters, namely
the dimensionless unbalance coefficient, β, and the dimensionless rotating speed ratio, s,
respectively. In each case, the bifurcation control parameter is varied with a constant step,
and the state variables at the end of one integration step are taken as the initial values for the
next step. The corresponding variations of the y(nT) coordinates of the return points in the
Poincaré map are then plotted to form the bifurcation diagram.

3.4. Lyapunov Exponent

The Lyapunov exponent of a dynamic system characterizes the rate of separation of
infinitesimally close trajectories and provides a useful test for the presence of chaos. In a
chaotic system, the points of nearby trajectories starting initially within a sphere of radius
ε0 form after time t an approximately ellipsoidal distribution with semiaxes of length εj(t).
The Lyapunov exponents of a dynamic system are defined by λj = limt→∞(1/t) log(εj(t)/ε0),
where λj denotes the rate of divergence of the nearby trajectories. The exponents of a system
are usually ordered into a Lyapunov spectrum, that is, λ1 > λ2 > · · · > λm. A positive value of
the maximum Lyapunov exponent (λ1) is generally taken as an indication of chaotic motion
[16].
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3.5. Fractal Dimension

The presence of chaotic vibration in a system is generally detected using either the Lyapunov
exponent or the fractal dimension property. The Lyapunov exponent test can be used for
both dissipative systems and nondissipative (i.e. conservative) systems, but is not easily
applied to the analysis of experimental data. Conversely, the fractal dimension test can only
be used for dissipative systems but is easily applied to experimental data. In contrast to
Fourier transform-based techniques and bifurcation diagrams, which provide only a general
indication of the change from periodic motion to chaotic behavior, dimensional measures
allow chaotic signals to be differentiated from random signals. Although many dimensional
measures have been proposed, the most commonly applied measure is the correlation
dimension dG defined by Grassberger and Procaccia due to its computational speed and the
consistency of its results. However, before the correlation dimension of a dynamic system
flow can be evaluated, it is first necessary to generate a time series of one of the system
variables using a time-delayed pseudo-phase-plane method. Assume an original time series
of xi = {x(iτ); i = 1, 2, 3, . . .N}, where τ is the time delay (or sampling time). If the system
is acted upon by an excitation force with a frequency ω, the sampling time, τ , is generally
chosen such that it is much smaller than the driving period. The delay coordinates are then
used to construct an n-dimensional vectorX = (x(jτ), x[(j+1)τ], x[(j+2)τ], . . . , x[(j+n−1)τ]),
where j = 1, 2, 3, . . . (N − n + 1). The resulting vector comprises a total of (N − n + 1) vectors,
which are then plotted in an n-dimensional embedding space. Importantly, the system flow
in the reconstructed n-dimensional phase space retains the dynamic characteristics of the
system in the original phase space. In other words, if the system flow has the form of a closed
orbit in the original phase plane, it also forms a closed path in the n-dimensional embedding
space. Similarly, if the system exhibits a chaotic behavior in the original phase plane, its
path in the embedding space will also be chaotic. The characteristics of the attractor in the
n-dimensional embedding space are generally tested using the function

∑N
i,j=1 H(r − |xi − xj |)

to determine the number of pairs (i, j) lying within a distance |xi − xj | < r in{xi}Ni=1, where
H denotes the Heaviside step function, N represents the number of data points, and r is the
radius of an n-dimensional hypersphere. For many attractors, this function exhibits a power
law dependence on r as r → 0, that is c(r) ∝ rdG . Therefore, the correlation dimension, dG,
can be determined from the slope of a plot of [log c(r)] versus [log r]. Chen and Yau [18]
showed that the correlation dimension represents the lower bound to the capacity or fractal
dimension dc and approaches its value asymptotically when the attracting set is distributed
more uniformly in the embedding phase space. A set of points in the embedding space is said
to be fractal if its dimension has a finite noninteger value. Otherwise, the attractor is referred
to as a “strange attractor.” To establish the nature of the attractor, the embedding dimension
is progressively increased, causing the slope of the characteristic curve to approach a steady-
state value. This value is then used to determine whether the system has a fractal structure or
a strange attractor structure. If the dimension of the system flow is found to be fractal (i.e. to
have a noninteger value), the system is judged to be chaotic.

In the current study, the attractors in the embedding space were constructed using
a total of 60000 data points taken from the time series corresponding to the displacement
of the system. Via a process of trial and error, the optimum delay time when constructing
the time series was found to correspond to one third of a revolution of the system. The
reconstructed attractors were placed in embedding spaces with dimensions of n = 2, 4, 6,
8, 10, 12, 14, 16, 18, and 20, respectively, yielding 10 different [log c(r)] versus [log r] plots
for each attractor. The number of data points chosen for embedding purposes (i.e., 60000)
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Figure 3: Bifurcation diagram ofX(nT) (a) and Y (nT) (b) versus rotor speed s (without rub-impact effect).

reflects the need for a compromise between the computation time and the accuracy of the
results. In accordance with Grassberger and Procaccia [19], the number of points used to
estimate the intrinsic dimension of the attracting set in the current analysis is less than
42M, where M is the greatest integer value less than the fractal dimension of the attracting
set.

4. Numerical Results and Discussions

The nonlinear dynamic equations presented in (2.14) to (2.15) for the HSFD rotor-bearing
system with strongly nonlinear oil-film force and nonlinear rub-impact force were solved
using the fourth-order Runge-Kutta method. The time step in the iterative solution procedure
was assigned a value of π/300, and the termination criterion was specified as an error
tolerance of less than 0.0001. The time series data corresponding to the first 800 revolutions
of the rotor was deliberately excluded from the dynamic analysis to ensure that the analyzed
data related to steady-state conditions. The sampled data were used to generate the dynamic
trajectories, Poincaré maps, and bifurcation diagrams of the spur rotor system in order to
obtain a basic understanding of its dynamic behavior. The maximum Lyapunov exponent
and the fractal dimension measure were then used to identify the onset of chaotic motion.
The rotating speed ratio s is one of the most significant and commonly used as a control
parameter in analyzing dynamic characteristics of bearing systems. Accordingly, the dynamic
behavior of the current rotor-bearing system was examined using the dimensionless rotating
speed ratio s as a bifurcation control parameter.

The bifurcation diagram in Figure 3 shows the long-term values of the rotational angle,
plotted with rotor displacement against the dimensionless speed s without rub-impact effect.
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Figure 4: Subharmonic motion at s = 2.6 (case 1); (a) Rotor trajectory; (b) Poincaré map; (c) and (d)
Displacement power in X and Y directions (without rub-impact effect).

Qualitatively different behavior was observed at values of s within the range of 0 < s < 5.
It can be seen that the dynamic motion of rotor trajectory in low speed is T-periodic motion
both in X and Y directions, and it drops to a lower spatial displacement mode at the speed
s = 2.3. As the speed is increased, the T-period motion loses its stability at s = 2.52, and a 2T -
periodic motion starts to build up. The jump phenomenon is also occurred under 2T -periodic
motion at s = 2.7. As the speed is further increased, the 2T -periodic motion loses its stability
at s = 2.82, and a T -periodic motion suddenly appears. The rotor trajectory, the Poincaré
map, and the displacement power spectrum in the X and Y directions at s = 2.6 are given in
Figure 4, from which the 0.5-subharmonic motion is shown by the double loops of the rotor
trajectory, two discrete points in the Poincaré map and peaks at 0.5 in the power spectrum.
The pressure distributions in the four oil chambers are shown in Figure 5. It can be seen that



Journal of Applied Mathematics 11

0 40 80 120

Time

94

96

98

100

102

104

106
×104

P
c,

1
(P

a)

(a)

0 40 80 120

Time

×104

94

96

98

100

102

104

106

P
c,

2
(P

a)

(b)

0 40 80 120

Time

94

96

98

100

102

104

106
×104

P
c,

3
(P

a)

(c)

0 40 80 120

Time

×104

94

96

98

100

102

104

106

P
c,

3
(P

a)

(d)

Figure 5: Pressure distribution in the static pressure chamber at s = 2.6 (without rub-impact effect).

the variations of pressure distributions are periodic, and the period is the same with the rotor
trajectory.

Figures 6(a) and 6(b) show the bifurcation diagrams for the rotor displacement
against the dimensionless rotating speed ratio with rub-impact effect. Compared with
bifurcation results without rub-impact effect, bifurcation results with rub-impact effect show
that dynamic trajectories perform strongly nonperiodic at low rotating speeds, but it would
escape nonperiodic motions to periodic motions. The bifurcation diagrams show that the
geometric centers of rotor in the horizontal and vertical directions perform nonperiodic
motion or the so-called chaotic motion at low values of the rotating speed ratio, that is,
s < 0.61. Figures 7, 8, and 9 represent phase diagrams, power spectra, Poincaré maps,
Lyapunov exponents, and the fractal dimensions of pinion center with s = 0.32, 0.36,
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Figure 6: Bifurcation diagram of HSFD rotor-bearing system using dimensionless rotating speed coeffi-
cient, s, as bifurcation parameter (with rub-impact effect).

and s = 0.42, respectively. The simulation results show that phase diagrams show disordered
dynamic behaviors with s = 0.32, 0.36 and s = 0.42; power spectra reveal numerous
excitation frequencies; the return points in the Poincaré maps form some geometrically fractal
structures, but the maximum Lyapunov exponent is positive with s = 0.36 and maximum
Lyapunov exponent is negative with s = 0.32 and s = 0.42. Thus, the results show that
the dynamic trajectory performs chaotic motion with s = 0.36, but they present no chaotic
motions with s = 0.32 and s = 0.42. Figures 10 and 11 are phase diagrams and Poincaré
maps for the route of subharmonic motion into chaos, out of chaos to periodic response at
different rotating speed ratios of s (with rub-impact effect). Unlike the usual ways into chaos
(1T ⇒ 2T ⇒ 4T ⇒ 8T ⇒ 16T ⇒ 32T · · · ⇒ chaos or periodic ⇒ quasi-periodic ⇒ chaotic),
it suddenly gets in chaos from the periodic motion without any transition or suddenly
escape from irregular motions into periodic motions in accordance with phase diagrams and
Poincaré maps.

5. Conclusions

A hybrid squeeze-film damper mounted rotor-bearing system with nonlinear oil-film force
and nonlinear rub-impact force has been presented and studied by a numerical analysis
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Figure 7: Simulation results obtained for rotor-bearing system with s = 0.32 (with rub-impact effect).
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Figure 8: Simulation results obtained for rotor-bearing system with s = 0.36 (with rub-impact effect).
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Figure 9: Simulation results obtained for rotor-bearing system with s = 0.42 (with rub-impact effect).
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Figure 10: Continued.
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Figure 10: Phase diagrams for the route of subharmonic motion into chaos, out of chaos to periodic
response at different rotating speed ratios of s (with rub-impact effect).

of the nonlinear dynamic response in this study. The dynamics of the system have been
analyzed by reference to its dynamic trajectories, power spectra, Poincaré maps, bifurcation
diagrams, maximum Lyapunov exponents, and fractal dimensions. The bifurcation results
can be observed that HSFD may be used to improve dynamic irregularity. The system with
rub-impact force effect may be a strongly nonlinear effect, and the bifurcation results show
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Figure 11: Continued.
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Figure 11: Poincaré maps for the route of subharmonic motion into chaos, out of chaos to periodic response
at different rotating speed ratios of s (with rub-impact effect).

that HSFD mounted rotor-bearing system with rub-impact force effect present nonperiodic
motions at low rotating speeds and perform periodic motions at high rotating speeds. The
results will enable suitable values of the rotating speed ratio to be specified such that chaotic
behavior can be avoided, thus reducing the amplitude of the vibration within the system and
extending the system life.
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Nomenclature

B : Bearing parameter = 6μR2L2/mδ3ωn

d: Viscous damping of the rotor disk
D: d/mωn

e: Damper eccentricity = εδ
fx, fy: Components of the fluid film force in horizontal and vertical coordinates
Fr, Fτ : Components of the fluid film force in radial and tangential directions
h: Oil film thickness, h = δ(1 + ε cos θ)
k: Stiffness of the retaining springs
kd: Proportional gain of PD controller
kp: Derivative gain of PD controller
L: Bearing length
m: Masses lumped at the rotor mid-point
Om: Center of rotor gravity
Ob,Oj : Geometric center of the bearing and journal
p(θ): Pressure distribution in the fluid film
ps: Pressure of supplying oil
pc,i: Pressure in the static pressure chamber
R: Inner radius of the bearing housing
r: Radius of the journal.
r, t: Radial and tangent coordinates
s: Speed parameter = ω/ωn

U: ρ/δ
x, y, z: Horizontal, vertical and axial coordinates
x0, y0: Damper static displacements
X,Y,X0, Y0: x/δ, y/δ, x0/δ, y0/δ
ρ: Mass eccentricity of the rotor
φ: Rotational angle (φ = ωt)
ω: Rotational speed of the shaft
ϕb: Angle displacement of line ObOj from the x-coordinate (see Figure 1)
Ω: ϕ̇b

δ: Radial clearance = R − r,
θ: The angular position along the oil film from line O1O3 (see Figure 1)
μ: Oil dynamic viscosity
ε: e/δ
β: Distribution angle of static pressure region
(•), (′): Derivatives with respect to t and φ.
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